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Abstract

Contraction hierarchies are graph-based data structures de-
veloped to speed up shortest path search in road networks.
Built during an offline pre-processing step, contraction hi-
erarchies are always paired with an online query algorithm
which is a variation on bi-directional Dijkstra search. Though
effective and highly popular this combination can some-
times be difficult to extend, for example in order to lever-
age goal-directed heuristics or other forward-driven pruning
techniques. In this paper we deconstruct the bi-directional
query algorithm of contraction hierarchies and derive a new
algorithmic schema which is compatible with standard uni-
directional or bi-directional search. We then develop a va-
riety of new uni-directional query algorithms to find opti-
mal paths in contraction hierarchies. These are based on the
combination of A* search and Geometric Containers, a well
known and successful edge-pruning technique. Empirical re-
sults show that our approach can improve search times by
an order of magnitude vs bi-directional Dijkstra, albeit at the
cost of additional memory and pre-processing time.

Introduction
A contraction hierarchy (Geisberger et al. 2008; 2012) can
be understood as a type of multi-level graph abstraction.
Created as part of a pre-processing step, this auxiliary data
structure is used to quickly compute shortest paths, from one
node in the graph to another. The intuition is simple: dur-
ing search one follows edges up into the hierarchy to reach
nodes that are “far away” and later down into the hierarchy to
reach nodes that are “nearby” 1 We will refer to this pairing
(bi-directional Dijkstra + contraction hierarchies) as BCH.

BCH shares many similarities with abstraction-based
search techniques such as HPA* (Botea, Müller, and Scha-
effer 2004), MMA (Sturtevant 2007) and, more recently,
SUB (Uras, Koenig, and Hernàndez 2013). There are two
notable differences:

• BCH is both fast and optimal while abstraction-based al-
gorithms commonly trade optimality for speed.
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1The intuition draws on empirical observation: we have seen
that going higher generally allows one to travel further.

• BCH always invokes a bi-directional Dijkstra search
while abstraction-based algorithms are more general and
also compatible with uni-directional search.

In this paper we deconstruct BCH and give a new per-
spective on search in contraction hierarchies. First, we show
that BCH is the combination of a specific graph traversal
policy with a particular search technique. A traversal pol-
icy in this context refers to a rule which specifies when the
search should go “up” in the hierarchy and when it should
go “down”. We show that BCH uses an implicit traver-
sal policy which we call AUP (short for always up). We
then give another possible traversal policy, UDP (short for
up-then-down), and show that this alternative method can
be paired with different search strategies, including uni-
directional search.

The first advantage of such a generalisation is perfor-
mance. UDP allows us to easily combine contraction hier-
archies with A* search and, by extension, a wide variety of
goal-directed pruning techniques such as, for example, Geo-
metric Containers (Wagner, Willhalm, and Zaroliagis 2005).
A main result is that such pairings can be over one order
of magnitude faster than BCH, at the cost of additional pre-
processing time and memory overheads.

The second advantage is an improved theoretical under-
standing of contraction hierarchies. Previous research has
improved on the performance of BCH using goal-directed
pruning, e.g. (Batz et al. 2009; Bauer et al. 2010; Storandt
2013), but the resulting techniques are not strict generalisa-
tions. In particular all prior works involve some type of on-
line bi-directional search as a basic ingredient. Despite their
success, there are nonetheless several good reasons why one
might like to apply a strict forward search instead: (i) two-
stage algorithms can be complicated to derive and under-
stand and involve more effort to implement; (ii) two-stage
search schemas are often not easily and/or not as effectively
combined with arbitrary goal-directed pruning techniques,
as compared to simple forward search. (iii) two-stage algo-
rithms that rely on bidirectional search can expand the same
nodes twice, effectively duplicating the amount of work.
This is also the main disadvantage of bidirectional search
(interleaved or otherwise).
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Preliminaries
A weighted graph graph G = (V,E) comprises a set of
vertices (equiv. nodes) V and a set of directed edges E :
V × V . Each edge (i, j) ∈ E represents a traversable link
(e.g. a road) from node i to node j. More, each edge has a
real-valued and non-negative weight ci,j that represents the
cost (usually in time or distance) of traversing the link. An
in-neighbour of node j is a node i where edge (i, j) exists,
and out-neighbour of node i is a node j where edge (i, j)
exists.

