
Sub-Optimal SAT-Based Approach
to Multi-Agent Path-Finding Problem

Pavel Surynek
Czech Technical University

Faculty of Information Technology
Thákurova 9, 160 00 Praha 6, Czechia

pavel.surynek@fit.cvut.cz

Ariel Felner, Roni Stern
Ben Gurion University

Beer-Sheva, Israel 84105
felner,sternron@bgu.ac.il

Eli Boyarski
Bar-Ilan University
Ramat-Gan, Israel

eli.boyarski@gmail.com

Abstract
In multi-agent path finding (MAPF) the task is to find non-
conflicting paths for multiple agents. In this paper we fo-
cus on finding suboptimal solutions for MAPF for the sum-
of-costs variant. Recently, a SAT-based approached was de-
veloped to solve this problem and proved beneficial in
many cases when compared to other search-based solvers. In
this paper, we present SAT-based unbounded- and bounded-
suboptimal algorithms and compare them to relevant algo-
rithms. Experimental results show that in many case the
SAT-based solver significantly outperforms the search-based
solvers.

1 Introduction
The multi-agent path finding (MAPF) problem consists

a graph, G = (V,E) and a set A = {a1, a2, . . . ak} of k
agents. Time is discretized into time steps. The arrangement
of agents at time-step t is denoted as αt. Each agent ai has a
start position α0(ai) ∈ V and a goal position α+(ai) ∈ V .
At each time step an agent can either move to an adjacent
location or wait in its current location. The task is to find a
sequence of move/wait actions for each agent ai, moving it
from α0(ai) to α+(ai) such that agents do not conflict, i.e.,
do not occupy the same location at the same time. Formally,
an MAPF instance is a tuple Σ = (G = (V,E), A, α0, α+).
A solution for Σ is a sequence of arrangements S(Σ) =
[α0, α1, ..., αµ] such that αt+1 results from valid movements
from αt for t = 1, 2, ..., µ− 1, and αµ = α+.

MAPF has practical applications in video games, traffic
control, robotics etc. (see (Sharon et al. 2015) for a survey).
The scope of this paper is limited to the setting of fully co-
operative agents that are centrally controlled. MAPF is usu-
ally solved aiming to minimize one of the two commonly-
used global cumulative cost functions: (1) Sum-of-costs
(denoted ξ) is the summation, over all agents, of the num-
ber of time steps required to reach the goal location (Dres-
ner and Stone 2008; Standley 2010; Sharon et al. 2013;
2015). Formally, ξ =

∑k
i=1 ξ(ai), where ξ(ai) is an indi-

vidual path cost of agent ai. (2) Makespan: (denoted µ)
is the time until the last agent reaches its destination (i.e.,
the maximum of the individual costs) (Surynek 2010; 2014;
2015).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Optimal solvers for MAPF can be divided to two
classes. (1) Search-based solvers. These algorithms con-
sider MAPF as a graph search problem. Some of these algo-
rithm are variants of the A* algorithm that search in a global
search space – all different ways to place k agents into V
vertices, one agent per vertex (Standley 2010; Wagner and
Choset 2015). Others algorithms such as ICTS (Sharon et al.
2013) and CBS (Sharon et al. 2015; Boyarski et al. 2015)
search different search spaces and employ novel (non-A*)
search tree. All these search-based solvers were originally
designed for the sum-of-costs MAPF variant. But, with sim-
ple modifications, they can be modified to work for the
makespan variant. (2) Reduction-based solvers. By con-
trast, many recent optimal solvers reduce MAPF to known
problems such as CSP (Ryan 2010), SAT (Surynek 2012),
Inductive Logic Programming (Yu and LaValle 2013a) and
Answer Set Programming (Erdem et al. 2013). While most
reduction-based solvers address the makespan variant, an
optimal reduction-based solver for the sum-of-costs variant
was recently introduced (Surynek et al. 2016b). In this pa-
per we further widen this direction and introduce SAT-based
suboptimal solvers.

