
Message Passing Algorithms for
Semiring-Based and Valued Constraint Satisfaction Problems

Hong Xu, Cheng Cheng, Sven Koenig, T. K. Satish Kumar
University of Southern California, Los Angeles, California 90007, United States of America

{hongx, chen260, skoenig}@usc.edu, tkskwork@gmail.com

Abstract

Local consistency algorithms, like arc consistency (AC) algo-
rithms, are polynomial-time algorithms that prune the search
space of constraint satisfaction problems (CSPs). In this paper,
we present connections between message passing algorithms
and AC for semiring-based CSPs (SCSPs) and valued CSPs
(VCSPs), two well-established frameworks that generalize
CSPs. Message passing algorithms are well known distributed
search algorithms for solving many combinatorial problems in
artificial intelligence, probabilistic reasoning, and information
theory. However, the relationship between message passing
algorithms and SCSPs or VCSPs still remains understudied.
Towards this end, we propose the best-d message passing
(BOMP) algorithm for SCSPs and VCSPs. We prove that,
unlike other standard message passing algorithms which are
in general not guaranteed to converge, the BOMP algorithm
guarantees convergence for SCSPs and specific subclasses of
VCSPs. We also theoretically study the relationship between
the BOMP algorithm and AC on SCSPs, and empirically study
the quality of the solutions produced by the BOMP algorithm
for VCSPs.

Introduction
Crisp constraint satisfaction problems (crisp CSPs), also
known as classical CSPs, as hard CSPs, or simply as CSPs,
are representationally powerful and have been used to solve
many real-world combinatorial problems, such as map col-
oring and job-shop scheduling (Bistarelli et al. 1999). Crisp
CSPs are known to be NP-hard in general (Bistarelli et al.
1999). Crisp CSPs are defined by a tuple xX ,D, Cy, where
X “ tX1, X2, . . . , XNu is a set of variables; D, the domain
of the crisp CSP, is a function that maps a variable Xi to
its discrete domain DpXiq; and C “ tC1, C2, . . . , CMu is a
set of constraints. Each Ci consists of a subset SpCiq of X
and a list of allowed assignments of values to these variables
chosen from their domains. The task in solving the crisp CSP
is to find an assignment of values to all variables in X such
that all constraints are satisfied by the assignment, i.e., all
constraints allow the assignment. This assignment is called a
solution of this crisp CSP.

Local consistency of crisp CSPs is a class of proper-
ties over subsets of variables. A crisp CSP is said to be

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

k-consistent iff, for any subset of pk ´ 1q variables, any
consistent assignment of values to them (i.e., all constraints
among them are satisfied) can be extended to any other vari-
able, i.e., there exists an assignment of a value to this variable
that is consistent with the pk ´ 1q variables. Local consis-
tency has been studied for its theoretical as well as practical
usefulness in solving crisp CSPs. On the practical side, en-
forcing local consistency prunes the search space. On the
theoretical side, enforcing strong k-consistency solves a crisp
CSP if k is greater than or equal to the treewidth of the crisp
CSP (Freuder 1982). Arc consistency (AC) is k-consistency
where k “ 2. It is the most common form of k-consistency
that is used to prune the search space of a crisp CSP. In ad-
dition, enforcing AC is also known to solve crisp CSPs with
only max-closed constraints (Jeavons and Cooper 1995).

Despite the representational power of crisp CSPs, many
real-world problems require non-crisp representations, such
as uncertainty and continuous variables. To overcome these
limitations, many generalizations of crisp CSPs have been de-
veloped by researchers across different fields. These include
weighted CSPs (WCSPs), fuzzy CSPs, probabilistic CSPs,
and lexicographic CSPs. They have been used to solve many
real-world problems, such as locating motifs in RNAs in
molecular biology (Zytnicki, Gaspin, and Schiex 2008), find-
ing ground states of spin glasses in statistical physics (Mézard
and Montanari 2009), energy minimization in computer vi-
sion (Kolmogorov 2005), as well as the max-a-posteriori
(MAP) problem in probabilistic reasoning (Koller and Fried-
man 2009). To unify these generalizations of crisp CSPs,
(Bistarelli et al. 1999) developed two frameworks, namely
semiring-based and valued CSPs (SCSPs, VCSPs). There-
fore, a study of SCSPs and VCSPs is beneficial, since algo-
rithms developed for them can be adapted easily to various
generalizations of crisp CSPs. AC and other types of lo-
cal consistency in crisp CSPs have also been generalized
to SCSPs and VCSPs, such as weighted arc consistency
(WAC) (Larrosa and Schiex 2004), full directional arc con-
sistency (FDAC) (Larrosa and Schiex 2003), and so on, with
their significance carried over.