A path πs,t = 〈vs, . . . , vt〉 is a sequence of nodes which
connect a start point s to a target point t. Each adjacent pair
of nodes on a path is connected by an edge and the cost of
a path is equal to the sum of its edge weights. A path is
optimal if its cost is minimum among all paths between s
and t. We distinguish such paths using the standard notation
π∗s,t.

Throughout this paper we will assume that G has an as-
sociated and admissible heuristic function h; i.e. each node
has a pair of coordinates x and y (equiv. lat and lng when
G is a road network) and for any pair of nodes h(s, t) ≤ π∗s,t
(h is always a lower-bound on the optimal distance between
s and t).

Contraction Hierarchies
Building a contraction hierarchy is a simple process requir-
ing only the repeated application of an eponymous contrac-
tion operation to the nodes of the input graph G. In broad
strokes:

1. Apply a total lex order L to the nodes of G.

2. W.r.t. L, choose the least node v from the graph that
has not been previously selected.

3. (Contraction) Add to G a shortcut edge (u,w) between
selected pairs of in-neighbour u and out-neighbour w
of v. The nodes u and w are selected if both u and w
are lexically larger than v and if there exists a subpath
〈u, v, w〉 in G. The cost of the shortcut edge is always
cu,w = cu,v + cv,w.

4. Repeat steps 2-3 until every node in the graph has been
contracted 2.

Figure 1 shows one possible contraction of a small toy
graph. Notice that the added shortcut edges offer an oppor-
tunity to connect the start and target node faster than would
otherwise be possible. For example, in the original graph,
the optimal path between the start and target node requires
traversing six edges: 〈6, 1, 10, 9, 11, 3, 5〉. An equivalent-
cost path, which uses shortcuts and traverses only three
edges, is 〈6, 10, 11, 5〉.

Computing shortest paths in a contraction hierarchy re-
quires a search algorithm which can both exploit shortcuts
and also prune edges which are redundant. In the example,
there is no point following edge (10, 9) if we also follow

2The number of shortcuts can be kept to a minimum by further
requiring that the subpath 〈u, v, w〉 is both unique and optimal.
This normally yields smaller graphs and faster query performance
but also requires additional pre-processing time.
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Figure 1: Contraction hierarchies applied to a small (undi-
rected, for simplicity) toy graph. Node labels indicate con-
traction order. Solid edges appear in the original input graph.
Dashed edges represent added shortcuts. We use a variety
of dashed styles and colours to indicate which nodes, when
contracted, result in which shortcuts. Also indicated is one
possible start-target pair.

(10, 11). The only reason to consider (10, 9) is if the target
is one of the intermediate nodes the shortcut is bypassing
(i.e. 9, 7, or 8). The main query algorithm used in this con-
text is BCH, which we discuss shortly.

Practical Considerations
The successful application of contraction hierarchies re-
quires practitioners to carefully balance the efficacy of
contraction (as measured on the one hand by total pre-
processing time and on the other hand by the total space
required to store all shortcut edges) against the efficiency of
online search (as measured by total node expansions and to-
tal edge relaxation operations). Intuitively, a “good” hierar-
chy allows one to reach any target node from any start node
with only a “small” search effort. There are three practical
questions to consider when building a contraction hierarchy:

1. How to order the nodes for contraction?
2. How to decide when to add a new shortcut edge?
3. How to traverse the resulting hierarchy?

Questions (1) and (2) have been intensely studied in the liter-
ature. Though outside the immediate scope of our work we
will, for added clarity and context, briefly discuss the main
challenges and identify some related works. Question (3),
at which this paper is aimed, has received much less atten-
tion. We will discuss, and subsequently deconstruct, BCH:
the main algorithm used to compute shortest paths in con-
traction hierarchies.