Finding optimal solutions for both variants is NP-
Hard (Yu and LaValle 2013b; Surynek 2010); as the state-
space grows exponentially with k (# of agents). Therefore,
many suboptimal solvers were developed. Some subopti-
mal solvers aim to quickly find paths for all agents while
paying no attention to the quality of the solution, i.e., how
far it is from the optimal solution. We refer to such algo-
rithms as any-solution MAPF solvers. Many any-solution
MAPF solvers were proposed (Ryan 2010; Cohen, Uras, and
Koenig 2015; Silver 2005; Botea and Surynek 2015; Sajid,
Luna, and Bekris 2012), and there is even a polynomial
time any-solution MAPF solver (Luna and Bekris 2011a;
de Wilde, ter Mors, and Witteveen 2014). These algorithms
are usually used when k is large and some of them are not
complete.

In some cases, the user might ask for some guarantee on
the quality of the solution returned. A common type of such
a requirement is that the solution found is bounded subop-
timal, that its cost is ≤ (1 + ε) × copt where copt is the
cost of the optimal solution and ε is a parameter that sets
the desired amount of suboptimality - sometimes called the
error. A solver that returns bounded-suboptimal solutions

The Eleventh International Symposium on Combinatorial Search 
(SoCS 2018)

99



is referred to as a bounded-suboptimal algorithm or more
specifically (1 + ε)-bounded suboptimal.

Bounded-suboptimal MAPF is NP-hard to approximate
within any constant factor less than 4/3; that withing ε <
1/3 (Ma et al. 2016). Hence using search for finding
bounded-suboptimal solutions is relevant.

Despite the large number of papers devoted to opti-
mal or to suboptimal solutions, we are only aware of
two approaches that provided bounded suboptimal solutions
ECBS (Barer et al. 2014) and CBS with highways (Cohen,
Uras, and Koenig 2015), both are modifications of the con-
flict based search (CBS) algorithm. In this paper we intro-
duce two new SAT-based solvers: uMDD-SAT, an any solu-
tion MAPF solver, and eMDD-SAT, a bounded-suboptimal
MAPF solver. We experimentally compare our new SAT
solvers with relevant any solution or bounded-suboptimal
algorithms and show that our SAT solvers is comparable
and sometimes outperform other algorithms in many cir-
cumstances.

2 Background: Optimal SAT-based Solver
Our suboptimal algorithms presented in this paper are based
on a SAT-based optimal MAPF (called MDD-SAT) algo-
rithm for the sum-of-costs variant (Surynek et al. 2016a).
The main idea in MDD-SAT is to convert the optimization
problem (finding minimal sum-of-costs) to a sequence of de-
cision problems – is there a solution of a given sum-of-costs
ξ. A formula Fξ has been introduced such that Fξ is satisfi-
able if and only if there is a solution of sum-of-costs ξ. We
now provide sufficient details about Fξ that are needed for
the rest of this paper. More information on this formula and
its exact variables can be found in (Surynek et al. 2016a).

Let ξ0(ai) be the cost of the shortest individual path for
agent ai (ignoring collisions with the other agents), and let
ξ0 =

∑
ai∈A ξ0(ai). ξ0 is called the sum of individual costs

(SIC) (Sharon et al. 2013). It is a known admissible heuris-
tic for optimal sum-of-costs search algorithms, since it is a
lower bound on the minimal sum-of-costs. ξ0 is calculated
by relaxing the problem by omitting the other agents, solv-
ing k single-agent shortest path problem. Similarly, we de-
fine µ0 = maxai∈A ξ0(ai). µ0 is the length of the longest
of the shortest individual paths and is thus a lower bound on
the minimal makespan. Fξ is built on top of the following
understanding about the maximal makespan (µ) of solutions
with sum-of-costs ξ. Let ∆ = ξ − ξ0.