Message passing algorithms, a class of distributed search
algorithms based on processing and passing local information,
have been successfully applied to solve many combinatorial
problems, such as the minimum vertex cover problem (Xu
et al. 2018) and distributed combinatorial optimization prob-

The Eleventh International Symposium on Combinatorial Search
(SoCS 2018)

115

lems (Farinelli et al. 2008; Fioretto et al. 2018). They have
also been used as theoretical tools to study fundamental com-
binatorial problems, such as the minimum (weighted) vertex
cover problem (Weigt and Zhou 2006; Nakajima et al. 2018)
and the k-satisfiability problem (Mézard and Zecchina 2002).
Although a complete theoretical analysis of the convergence
and correctness of message passing algorithms is elusive,
they work well in practice on many important combinatorial
problems.

Despite the individual significance of message passing
algorithms and SCSPs/VCSPs, their relationship remains
understudied. In this paper, we propose a message passing
algorithm for SCSPs and VCSPs, called the best-d mes-
sage passing (BOMP) algorithm. We prove that, unlike other
standard message passing algorithms, the BOMP algorithm
always converges in polynomial time for SCSPs and spe-
cific subclasses of VCSPs. We also prove that the BOMP
algorithm produces solutions to SCSPs that are always arc
consistent while other standard message passing algorithms
in general do not produce solutions with explicit properties.
Finally, we empirically study the solutions produced by the
BOMP algorithm for general VCSPs. Through this paper, we
intend to bring search techniques used in the probabilistic
reasoning and constraint reasoning communities closer to
each other.

Notes on our contributions An algorithm similar to the
BOMP algorithm for SCSPs has been studied under a differ-
ent formulation (Werner 2015). However, in this paper, we
prove properties with respect to AC more explicitly, rather
than using marginal consistency, and therefore have more and
stronger properties proven specifically for arc consistency.
For example, we prove that the BOMP algorithm converges
in polynomial time, while (Werner 2015) only proves that its
message passing algorithm reaches a fixed point in a finite
number of steps (in fact, it does not converge in polyno-
mial time in general); in addition to what (Werner 2015) has
proved, we also prove that the fixed point produced by the
BOMP algorithm preserves all solutions (Theorem 3). Un-
like (Kolmogorov 2006), the BOMP algorithm is a simple
message passing algorithm without any additional encapsula-
tion, and therefore our results are more general.

Background
Semiring-Based CSPs
SCSPs are semiring-based generalizations of crisp CSPs. Al-
though they were first introduced by (Bistarelli et al. 1999),
we define SCSPs and their related concepts using a simpler
equivalent formalism as follows (which suffices for the pur-
poses of this paper).

Definition 1. A semiring is defined as a tuple S “

xA,`,ˆ,0,1y such that

• A is a set and 0,1 P A;
• ` (additive operator) is a closed (i.e., @a, b P A : a` b P
A), commutative (i.e., @a, b P A : a ` b “ b ` a) and
associative (i.e., @a, b, c P A : a` pb` cq “ pa` bq ` c)
operator such that @a P A : a` 0 “ 0` a “ a,

• ˆ (multiplicative operator) is a closed and associative op-
erator such that @a P A : p1ˆa “ aˆ1 “ aq^paˆ0 “
0ˆ a “ 0q, and

• ˆ distributes over `, i.e., @a, b, c P A : a ˆ pb ` cq “
paˆ bq ` paˆ cq.