Node ordering heuristics
It is well known that a “good” ordering of the input nodes
results in a contraction hierarchy which is more efficient to
search. For example, we might consider a hierarchy efficient
if the number of edges, from any node to the topmost node,
is logarithmic in the height of the hierarchy. Likewise, we
might consider inefficient a linear hierarchy as it provides no
speedup. A variety of practical and efficient ordering heuris-
tics are discussed in (Geisberger et al. 2008) and (Abraham
et al. 2012). Recent and more sophisticated works, based
on graph separators, are discussed in (Strasser and Wagner
2015).
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Contraction approaches
A simple but naive approach to contraction is to introduce
a new shortcut edge for every pair of in-neighbour and out-
neighbour both lexically larger than the current node. This
procedure has a small overhead in terms of pre-processing
time but a potentially large overhead in terms of memory.
Additionally, many of the added edges are redundant (i.e.
they never appear on any shortest path) and their presence
only serves to slow down pathfinding search in the hierarchy.

A variety of alternative contraction techniques, with dif-
ferent time/memory tradeoffs, have appeared in the litera-
ture; e.g. in (Geisberger et al. 2008) and (Geisberger et al.
2012). These approaches have been shown to work well in
practice. A theoretical analysis on the advantages of differ-
ent contraction approaches is given in (Bauer et al. 2013).

BCH
A core idea of contraction hierarchies is that shortcut edges
can be used to bypass one or more intermediate nodes from
the graph in a single step. However, for each shortcut edge
(u,w) and each intermediate node v we have f(v) ≤ f(w);
i.e. given a monotonically increasing cost function a simple
best-first search will usually expand v before w in order to
compute an optimal path. To achieve a speedup the authors
of (Geisberger et al. 2008) divide the set of edges E into
two as follows:

• E↑ = {(u, v) ∈ E | u <L v}
(i.e. the set of all “up” edges); and

• E↓ = {(u, v) ∈ E | u >L v}
(i.e. the set of all “down” edges).

The following results, paraphrased here, are due to (Geis-
berger et al. 2008).

Lemma 1 (ch-path): For every optimal path π∗s,t inE there
is a cost equivalent alternative π′s,t whose prefix 〈s, . . . k〉 is
found in E↑ and whose suffix 〈k . . . t〉 is found in E↓. �

Corollary 1 (apex node): Every ch-path has a node k
which is lexically largest among all nodes on the path. �

Following Lemma 1, a natural decomposition of the short-
est path problem in a contraction hierarchy is the following:
first compute a subpath 〈s, . . . , k〉 in E↑; next, compute a
second subpath 〈k, . . . , t〉 in E↓. All that remains is to iden-
tify a suitable node k which minimises the total distance.
BCH is a variation on bi-directional Dijkstra search that was
developed specifically for solving such problems.

In the forward direction, BCH considers only the outgo-
ing edges inE↑. In the reverse direction BCH considers only
the incoming edges in E↓3. Each meeting point of the two
search frontiers corresponds to a tentative shortest path. Un-
like standard bi-directional Dijkstra search however, which
can be terminated as soon as both directions expand the same
node, BCH continues until it can prove the meeting point k
minimises the total distance between s and t. That means
BCH stops when the minimum f -value on either open list is

3Other edges from E, such as incoming up-edges and outgoing
down-edges are safely discarded by BCH to save space.

at least as large as the best candidate path found so far (or
when both lists are empty, if there is no such path). Though
simple, BCH is highly effective. It remains a state of the art
method for pathfinding on static road networks with many
millions of nodes (Geisberger et al. 2012).