Proposition 1 If a solution with sum-of-costs ξ exists then
its makespan is at most µ ≤ µ0 + ∆.

Proof outline (Surynek et al. 2016a) Clearly, if there is
a solution of cost ξ0 then its makespan will be no greater
than µ0. But, we want a solution of cost ξ, which is ξ0 plus
some ∆. In the worst-case all the ∆ extra moves belong to
the agent with the largest shortest-path. Thus, the resulting
path of that agent would be µ0 + ∆, as required. �

Based on Proposition 1, Fξ is constructed by generating a
time expansion graph (Surynek et al. 2016a) (denoted TEG)
of µ0 + ∆ layers. A TEG is a directed acyclic graph (DAG)
in which the set of vertices of the underlaying graph G are

Figure 1: A TEG for an agent that needs to go from u1 to u3.

duplicated for all time-steps from 0 up to the desired number
of layers (µ = µ0 + ∆). Possible actions (move along edges
or wait) are represented as directed edges between succes-
sive time steps. Formally a TEG with µ layers is defined as
follows:

Definition 1 Time expansion graph of depth µ is a digraph
(V,E) where V = {utj |t = 0, 1, ..., µ ∧ uj ∈ V } and E ⊆
{(utj , u

t+1
k )|t = 0, 1, ..., µ− 1 ∧ ({uj , uk} ∈ E ∨ j = k)}.

Figure 1 illustrates a TEG with 4 layers.Fξ has a a propo-
sitional variable for every pair of agent and edge in the TEG.
Setting this variable to TRUE represents that the edge is tra-
versed by that agent. Thus, an assignment to these variables
represents a solution the the MAPF problem. Appropriate
constraints are added toFξ to make sure the solution is valid.

To verify that a solution to Fξ represents a solution
with sum of costs lower than ξ, we add a cardinality
constraint over these agent-edge variables. A cardinality
constraint is a constraint that allows bounding the num-
ber of variables that are set to True in a formula. It can
be used for bounding a numeric cost. The SAT litera-
ture offers several techniques for encoding a cardinality
constraint (Bailleux and Boufkhad 2003; Silva and Lynce
2007). Formally, for a bound λ ∈ N and a set of propo-
sitional variables X = {x1, x2, ..., xk} the cardinality con-
straint≤λ {x1, x2, ..., xk} is satisfied iff the number of vari-
ables from the setX that are set to TRUE is≤ λ. Actually we
use the cardinality constraint to bound the number of edges
each agent traverses in addition to the first ξ0(ai) edges. So,
that the cardinality constraint in fact ensures that the number
of such extra moves is at most ∆. This is done by modifying
the TEG, marking some edges are standard and others as ex-
tra (see Figure 1). We do so for efficiency reasons, following
Surynek et al. (2016a).

Algorithm 1 summarizes the MDD-SAT algorithm. ∆
is initialized as zero and in every iteration it is increased
(Line 9). µ is set to µ0 +∆ (Line 5) and ξ to x0 +∆ (Line 6).
Next the formula Fξ is built, representing the decision prob-
lem of asking whether there is a solution with sum-of-costs
ξ and makespan µ. A SAT solver is tasked to check if Fξ is
solvable. If such a solution exists, it is returned. Otherwise
∆ and consequently ξ and µ are incremented by 1 and an-
other iteration of building Fξ and running the SAT solver
is activated. This algorithm is complete but cannot detect
unsolvability. However, this can be detected in polynomial

100



Algorithm 1: Sum-of-costs optimal SAT-based solv-
ing

1 MDD-SAT(MAPF Σ = (G = (V,E), A, α0, α+))
2 µ0 = maxai∈A ξ0(ai)
3 ∆← 0
4 while Solution not found do
5 µ = µ0 + ∆
6 ξ = ξ0 + ∆
7 Fξ ← Build-Formula(Σ, µ, ∆)
8 Solution← Run-SAT-Solver(Fξ)
9 if Solution not found then ∆← ∆ + 1 ;

10 end
11 return Solution
12 end

time using other algorithms (Kornhauser, Miller, and Spi-
rakis 1984).