Definition 2. A c-semiring is a semiring in which ` is idem-
potent (i.e., @a P A : a ` a “ a), ˆ is commutative and
@a P A : a ` 1 “ 1 ` a “ 1. The partial order ďS is
defined as: a ďS b iff a` b “ b. Here, a is said to be worse
than b, and b is said to be better than a. a ăS b iff a ďS b
and a “ b. a1 is called a best of B “ ta1, a2, . . . , aNu iff
@a P B : a1 ăS a. bestrBs is defined as a1 ` ¨ ¨ ¨ ` aN .
(bestrBs is therefore a best of B Y tbestrBsu.)
Definition 3. An SCSP P is defined as a tuple xS,X ,D, Cy,
where
• S is a c-semiring xA,`,ˆ,0,1y,
• X is a set of variables,
• D is a function that maps each variable Xi P X to its finite

discrete domain DpXiq, and
• C is a set of constraints. Each constraint C P C is an

ordered pair xdef, Y y, where
– Y “ tY1, . . . , Y|Y |u Ď X , denoted by SpCq, is a subset

of all variables, and
– def , denoted by ECp¨q, is a function DpY1q ˆ ¨ ¨ ¨ ˆ
DpY|Y |q Ñ A.

Definition 4. Given an SCSP P “ xS,X ,D, Cy, a solution
sol is an assignment of values to all variables, i.e., a function
that maps each variable Xi P X to its domain DpXiq. A
solution sol is consistent iff @C P C : 0 ăS ECpsol|SpCqq,
where sol|SpCq is the assignment of values to variables in
SpCq that is consistent with sol. The total valuation (weight)
of sol in P is defined asW psolq “

Ś

CPC ECpsol|SpCqq. A
solution sol is optimal iff for any solution sol1, W psolq ăS
W psol1q holds.
Definition 5. Given an SCSP P “ xS,X ,D, Cy, a
subset of pk ´ 1q variables Y “ tY1, . . . , Yk´1u Ď

X is said to be k-consistent with respect to a kth

variable Yk iff for any assignment a of values to all
variables in Y ,

Ś

CjPtCPC | SpCqĎY uECj pa|SpCjqq ďS
Ř

ykPDpYkq
“
Ś

CjPtCPC | SpCqĎYYtYkuuECj pa Y tYk “

yku|SpCjqq
‰

holds. P is said to be k-consistent iff each set
of pk ´ 1q variables is k-consistent with respect to any kth

variable. 2-consistency is also called AC, i.e., a variableXi is
arc consistent with respect to another variable Xk iff, for all
xi P DpXiq,

Ś

CjPtCPC | SpCq“tXiuuECj ptXi “ xiuq ďS
Ř

xkPDpXkq
“
Ś

CjPtCPC | SpCqĎtXi,XkuuECj ptXi “ xi,

Xk “ xku|SpCjqq
‰

holds.
Crisp CSPs can be seen as SCSPs under many different

specializations. For example, a crisp CSP can be seen as an
SCSP in which (a) A “ t0,1u, where 0 and 1 are Boolean
False and True, respectively, (b) ` and ˆ are the OR and
AND operators, respectively, (c) in each constraint C “

xdef, Y y, def maps disallowed assignments of values to 0
and allowed assignments of values to 1, and (d) a solution to
the crisp CSP is a consistent solution.

116

Valued CSPs
VCSPs, first introduced by (Bistarelli et al. 1999), are al-
ternative generalizations of crisp CSPs. They annotate each
constraint with a valuation (weight) to denote its impact. As
before, we define VCSPs and their related concepts using a
simpler equivalent formalism as follows.

Definition 6. A valuation structure is defined as a tuple
xE,f,ă,J,Ky, such that

• E is a set totally ordered by ă with a maximum element
J and a minimum element K; its elements are called valu-
ations (weights);

• f is a closed, commutative, and associative binary operator
on E that satisfies
– identity (i.e., @a P E : afK “ a) and
– monotonicity (i.e., @a, b, c P E : pa ĺ bq ùñ pa f
cq ĺ pbf cq).

a1, denoted by bestrBs, is called the best of B “

ta1, a2, . . . , aNu iff @a P B : a1 ĺ a. In this defini-
tion, J corresponds to a completely unacceptable violation
and can therefore be used to express “hard” constraints.
K, on the other hand, corresponds to complete satisfaction.
@a P E : a f J “ J always holds, since @a P E : J “
pJ f Kq ĺ pJ f aq and @a P E : Jf a ĺ J.