Deconstructing BCH
In this section we deconstruct BCH in order to develop a
more general search framework. To begin, we derive a
straightforward variant of the Single Pair Shortest Path prob-
lem for contraction hierarchies:
Definition 1 (CH-SPSP) Given a contracted graph
G = (V,E,L), and a pair of points s, t ∈ V , find a path
〈s = v1, . . . , vk, . . . vn = t〉 where

min
∑(n−1)

i=1 cvi,vi+1

Subject to:

1. vi <L vi+1 for all 1 ≤ i < k

2. vi >L vi+1 for all k ≤ i < n

The CH-SPSP problem asks for a minimum cost path be-
tween a start and target node. Moreover, the path must be
divisible into two segments. In the first segment, each node
on the path is lexically larger than the node that precedes it
(we call this the up path). In the second segment, each node
on the path is lexically smaller than the node that precedes it
(we call this the down path). The following result is imme-
diate from the definition of CH-SPSP:
Lemma 2 Any solution to the CH-SPSP problem is a ch-
path and has an associated apex node which is lexically
largest among all nodes on the path. �

Traversal Policies
In order to compute a solution to the CH-SPSP problem we
need to define a graph traversal policy: a set of pruning rules
which restrict the set of solutions to those which are also ch-
paths. Suppose we expand a node nwith parent p 6= ∅. Each
successor n′ of n falls into one of the following four cases:

Type 1. (up-up successor): p <L n and n <L n′

Type 2. (up-down successor): p <L n and n >L n′

Type 3. (down-down successor): p >L n and n >L n′

Type 4. (down-up successor): p >L n and n <L n′

Suppose the subpath 〈s, . . . , n〉 is a ch-path. It is easy to
see that Types 1 and 3 maintain the ch-path property since
we keep the same trajectory through the hierarchy, contin-
uing to move either up or down. Type 2 also maintains the
ch-path property as we need to switch directions (from up to
down) when the search reaches the apex of the path. Type
4 does not maintain the ch-path property however since we
never switch directions after the apex. Thus we can safely
prune any successors matching Type 4. We will refer to this
traversal policy as as up-then-down, or UDP for short.

BCH implicitly specifies a similar traversal policy, albeit
one which prunes the search space more aggressively. By di-
viding E into two disjoint sets (E↑ and E↓) BCH implicitly
prunes all Type 2 and Type 4 successors (these edges never
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appear in either collection). Moreover, the backward search
of BCH only relaxes the incoming edges ofE↓, meaning that
each backward successor is lexically larger than its parent.
Since both directions of BCH move upwards in the hierar-
chy we will call this traversal policy always up, or AUP for
short.

Further Pruning
Both AUP and UDP prune the search space by maintain-
ing an invariant property that applies to any ch-path. Other
traversal policies also exist which can further reduce the
search space. For example, the following nodes are all re-
dundant with respect to a given pair of start and target nodes:

1. Any down successor whose contraction order is smaller
than that of the target node.

2. Any successor whose contraction order is larger than
that of the apex node.

3. Any successor which does not appear on any optimal
ch-path to the target.

Notice that while Item 1 seems applicable only to UDP
Items 2 and 3 are strategies that could be employed to further
enhance AUP or UDP. In the next section we propose a va-
riety of such pruning techniques to further speed up shortest
path search in contraction hierarchies. We also discuss the
efficacy of these approaches by comparing their applicabil-
ity in the context of different search strategies, specifically
uni-directional vs bi-directional best-first search.

Forward Search In Contraction Hierarchies
In this section we develop a uni-directional framework for
computing shortest paths in contraction hierarchies. Per-
haps the simplest algorithm of this type is the combination
of A* search with UDP. We refer to this pairing (forward
search + contraction hierarchies) as FCH. Though correct
and optimal FCH is unlikely to yield a significant search
time speedup. It is easy to see why: UDP prunes all Type
4 successors but never any successors of Type 2 (cf. AUP
which prunes both). Put another way, each time FCH takes
a step up in the hierarchy it assumes the node just reached is
an apex and immediately tries to descend.