3 From Optimal to Suboptimal Solver
To convert SAT-MDD (Algorithm 1) to a suboptimal any
solution algorithm, we simply remove the cardinality con-
straints from the construction of Fξ. Let F denote the re-
sulting formula. Since F has all the constraints in Fξ except
the cardinality constraints, then clearly a satisfying assign-
ment to F still represents a feasible solution (no collisions
between agents etc.). SinceF is less constrained thanFξ, we
expect it to be solved faster. Indeed, we observed this in our
preliminary experiments. Using F in Algorithm 1 instead of
Fξ looses, however sum-of-cost optimality.

Hence, replacing Fξ with F in Algorithm 1 leads to a
sub-optimal version of the MDD-SAT solver that is faster
than the optimal version. We refer to this unbounded ver-
sion of MDD-SAT as uMDD-SAT. A key question is what is
the suboptimality of the solutions uMDD-SAT returns? Is it
really unbounded? We show later that even without the car-
dinality constraints, the suboptimality of the solutions out-
putted is bounded, due to how F is constructed. Next, we
show how to control the suboptimality of the returned solu-
tion by introducing a relaxed version of the optimal cardi-
nality constraints, allowing the algorithm’s user to balance
runtime and suboptimality.

3.1 Bounded Suboptimal SAT-based Solver
The key to our bounded-suboptimal SAT-based solver is that
it modified the ∆ parameter used in construction of Fξ. In
SAT-MDD, ∆ is incremented by one in every iteration. Al-
lowing ∆ parameter to be less restrictive; that is, replace ∆
with ∆′ = ∆ + δ, where δ ≥ 0 is an integer value, produces
a formula of the same size but representing more solutions.1
Since ∆′ > ∆, we expect a formula with the sum-of-costs
bounded by ∆′ to be easier to solve than that with the origi-
nal ∆.

1The change from ∆ to ∆′ does not affect the number of clauses
that represent the cardinality constraint, because we coded the car-
dinality constraints using a sequential counter, whose size is pro-
portional to the number of propositional variable involved but not
to the value of the bound (Sinz 2005).

The following proposition shows that for a solvable
MAPF Σ the sum-of-costs of the solution obtained by the
above process differs from the optimal one by at most δ.
Let us denote the formula Fξ constructed for a TEG with µ
layers (representing a makespan of µ) and ∆ parameter as
F(µ,∆).

Proposition 2 Let δ be a non-negative integer and let
F(µ0 + ∆,∆ + δ) be the first satisfiable formula encoun-
tered in the sequence of formulae F(µ0, δ), F(µ0 + 1, 1 +
δ),...,F(µ0 +∆−1,∆+δ−1), F(µ0 +∆,∆+δ). Then the
solution represented by F(µ0 + ∆,∆ + δ) has sum-of-costs
ξ ≤ ξopt + δ where ξopt is the optimal sum-of-costs for Σ.

Proof: FormulaF(µ0 +∆−1,∆+δ−1) in the penultimate
iteration was not solvable. This means that no solution of
makespan at most µ0 + ∆ − 1 and sum-of-costs at most
ξ0 + ∆ + δ − 1 exists. But we also know that all solutions
of sum-of-costs ξ0 + ∆ − 1 fit under the makespan of
at most µ0 + ∆ − 1. Hence unsolvability of formula
F(µ0 + ∆ − 1,∆ + δ − 1) together with δ ≥ 0 implies
that there is no solution of sum-of-costs ξ0 + ∆ − 1 at all.
Therefore, the optimal sum-of-costs is at least ξ0 + ∆. The
solvability of F(µ0 + ∆,∆ + δ) tells that there is a solution
of Σ of sum-of-costs ξ0 + ∆ + δ which differs from the
optimum by at most δ. �

Observe that the only property of δ we used was that it
is a non-negative integer but there is no requirement that
it must be constant across individual iterations of the algo-
rithm. Proposition 2 holds even if we use a non-negative δ
as a function of ∆ instead of a constant. This property can
be used to modify the above SAT-based framework to an
(1 + ε)-bounded suboptimal algorithm.