Definition 7. A VCSP P is defined as a tuple xS,X ,D, Cy,
where S “ xE,f,ă,J,Ky is a valuation structure, X is a
set of variables, D is a function that maps each variable
Xi P X to its finite discrete domain DpXiq, and C is a
set of constraints. Each constraint C P C is an ordered
pair xdef, Y y, where Y “ tY1, . . . , Y|Y |u Ď X , denoted
by SpCq, is a subset of all variables and def , denoted by
ECp¨q, is a function DpY1q ˆ ¨ ¨ ¨ ˆ DpY|Y |q Ñ A. A so-
lution sol is an assignment of values to all variables, i.e.,
a function that maps each variable Xi P X to its domain
DpXiq. The total valuation (weight) of sol in P is defined as
W psolq “ fCPCECpsol|SpCqq. A solution sol is optimal
iff, for any solution sol1, W psolq ĺ W psol1q holds. A solu-
tion sol is called α-qualified with respect to a constraint C
iff ECpsol|SpCqq ĺ α.

Similar to the case of SCSPs, a crisp CSP can be seen
as a specialization of a VCSP. For example, a crisp CSP is
a VCSP P “ xS “ xE,f,ă,J,Ky,X ,D, Cy in which (a)
E “ tJ,Ku (thus a ă b iff a “ K and b “ J, and f can
be any operator that complies the definition of a valuation
structure), (b) in each constraint C “ xdef, Y y, def maps
forbidden assignments of values to J and allowed assign-
ments of values to K, and (c) a solution to the crisp CSP is a
solution sol such that W psolq “ K.

The Best-d Message Passing Algorithm
Message passing algorithms solve various problems, such
as constraint optimization and probabilistic marginalization,
by passing local information between variables (Mézard and
Montanari 2009). A message passing algorithm first builds a
factor graph that reflects the interactions between variables
and constraints (factors), then updates the messages between
constraints and the variables participating in them according

X1 C12

X2 C23

X3 C13

νX1ÑC12
ÝÝÝÝÝÑ

ÐÝÝÝÝÝ
ν̂C12ÑX1

Figure 1: Illustrates the factor graph of an SCSP/VCSP with
3 variables tX1, X2, X3u and 3 constraints tC12, C23, C13u.
Here, X1, X2 P SpC12q, X2, X3 P SpC23q, and X1, X3 P

SpC13q. The circles represent variable vertices, and the
squares represent constraint vertices. νX1ÑC12 and ν̂C12ÑX1

are the messages from X1 to C12 and from C12 to X1, re-
spectively. Such a pair of messages annotates each edge (even
though not all of them are shown).

to given local update rules, and finally extracts a solution
from these messages by inspecting local messages coming to
each individual variable.

In this section, we introduce a message passing algorithm
for solving SCSPs and VCSPs. It works as follows.

1. Construct an undirected bipartite graph Gf (factor graph),
where each variable is represented by a vertex (variable ver-
tex) in the first partition and each constraint is represented
by a vertex (constraint vertex) in the second partition. (For
convenience of exposition, we use “variable vertices” and
“constraint vertices” interchangeably with “variables” and
“constraints”, respectively.) Connect Xi and Cj with an
edge XiCj iff Xi P SpCjq. Figure 1 illustrates a factor
graph.

2. Send messages in both directions along each edge. Mes-
sages νXiÑCj and ν̂CjÑXi are sent along edgeXiCj from
Xi to Cj and from Cj to Xi, respectively. Both messages
are vectors of size |DpXiq|. Formally,

νXiÑCj “ xνXiÑCj pXi “ xq | x P DpXiqy (1)

ν̂CjÑXi “ xν̂CjÑXi pXi “ xq | x P DpXiqy. (2)

Here, νXiÑCj pXi “ xq and ν̂CjÑXipXi “ xq are called
“components Xi “ x” of νXiÑCj and ν̂CjÑXi , respec-
tively. Figure 1 illustrates the messages.