In the literature a variety of methods have been developed
to improve the efficiency of forward best-first search. Often
these techniques exploit information about the position of
the target relative to the current node. There are two ways to
achieve this: (i) compute more accurate cost-to-go estimates
and drive the search toward the target; (ii) prune nodes that
cannot appear on any optimal path to the target. Both ap-
proaches trade memory for speed and both depend on aux-
iliary data. We will enhance FCH using a variety of similar
ideas, all of which instantiate Geometric Containers, a well
known and popular edge-pruning technique.

Geometric Containers
Geometric Containers (Wagner, Willhalm, and Zaroliagis
2005) is an edge labelling technique used to prune succes-
sors during (a usually forward) search. The idea is to as-
sociate with every outgoing edge (s, n) a bounding volume
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Figure 2: We apply geometric containers to directed edge
(10,9). Container A is the bounding box of all nodes that
can be reached optimally via edge (10, 9) in the original (un-
contracted) graph. Container B includes only those nodes
reached by an ch-path via “down” edge (10,9) as computed
by DFS labelling.

that contains every target t optimally reachable from s via
n. During search any edge whose label does not contain
the target t can be safely pruned. There are many possible
instantiations of Geometric Containers. As a general rule,
smaller and more accurate bounding volumes yield stronger
pruning during search (there are fewer false positives; i.e.
cases where we relax an edge (s, n) whose bounding volume
contains the target but where (s, n) does not appear on any
optimal path from s to t). In this work we store a rectangular
bounding box with each edge. We choose this approach on
account of its simplicity and demonstrated effectiveness in
pathfinding search (e.g. see (Rabin and Sturtevant 2016)).
Figure 2 shows an example of rectangular bounding boxes
applied to one of the edges in our running example.

Labelling
Geometric Containers are usually created by running a sin-
gle Dijkstra search for each node in the graph. We propose
some further alternatives with lower preprocessing require-
ments.

DFS: We apply a post-order DFS traversal to label the
edges of the graph as follows:

Starting from the root of the hierarchy, and following only
outgoing down arcs, we label each edge along the way with
the bounding box that contains all nodes reached through
that edge; i.e. its down-closure. Once all edges of a node
have been followed we mark it as finished. This prevents
DFS from processing the same node twice. This process is
O(|E↓|).

Next, we label each outgoing up arc using a similar pro-
cedure. Bounding boxes in this case contain all nodes n
found in the up-closure of each up arc, plus all nodes found
in the down closure of each n. As before, we employ ad-
ditional bookkeeping to avoid processing a node more than
once. This process is O(|E↑|). Note that when computing
up closures DFS will often produce the universal bounding
box (and hence provide no pruning). We improve this below.

Dijkstra: We can compute stronger edge labellings, for
both up and down arcs, by running a single-source Dijkstra
search (employing UDP traversal rules) from selected nodes
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Graph |V | |E|
#Input #Shortcuts Total

NY-d 264346 733846 920078 1653924
BAY-d 321270 800172 808952 1609124
COL-d 435666 1057066 1062850 2119916
FLA-d 1070376 2712798 2697836 5410634

Table 1: Benchmark graphs. We report total nodes and edges
for the original input graphs and for contracted variants with
shortcuts.

n ∈ V . For each outgoing edge of n we store a bound-
ing box that contains the set of nodes optimally reached
through that edge. The nodes at the top of a contraction
hierarchy typically have very high degree and thus are most
likely to benefit from such improved edge labels. Any re-
maining nodes, not selected for processing using Dijkstra
search, have their edges labelled using the DFS scheme.
Note that we perform the Dijkstra labelling before comput-
ing any DFS labels. In this case the up closures computed
by DFS may not be the universal bounding box.

Experimental Setup
We compute contraction hierarchies for a subset of road
networks drawn from the 9th DIMACS Challenge (Deme-
trescu, Goldberg, and Johnson 2009). The input graphs, and
their contracted variants (which we compute), are described
in Table 1. Each graph is associated with a set of 1000 in-
stances (start-target pairs), also taken from the 9th DIMACS
Challenge. All graphs and instances are publicly available4.
To measure query performance we solve each instance to
optimality five times and return the average (this approach
reduces measurement error for small runtimes).