Corollary 1 Given an error ε > 0 the iterative SAT-based
suboptimal framework can modified to an (1 + ε)-bounded
suboptimal algorithm by appropriate setting of δ(∆).

Proof: Let δ(∆) = ε · (ξ0 + ∆). Hence the sum-of-
costs of the solution returned by the algorithm is at most
(1+ ε) · (ξ0 +∆) while the optimum is at least ξ0 +∆ hence
the ratio between the sum-of-costs of returned solution and
the sum-of-costs of the optimal one is at most (1 + ε). �

The pseudo-code of the (1+ε)-bounded suboptimal SAT-
based algorithm is presented as Algorithm 2. We refer to this
algorithm as eMDD-SAT.

Note that a further minor improvement of the pseudo-code
could be done which exploits the original optimization of the
formula. Observe that in any solution to a MAPF problem it
holds that µ ≤ ξ ≤ m · µ. Therefore, if ξ0 + ∆ + δ(∆) ≥
µ · k. then there is no need to add any cardinality constraints
to Fξ, as the solution is guaranteed to be bounded by µ · k.

This inequality represents a limit of the degree of relax-
ation achievable by allowing more freedom over the cost
bound imposed by the cardinality constraint. Hence the
(1 + ε)-bounded suboptimal SAT-based algorithm tends to
be near optimal anyway. Precisely, effectively the algorithm
will be

(k·(µ0+∆)
ξ0+∆

)
-bounded in the worst case.

101



Algorithm 2: eMDD-SAT, an (1 + ε)-bounded sub-
optimal SAT-based MAFP solver

1 eMDD-SAT(MAPF Σ = (G = (V,E), A, α0, α+),ε)
2 µ0 = maxai∈A ξ0(ai)
3 ξ0 =

∑
ai∈A ξ0(ai)

4 ∆← 0
5 while Solution not found do
6 µ = µ0 + ∆
7 ∆′ ← ∆ + ε · (ξ0 + ∆)
8 F(µ,∆′)← Build-Formula(Σ, µ, ∆′)
9 Solution← Consult-SAT-Solver(F(µ,∆′))

10 if Solution not found then
11 ∆← ∆ + 1
12 end
13 end
14 return Solution
15 end

Figure 2: Dragon Age maps include: narrow corridors in
brc202d, large open space in den520d, and open space
with almost isolated rooms in ost003d.

4 Experimental Evaluation
We performed a large set of experiments to evaluate uMDD-
SAT and eMDD-SAT, our suggested any solution and
bounded suboptimal versions of MDD-SAT. We used vari-
ous 4-connected grids as the underlying graphs.

(i) The first set of small densely populated instances con-
sisted of grids of sizes 8×8, 16×16, and 32×32 with 10%
nodes occupied by obstacles. To obtain instances of various
difficulties the number of agents was varied from 1 to 32, 1
to 128, and 1 to 256 in case of 8×8, 16×16, and 32×32
grids respectively (the step was varied from 1 in the range
of small units of agents to 16 in the range of hundreds of
agents). Ten random instances were genereted for each num-
ber of agents by randomly choosing an initial position and
then performing a random walk to set the target position.

(ii) Instances of the second testing set are based on three
structurally different large maps taken from Sturtevant’s
repository (Sturtevant 2012). These are Dragon Age Ori-
gion (DAO) maps denoted as brc202d, den520d, and
ost003d which are a standard benchmark for MAPF (see
Figure 2). Again the number of agents was varied from 1
to 256 to obtain instances of various difficulties (the step
ranged from 1 to 16) and 10 random instances were gener-
ated for each number of agents.