3. Initialize all messages to 1 for an SCSP and K for a VCSP,
and then perform update operations on them (i.e., update
messages) iteratively according to

ν̂
ptq
CjÑXi

pXi “ xq “ best
aPApBCj ztXiuq

”

ECj pa Y tXi “ xuq

d
“

ä

XkPBCj ztXiu

ν
pt´1q
XkÑCj

pa|tXkuq
‰

ı

d ĉ
ptq
CjÑXi

(3)

and

ν
ptq
XiÑCj

pXi “ xq “

»

—

–

ä

CkPBXiztCju

ν̂
pt´1q
CkÑXi

pXi “ xq

fi

ffi

fl

d c
ptq
XiÑCj

(4)

for all Xi P X , Cj P C, and x P DpXiq, where

117

• BXi and BCj are the sets of adjacent vertices of Xi and
Cj in Gf , respectively,
• ApBCjztXiuq is the set of all assignments of values to

variables in BCjztXiu and ApHq “ tHu,
• superscript ptq indicates the update operation iteration

index,
• d is ˆ for an SCSP and f for a VCSP,
•
Ä

over an empty set yields 1 for an SCSP and K for a
VCSP, and
• cptqXiÑCj and ĉptqCjÑXi are normalization factors that pre-

vent messages from blowing up and can be set in dif-
ferent ways depending on the context (while they can
always be set to 1 for an SCSP and thus are not required
in this case).

Repeat this step until convergence, i.e., νptqXiÑCj pXi “

xq “ ν
pt´1q
XiÑCj

pXi “ xq and ν̂
ptq
CjÑXi

pXi “ xq “

ν̂
pt´1q
CjÑXi

pXi “ xq hold for all Xi P X , Cj P C, and
x P DpXiq.

4. A set of values of all messages is called a fixed point iff
it satisfies Eqs. (3) and (4) with pt ´ 1q set to ptq for all
Xi P X , Cj P C, and xi P DpXiq. Convergence in Step
3 always leads to a fixed point, and all messages at such
a fixed point are denoted by the superscript p8q. A final
assignment of values to all variables in X can then be
found by computing

EXi pXi “ xiq “
ä

CjPBXi

ν̂
p8q

CjÑXi
pXi “ xiq (5)

for all Xi P X and xi P DpXiq. By selecting the value of
xi that leads to a best value of EXipXi “ xiq, we obtain
the final assignment of values to all variables in X .

The message update rules Eqs. (3) and (4) can be intu-
itively understood as follows. Each message from a variable
vertex Xi to a constraint vertex Cj is updated by using d
over all of Xi’s incoming messages from its other adjacent
vertices. Each message from a constraint vertex Cj to a vari-
able vertex Xi is updated by finding the best of the constraint
function ECj d all Cj’s incoming messages from its other
neighboring vertices. The reason that normalization constants
are required in the message passing rules for VCSPs is as
follows: During the iterative update procedure, the values of
the messages may keep increasing or decreasing. In theory,
this may cause convergence to never happen. In practice, this
causes overflow or underflow. Normalization can effectively
stop this trend. This, however, is not required for SCSP—as
we show later in Theorem 1, the BOMP algorithm always
converges without normalization with a given order for up-
dating messages.

Since the message update rules of Eqs. (3) and (4) involve
only two operators, namely best and d, corresponding to the
operators in an SCSP/VCSP, we name this message passing
algorithm the best-d message passing (BOMP) algorithm
(where “O” stands for d, called “O dot”). The BOMP algo-
rithm is a generalization of other standard message passing
algorithms, such as the min-sum and max-product message
passing algorithms (Mézard and Montanari 2009). Similar

to them, the BOMP algorithm neither specifies the order of
the message updates in Step 3, nor provides any guarantee
for the correctness or convergence of the final assignment in
general.