The nodes of each input graph are contracted during a
pre-processing step. The order of contraction is determined
using a “lazy” scheme first described in (Geisberger et al.
2008). In particular, we use the linear combination of order-
ing heuristics known as EDSL (ED = Edge Difference, S =
Search-space size, L = Limit on the number of number of
nodes expanded by each witness search (a parameter which
we set to 1000)). EDSL is simple to understand, simple to
implement and it is known to provide a good balance be-
tween fast query times and reasonable pre-processing times.

In our experiments we implement and test plain FCH
against plain BCH. Our implementation of FCH uses the
UDP traversal policy and pre-sorts the list of outgoing edges
so that all “up” and “down” successors appear together. Our
implementation of BCH is based on the description in (Geis-
berger et al. 2008) and uses stall-on-demand, a common op-
timisation which avoids some redundant node expansions
caused by AUP traversal.

We further develop two variant algorithms: FCH+BB and
BCH+BB. These combine FCH and BCH with geometric
containers (Wagner, Willhalm, and Zaroliagis 2005) imple-
mented as rectangular bounding boxes. Our implementation
records the origin of each rectangle and its dimensions. We

4http://www.diag.uniroma1.it/challenge9/

NY-d BAY-d COL-d FLA-d
DFS 1 1 1 2
Dijk 1% 102 133 259 1665
Dijk 10% 1009 1259 19704 16117
Dijk 100% 8286 27893 53422 259298

Table 2: Preprocessing time in seconds (smaller is better).
We give results for different edge labelling strategies.

= k < k > k
NY-d 0.64 0.35 0.01

BAY-d 0.58 0.41 0.01
COL-d 0.60 0.39 0.01
FLA-d 0.61 0.38 0.01

Table 3: We measure the average proportion of nodes ex-
panded by plain FCH where the apex of the path to each
node is smaller than, equal to or larger than the optimal value
k. We use 4000 st-pairs on four road networks (1000 in-
stances each) taken from the 9th DIMACS Challenge.

thus store 4×4 = 16 bytes per (outgoing) edge.
To compute geometric containers we apply the prepro-

cessing strategies from earlier where DFS is the depth-first
labelling approach and Dijk k% is the combination of Dijk-
stra search with DFS (we use Dijkstra for the top k% of the
nodes in the hierarchy and DFS for all the rest).

All algorithms are implemented in C++ and compiled
with GCC v6.4.0 using -O3. We undertake all experiments
on a (single-threaded) machine with an Intel i7-6567U CPU
@ 3.30GHz, running macOS 10.12.6 and having 16GB of
RAM. Our implementations are made publicly available at
https://bitbucket.org/dharabor/pathfinding.

Results
Table 2 shows total time for all labelling strategies. In addi-
tion to pure DFS, we also apply Dijkstra to label the outgo-
ing edges of nodes in the top 1%, 10% and 100% (i.e. all)
nodes in the hierarchy. Notice that preprocessing time in-
creases roughly linearly with the Dijkstra percentage. More-
over, the time required for both DFS and Dijkstra 1% is usu-
ally much less than the time required to construct the hierar-
chy in the first place (at least, using our implementation).

For a first experiment we ran plain FCH and examined
how much of the work (in terms of node expansions) takes
place in the upwards phase and the downward phase of the
search. Table 3 shows the proportion of node expansions
before the apex is reached < k, from the apex downwards
= k, and above the apex > k. From this table it is clear that
most of the effort is in the downwards search after the apex is
reached, or in downwards search before the apex is reached.
Hence the most benefit to be gained in improving FCH is
in improving the downwards search. Fortunately, forward
pruning (e.g. with bounding boxes) is very effective.