All tests were run on a machine with CPU Intel i7 3.2
Ghz, 8 GB RAM under Ubuntu Linux 15 and Windows 10

Figure 3: Runtimes of unbounded variants on grids of size
16×16, and 32×32.

Figure 4: Runtimes of unbounded variants on DAO maps
brc202d, den520d, and ost003d.

respectively. The timeout for all solvers has been set to 500
seconds.

4.1 Evaluation of the Unbounded Case
In this section we evaluate the performance of uMDD-
SAT, our any solution suboptimal SAT-based solver. We
compared uMDD-SAT with two suboptimal algorithms that
are by design unbounded: PUSH-AND-SWAP (Luna and
Bekris 2011b; de Wilde, ter Mors, and Witteveen 2014),
which is a polynomial time rule-based algorithm, and
UNIROBOT(Surynek 2015), which is a SAT-based algorithm
that reduces MAPF with k agents to a problem of finding
k vertex disjoint paths (Seymour 1980). We also compared
uMDD-SAT against ECBS (Barer et al. 2014) a state-of-the-
art bounded-suboptimal algorithm that is based on the CBS
MAPF solver. To make the comparison with unbounded
MAPF solver fair, we set the suboptimality bound of ECBS
to a very large number (500).

Runtime results of the experiments with the unbounded
versions on small grids and DAO maps are shown in Figures
3 and 4 respectively. Runtimes for all testing instances that
were below the limit of 500 seconds were sorted and shown
in the figure (the x-axis corresponds to ordering of instances

102



Figure 5: Sum-of-costs of unbounded variants on small grids
and DAO maps.

according to increasing runtime and the y-axis corresponds
to runtime in seconds). The intuitive understanding of this
presentation is that the faster algorithm has its line in the
lower part of the figure.

Consider first the runtime results for the 16x16 and 32x32
grids (Figure 3). PUSH-AND-SWAP is the fastest algorithm
in these small grids and UNIROBOT turned out to be worst
performing algorithm. The comparison of ECBS and eMDD-
SAT shows that in the easier instances (those that are sorted
in the left-hand side of the x-axis), ECBS is faster, while for
the harder instnances (those on the right-hand side of the x-
axis) eMDD-SAT performs better.

Now consider the runtime results on the DAO maps (Fig-
ure 4), which are much larger than the aforementioned grids.
Here too, UNIROBOT turned out to be the worst perform-
ing algorithm, and in general not applicable on large DAO
maps. The bottom-right plot in Figure 4, which shows the
number of instances solved by the remaining algorithms as
a function of the runtime, that is, for a given x value the
y value shows the number of instances solved given x sec-
onds. All three algorithms (ECBS, PUSH-AND-SWAP, and
uMDD-SAT) managed to solve all instances within the time
limit, but uMDD-SAT was somewhat slower than the other
two. Consider the other plots in Figure 4 we can conclude
that in this domain ECBS was in general faster.

While the compared algorithms do not provide a bound on
the sum-of-costs of their solutions, it may still be of interest
in practice. We observed that the sum-of-costs of the solu-
tions found by tested algorithms were significantly different
from the optimum and from each other. Figure 5 shows the
sum-of-costs of the solutions found for the DAO instances.
This presentation is similar to the plots in the previous fig-
ures, but here the instances are sorted according ot their
sum-of-costs. The interpretation is the same: lower curves
corresponds to finding lower sum-of-costs. The results show
that both UNIROBOT and PUSH-AND-SWAP generate worse

Figure 6: Success rate of the bounded variant with (1 + ε)
ranging from 1.1 to 1.0 (optimal case). Grid32×32 contains
100 agents and DAO map ost003d 200 agents.

solutions than ECBS and eMDD-SAT. The solutions qual-
ity returned by ECBS and eMDD-SAT are comparable, with
slightly better solutions found by ECBS in some cases.