The BOMP Algorithm on an SCSP
In this section, we study the BOMP algorithm on an SCSP.
We show that, unlike other message passing algorithms, it
always converges in polynomial time and enforces AC.

Convergence
In this subsection, we formally prove that the BOMP algo-
rithm always converges in polynomial time for an SCSP, even
though convergence is not guaranteed for other well-known
message passing algorithms such as the min-sum and max-
product message passing algorithms.

We now rewrite Eqs. (3) and (4) specialized for an SCSP
as

ν̂
ptq
CjÑXi

pXi “ xq “
ă

aPApBCj ztXiuq

”

ECj pa Y tXi “ xuq

ˆ
“

ą

XkPBCj ztXiu

ν
pt´1q
XkÑCj

pa|tXkuq
‰

ı

(6)

ν
ptq
XiÑCj

pXi “ xq “

»

—

–

ą

CkPBXiztCju

ν̂
pt´1q
CkÑXi

pXi “ xq

fi

ffi

fl

, (7)

where the normalization constants are removed since they
can always be set to 1 for an SCSP.
Lemma 1 (reflexivity, antisymmetry, transitivity). In a c-
semiring S “ xA,`,ˆ,0,1y, the reflexivity and antisym-
metry properties of ďS hold, i.e., @a P A : a ďS a and
@a, b P A : a ďS b^ b ďS aô a “ b. The transitivity prop-
erties of ďS and ăS hold, i.e., @a, b, c P A : a ďS b^ b ďS
cñ a ďS c and @a, b, c P A : a ăS b^ b ăS cñ a ăS c.

Proof. Reflexivity: a` a “ añ a ďS a.
Antisymmetry: a ďS b^ b ďS aô a` b “ b^ a` b “

aô a “ b.
Transitivity (ďS): c “ b`c “ pa`bq`c “ a`pb`cq “

a` cô a ďS c.

Transitivity (ăS):
a ăS b ô a ďS b^ a “ b

b ăS c ô b ďS c^ b “ c

*

ñ

a ďS c. a “ c since, if a “ c, then b ăS c ñ b ăS a,
which contradicts with a ăS b. Therefore, a ăS c.

Lemma 2. In a c-semiring S “ xA,`,ˆ,0,1y, we have
@a, b, c P A : a ďS bñ aˆ c ďS bˆ c.

Proof. aˆ c` bˆ c “ pa` bq ˆ c “ bˆ c.

Lemma 3. In a c-semiring S “ xA,`,ˆ,0,1y, for any
a, a1, b, b1, c, c1 P A, we have c ěS c1 ñ a ěS a

1 _ b ěS b
1

if either (a) c “ aˆ b and c1 “ a1 ˆ b1 or (b) c “ a` b and
c1 “ a1 ` b1 hold.

Proof by contradiction. First, @x, y, z P A : x ěS y ñ x`
z ěS y`z holds, since px`zq`py`zq “ px`yq`z “ x`z.

Now assume a ěS a1 ^ b ěS b1. Then, with Lemma 2,
both (a) c “ a ˆ b ěS a1 ˆ b ěS a1 ˆ b1 “ c1, and (b)
c “ a` b ěS a

1` b ěS a
1` b1 “ c1 hold, which contradicts

c ěS c
1. Therefore, this lemma holds.

118

Lemma 4. When applying the BOMP algorithm to an SCSP
P “ xS “ xA,`,ˆ,0,1y,X ,D, Cy, any component of any
message is changed to a worse value in any update operation.

Proof by induction. This lemma holds trivially for the first
update operation, since all components of all messages are
initialized to 1 (since @a P A : a ďS 1).