In Table 4 (expansions) and Figure 3 (time) we present
results from our principal experiment wherein we compare
BCH versus FCH (and variants) on some well known road
networks. We observe the following:
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• Plain bi-directional AUP traversal through the hierarchy
(i.e. the strategy employed by BCH) expands many fewer
nodes than than uni-directional UDP traversal (i.e. the
strategy employed by FCH).

• The combination of FCH with +BB (i.e. geometric con-
tainers in the form of bounding boxes) has very large ben-
efits. Our simplest variant, FCH+BB (DFS), expands or-
ders of magnitude fewer nodes than plain FCH and its
search time performance is often comparable with BCH.

• FCH+BB can be much improved through the applica-
tion of selective Dijkstra search during pre-processing.
FCH+BB (Dijk 1%) has very modest preprocessing re-
quirements and improves on BCH by up to several factors
in most cases. FCH+BB (Dijk 10%) meanwhile achieves
most of the benefit derived from pruning with bounding
boxes but at a fraction of the full preprocessing cost.

• Pruning with bounding boxes also improves BCH but the
gain is more modest. BCH+BB (Dijk 100%) requires a
full Dijkstra search for every node in the graph but its
performance is usually bettered by variants of FCH+BB
with smaller overheads.

• The most effective strategy in our comparison is FCH+BB
(Dijk 100%). This algorithm can improve on BCH by
over one order of magnitude and computes shortest paths
in a small handful of expansions, even on networks with
more than one million nodes.

For a final experiment we compare against the sequential
two-stage query algorithm described in (Batz et al. 2009)
and later appearing in (Storandt 2013). In a standard bidi-
rectional setup expansions are interleaved and the search ex-
plores both directions at the same time. In the mentioned
works a forward (up) search is preceded by an online mark-
ing phase, implemented as an exhaustive backward Dijk-
stra search that follows only incoming down arcs. The idea
is to use the results from the marking phase (which corre-
spond to exact down distances for the target) to speed up
(i.e. terminate early) the subsequent forward search. Appar-
ently similar to FCH at first glance, this method is clearly
bidirectional, though the forward and backward searches are
sequential instead of interleaved. In terms of drawbacks:
(i) Only the forward search benefits from forward heuristics
and forward pruning. (ii) Each of the forward and backward
searches can expand many of the same nodes before termi-
nation, thus duplicating work. This is a main disadvantage
of bidirectional search (interleaved or otherwise).

In Table 5 we give average running times on the FLA
graph for each variant of BCH and FCH described thus far.
We also run (row Bwd Dijkstra) an exhaustive backwards
Dijkstra search in the contraction hierarchy and from the
target node. This is equivalent to the marking phase in the
mentioned works and represents a lower-bound on the per-
formance of the combined sequential algorithm. We observe
that while this approach does indeed improve upon BCH, its
performance in this case appears dominated by most variants
of FCH.

Min. Q1 Med Avg Q3 Max.
NY-d

Dijkstra 33 68K 130K 132K 197K 264K
BCH 15 263 315 311 366 584
BCH+BB (Dijk 100%) 14 89 108 109 129 196
FCH 4 10K 23.8K 32K 44K 202K
FCH+BB (DFS) 3 123 209 220 291 906
FCH+BB (Dijk 1%) 3 57 88 103 127 665
FCH+BB (Dijk 10%) 3 27 37 41 50 167
FCH+BB (Dijk 100%) 3 18 25 27 33 82

BAY-d
Dijkstra 428 85.4K 165K 163K 243K 321K
BCH 36 175 212 212 252 406
BCH+BB (Dijk 100%) 21 67 82 81 94 171
FCH 96 17K 39K 53K 75K 23K
FCH+BB (DFS) 9 97 154 174 236 527
FCH+BB (Dijk 1%) 6 40 55 67 79 310
FCH+BB (Dijk 10%) 6 23 29 31 37 109
FCH+BB (Dijk 100%) 6 18 22 24 28 69