Altogether we can conclude that for unbounded subopti-
mal case uMDD-SAT is a reasonable option: perhaps not al-
ways the fastest or the one with the lowest sum-of-costs, but
comparable to the state-of-the-art. This is encouraging, es-
pecially since if SAT solvers continue to become better, the
performance of SAT-based algorithms such as uMDD-SAT
will continue to improve.

4.2 Evaluation of the Bounded Case
Next, we conducted experiments to evaluate eMDD-SAT,
our bounded-suboptimal MDD-SAT variant. Here we only
compared againts ECBS as the other algorithms (PUSH-
AND-SWAP and UNIROBOT) do not guarantee a bounded-
suboptimal solution. The first set of experiments evaluate the
behavior of both algorithms for different values of 1+ε, i.e.,
for different required suboptimality bounds. The same set
of instances used for the unbounded experiments were also
used here.

First, we measured the success rate of each algorithm,
which is the the ratio of successfully solved instances un-
der a predetermined time limit. The time limit in our ex-
periments was 500 seconds. Figure 6 shows the algorithms’
success rate (y-axis) as a function of the required subopti-
mality bound (the x-axis), which ranges from 1.1 to 1.0. Re-
sults for 32×32 with 100 agents and ost003d with 200
agents are shown. It can be observed that eMDD-SAT is bet-
ter than ECBS for closer to optimal suboptimality bounds,
outperforming ECBS starting at bound (1 + ε) = 1.02 and
lower. For the 32x32 grids, which are more dense than the
DAO map, the advantage of eMDD-SAT even begin earlier,
again highlighting the advantage of SAT-based algorithms
in harder problems. Next, we focus our evaluation on bound
(1 + ε) = 1.01, to focus on the cases where eMDD-SAT is
effective.

Results for (1 + ε) = 1.01 for small grids and DAO maps
are presented in Figures 7 and 8. In this we can observe that
MDD-SAT tends to be faster in all small grids for the harder
problems. In our analysis (results not shown for space lim-
itation), we observed that these were the cases with higher
density of agents.

Results for DAO maps indicate that in easier instances
containing fewer agents ECBS is faster. However with the

103



Figure 7: Runtimes of bounded variants (ε = 0.01) on grids
of size 8×8 and 16×16, and 32×32.

increasing difficulty of instances and density of agents the
gap in performance is narrowed until eMDD-SAT starts to
perform better in harder instances. This trend is best visible
on the ost003d map.

Let us note that the maximum achievable ε by relaxing the
cardinality constraint within the suboptimal eMDD-SAT ap-
proach for DAO maps is: ε = 1.47 for brc202d, ε = 1.33
for den520d, and ε = 1.12 for ost033d all cases with
200 agents. Setting these or greater bounds in eMDD-SAT is
equivalent to complete removal of the cardinality constraint.
That is, it is equivalent to running uMDD-SAT.

5 Conclusions
The SAT-based approach represented by eMDD-SAT has an
advantage of using the learning mechanism built-in the ex-
ternal SAT solver. On the other hand, search based meth-
ods represented by ECBS are specially designed for solv-
ing MAPF and do not bring the overhead of a general pur-
pose SAT solver. We attribute the good performance of the
eMDD-SAT approach to clause learning mechanism.

This conclusion corresponds with the fact that advan-
tage of eMDD-SAT appears in harder instances with long
runs of the SAT solver where the clause learning mecha-
nism has enough time to prune the search space efficiently.
On the other hand the SAT-based approach has an overhead
of building formula and communication with the external
solver which negativelly affects performance in sparsely oc-
cupied instances.