Assume that the lemma holds for the first t update oper-
ations. Consider the pt` 1q

th update operation and a com-
ponent of a message from a constraint vertex to a variable
vertex such that ν̂ptqCjÑXipXi “ xq ěS ν̂

pt`1q
CjÑXi

pXi “ xq.
Since ECj pa Y tXi “ xuq does not change, from Eq. (6)
and Lemma 3, ν̂ptqCjÑXipXi “ xq ěS ν̂

pt`1q
CjÑXi

pXi “ xq im-
plies that there must exist an Xk P BCjztXiu, a t1 ă t,
and an x1 P DpXkq such that νpt

1
q

XkÑCj
pXk “ x1q ěS

ν
pt1`1q
XkÑCj

pXk “ x1q, which contradicts the induction assump-
tion. From Eq. (7) and Lemma 3, a similar contradiction
occurs for messages from variable vertices to constraint ver-
tices. Thus, this lemma continues to hold for the first pt` 1q
update operations and is therefore generally true.

Theorem 1. For an SCSP, there exists an order of message
update operations such that the running time of the BOMP
algorithm is polynomially bounded.

Proof. Let the BOMP algorithm update messages in a sweep-
ing order, i.e., messages are updated in rounds, in each of
which both messages along each edge are updated once in an
arbitrary order. From Lemma 4, the BOMP algorithm termi-
nates afterOp|A|¨maxXiPX |DpXiq|¨maxCjPC |SpCjq|¨|C|q
rounds. This upper bound represents the product of the total
number of components of all messages and the number of
times that any of these components can change.

Relationship between BOMP and AC
In this subsection, we study the relationship between the
BOMP algorithm and AC in binary SCSPs. Throughout this
subsection, we assume that all constraints are unary or bi-
nary, i.e., for any constraint C, |SpCq| P t1, 2u. Without loss
of generality, we assume that there always exists exactly 1
unary constraint on each individual variable Xi (denoted by
Ci) and at most 1 binary constraint on each pair of distinct
variables Xi, Xj (denoted by Cij). Otherwise, overlapping
constraints on the same variables can be collapsed into one
single constraint by using the ˆ operator.

The relationship between SCSPs and the BOMP algorithm
can be established by using the concept of message passing
unary constraints. This relationship does not rely on the final
solution extracted from Step 4 of the BOMP algorithm.

Definition 8. For a binary SCSP P “ xS “

xA,`,ˆ,0,1y,X ,D, Cy, upon convergence of the BOMP
algorithm to a fixed point F , we define the message passing
unary constraint CFi of variable Xi at F to be

E
CFi

ptXi “ xiuq “
ą

CPBXi

ν̂
p8q

CÑXi
pXi “ xiq, (8)

or, from Eq. (7), equivalently,

@C P BXi : E
CFi

ptXi “ xiuq “ ν
p8q

XiÑC
pXi “ xiq ˆ ν̂

p8q

CÑXi
pXi “ xiq.

(9)
The set of all message passing unary constraints is denoted
by CF . DFα is a function that maps each variable Xi to its
message passing domainDFα pXiqwith respect to a parameter
α P A:

DFα pXiq “
"

xi P DpXiq | ECFi
ptXi “ xiuq ěS α

*

. (10)

Lemma 5. In a c-semiring S “ xA,`,ˆ,0,1y where ˆ is
idempotent, we have @a, b P A : a ďS bô a ďS aˆ b.

Proof. (ñ): a ďS bñ aˆ a ďS aˆ bñ a ďS aˆ b.
(ð): a ďS aˆ bô a` aˆ b “ aˆ bô aˆ p1` bq “

aˆ bô a “ aˆ bñ a` b “ aˆ b` b “ pa` 1q ˆ b “
bñ a ďS b.

Lemma 6. In a c-semiring S “ xA,`,ˆ,0,1y, we have
@a, b P A : aˆ b ďS a.

Proof. aˆ b` a “ aˆ pb` 1q “ aˆ 1 “ añ aˆ b ďS
a.

Lemma 7. In a c-semiring S “ xA,`,ˆ,0,1y where ˆ is
idempotent, we have @a, b P A : a ďS bô a “ aˆ b. More
generally, we have @a, b1, . . . , bk P A : a ďS b1^¨ ¨ ¨^a ďS
bk ô a “ aˆ b1 ˆ ¨ ¨ ¨ ˆ bk.