COL-d
Dijkstra 428 85K 165K 163K 243K 321K
BCH 21 217 269 260 317 450
BCH+BB (Dijk 100%) 16 76 96 96 114 196
FCH 96 17K 39K 53K 75K 232K
FCH+BB (DFS) 6 80 155 201 294 708
FCH+BB (Dijk 1%) 6 33 48 60 73 451
FCH+BB (Dijk 10%) 6 22 29 31 38 140
FCH+BB (Dijk 100%) 6 18 23 25 30 109

FLA-d
Dijkstra 167 107K 210K 214K 322K 435K
BCH 24 252 293 289 334 480
BCH+BB (Dijk 100%) 19 83 102 100 116 177
FCH 49 20K 48K 79K 105K 303K
FCH+BB (DFS) 7 138 217 231 300 825
FCH+BB (Dijk 1%) 7 39 53 63 76 282
FCH+BB (Dijk 10%) 7 23 29 32 37 110
FCH+BB (Dijk 100%) 6 19 23 24 28 80

Table 4: Node expansions (smaller is better). We compare
BCH and FCH against variants using different preprocessing
strategies.

Hybrid Search Techniques

We have shown that for contraction hierarchies on road net-
works there exist simple and uni-directional search methods
that can lead to significant run-time improvements vs. inter-
leaved or sequential bi-directional search. In (Bauer et al.
2010) contraction hierarchies and goal-directed edge prun-
ing also appear as ingredients in the development of the hy-
brid two-stage (bi-directional first, then forward only) search
algorithms CHASE and CALT. As in this work, the authors
report order-of-magnitude performance improvements over
plain BCH and on road networks similar to the ones tested
here. Unlike our work, both CHASE and CALT depend
on plain BCH as a basic ingredient and neither directly im-
proves that algorithm. We believe these methods are orthog-
onal to our current work and can be improved by leveraging
the results we have developed here. A theoretical and em-
pirical study of such possibilities is an interesting topic for
further work.
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Figure 3: Search time comparison. We measure the relative
improvement factor (i.e. speedup) for variants of FCH+BB
vs BCH (top diagram) and vs BCH+BB (100% Dijk) (bot-
tom diagram). Each curve in the plot represents a complete
distribution; i.e. we order all instances by relative improve-
ment and rank them for lowest to highest. The x-axis can
be understood as a quantile; i.e. the 2000th instance corre-
sponds to the 50th percentile. In each plot larger is always
better and an improvement factor of > 1 indicates a positive
result. Note the log10 scale on the y-axis.

Conclusion
Contraction Hierarchies is a method for building a multi-
level graph abstraction. Until now it has been tied to bi-
directional Dijkstra search as an efficient approach to com-
pute shortest paths on large networks. In this paper we show
that the benefits of contraction hierarchies can also be ap-
plied to (uni-directional) forward search. This means that all
the methods and techniques developed to improve forward
search can be directly applied to contraction hierarchies.
One possible next step involves further improvements to al-
gorithms such as FCH+BB (Dijk 1%), which have strong
performance and low preprocessing requirements. Com-
bining these with strong forward-driven pruning techniques,
such as Compressed Path Databases (Strasser, Botea, and
Harabor 2015), appears promising.

Min. Q1 Med Avg Q3 Max.
BCH 3 67 82 84 99 171
BCH+BB (Dijk 100%) 4 21 28 28 33 83
FCH+BB(DFS) 11 92 153 169 220 744
FCH+BB(Dijk 1%) 13 25 32 37 42 182
FCH+BB(Dijk 10%) 12 18 21 22 25 76
FCH+BB(Dijk 100%) 12 16 18 19 21 65
Bwd Dijk 19 42 50 51 59 128

Table 5: Average running time, in microseconds, for all 1000
instances from the FLA-d benchmark (smaller is better). We
give results for all tested variants of BCH and FCH. We also
report (row Bwd Dijk) lower-bound running time results for
the sequential bidirectional algorithm appearing in (Batz et
al. 2009; Storandt 2013).
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