One of possible future research directions is to integrate
learning mechanism into a specialized MAPF solver which
would eliminate the overhead of usage of the external SAT
solver. Vertices represented within layers of MDD can be
regarded as values of a multi-value decision variables repre-
senting positions of agents at individual time steps. Learn-
ing mechanism over such finite domain variables would be
very similar to nogood recording known from modern CSP

Figure 8: Runtimes of bounded variants (ε = 0.01) on DAO
maps brc202d, den520d, and ost003d.

solvers (Dechter 2003). Reasoning about MAPF in the con-
text of nogood recording and CSP would open the door
to higher level constraint propagation than that offered by
SAT’s unit propagation. Lastly, we believe that this work
will open the way to developing bounded-suboptimal SAT-
based algorithms for other planning problems.

6 Acknowledgements
This paper is partly supported by the joint grant of the Israel
Ministry of Science and the Czech Ministry of Education
Youth and Sports number 8G15027. We would like to thank
anonymous reviewers for their valuable comments.

References
Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF encod-
ing of boolean cardinality constraints. In CP, 108–122.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014.
Suboptimal variants of the conflict-based search algorithm
for the multi-agent pathfinding problem. In Symposium on
Combinatorial Search (SoCS).
Botea, A., and Surynek, P. 2015. Multi-agent path finding
on strongly biconnected digraphs. In AAAI, 2024–2030.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. 2015. ICBS: improved
conflict-based search algorithm for multi-agent pathfinding.
In IJCAI, 740–746.
Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility study:
Using highways for bounded-suboptimal mapf. In SOCS,
2–8.
de Wilde, B.; ter Mors, A.; and Witteveen, C. 2014. Push and
rotate: a complete multi-agent pathfinding algorithm. JAIR
51:443–492.
Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann.

104



Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. JAIR 31:591–656.
Erdem, E.; Kisa, D. G.; Oztok, U.; and Schueller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In AAAI.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Coordi-
nating pebble motion on graphs, the diameter of permutation
groups, and applications. In FoCS, 241–250.
Luna, R., and Bekris, K. E. 2011a. An efficient and complete
approach for cooperative path-finding. In AAAI.
Luna, R., and Bekris, K. E. 2011b. Push and swap: Fast
cooperative path-finding with completeness guarantees. In
IJCAI, 294–300.
Ma, H.; Tovey, C. A.; Sharon, G.; Kumar, T. K. S.; and
Koenig, S. 2016. Multi-agent path finding with payload
transfers and the package-exchange robot-routing problem.
In Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, 3166–3173.
Ryan, M. 2010. Constraint-based multi-robot path planning.
In ICRA, 922–928.
Sajid, Q.; Luna, R.; and Bekris, K. 2012. Multi-agent
pathfinding with simultaneous execution of single-agent
primitives. In SOCS.
Seymour, P. 1980. Disjoint paths in graphs. Discrete Math-
ematics 29(3):293 – 309.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artif. Intell. 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 219:40–66.
Silva, J., and Lynce, I. 2007. Towards robust CNF encodings
of cardinality constraints. In CP, 483–497.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–
122.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In CP.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 173–178.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games 4(2):144–
148.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016a.
Efficient SAT approach to multi-agent path finding under the
sum of costs objective. In ECAI, 810–818.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016b.
An empirical comparison of the hardness of multi-agent path
finding under the makespan and the sum of costs objectives.
In Symposium on Combinatorial Search (SoCS).
Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In AAAI.
Surynek, P. 2012. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In PRICAI.
564–576.

Surynek, P. 2014. Compact representations of cooperative
path-finding as SAT based on matchings in bipartite graphs.
In ICTAI, 875–882.
Surynek, P. 2015. Reduced time-expansion graphs and goal
decomposition for solving cooperative path finding sub-
optimally. In IJCAI, 1916–1922.
Wagner, G., and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. Artif. Intell. 219:1–24.
Yu, J., and LaValle, S. 2013a. Planning optimal paths for
multiple robots on graphs. In ICRA, 3612–3617.
Yu, J., and LaValle, S. M. 2013b. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI.

105