Proof. (ñ): a ďS bô a` b “ bñ aˆpa` bq “ aˆ bô
aˆ a` aˆ b “ aˆ bô a` aˆ b “ aˆ bô a ďS aˆ b.
Since aˆ b ďS a (from Lemma 6), we have a “ aˆ b.

(ð): From Lemma 6, aˆb ďS b. Therefore, a “ aˆb ďS
b.

By recursively applying the first half of this lemma, we
have the second half of this lemma.

In the case ofA being totally ordered, intuitively, Lemma 7
states that the product of multiple variables equals the worst
one of them.

Lemma 8. In a c-semiring S “ xA,`,ˆ,0,1y where ˆ is
idempotent andA is totally ordered, we have @a, b1, . . . , bk P
A : a ďS b1 ˆ ¨ ¨ ¨ ˆ bk ô a ďS b1 ^ ¨ ¨ ¨ ^ a ďS bk.

Proof. Since A is totally ordered, we can assume b ďS
¨ ¨ ¨ ďS bk without loss of generality. Then, from Lemma 7,
a ďS b1 ˆ ¨ ¨ ¨ ˆ bk ô a “ a ˆ b1 ˆ ¨ ¨ ¨ ˆ bk ô a ďS
b1 ^ ¨ ¨ ¨ ^ a ďS bk.

Lemma 9. In a c-semiring S “ xA,`,ˆ,0,1y where ˆ is
idempotent and A is totally ordered, we have @a, b, c P A :
aˆ b ďS cô a ďS c_ b ďS c and @a, b, c P A : aˆ b ăS
cô a ăS c_ b ăS c.

Proof. (ñ): Since A is totally ordered, we can assume a ďS
b without loss of generality. We prove this by contradiction.
We assume, for a proof by contradiction, that a ąS c^ b ąS
c. Then, from Lemma 7, aˆ b “ a ąS c, which contradicts
the left-hand side.

(ð): aˆ b “ a ďS c.
The second part of this lemma can be proved similarly.

119

Lemma 10. In a c-semiring S “ xA,`,ˆ,0,1y where ˆ
is idempotent and A is totally ordered, we have @a, b, c P A :
aˆ b ďS c^ b ąS cˆ añ a ďS c.

Proof. From Lemma 9, a ďS c_b ďS c and c ăS b_a ăS
b. b ďS c and c ăS b cannot hold at the same time, since
they together imply b ăS b. Therefore, if b ďS c holds, then
a ăS b must hold, which implies a ďS c; if b ďS c does not
hold, then c ăS b_ a ăS b and a ďS c hold.

Lemma 11. In a c-semiring S “ xA,`,ˆ,0,1y, we have
@a, b, c P A : a ďS bñ a ďS b` c.

Proof. a ďS bô a` b “ bñ a` b` c “ b` cô a ďS
b` c.

Lemma 12. In a c-semiring S “ xA,`,ˆ,0,1y where A is
totally ordered, we have @a, b, c P A : a` b ďS cô a ďS
c^b ďS c and @a, b, c P A : a`b ăS cô a ăS c^b ăS c.

Proof. (ñ): Since A is totally ordered, we can assume a ďS
b without loss of generality. With this and a ` b ďS c, we
have b` c “ a` b` c “ cñ b ďS c. In addition, we have
a ďS b^ b ďS cñ a ďS c.

(ð): a ďS c ^ b ďS c ô a ` c “ c ^ b ` c “ c ñ
a` b` c “ cô a` b ďS c.

We again assume a ďS b. Then a ` b ăS c ô a ` b “
c ^ a ` b ďS c ô b “ c ^ a ďS c ^ b ďS c ô a ďS
c^ b ăS cô a ďS b ăS c.

We prove the following two theorems for any SCSP with a
c-semiring S “ xA,`,ˆ,0,1y where ˆ is idempotent and
A is totally ordered. These SCSPs cover many important CSP
generalizations including fuzzy CSPs (Bistarelli et al. 1999).
We also hope that this proof will turn out to be inspiring for
proving properties of the BOMP algorithm for more general
cases.
Theorem 2. For any SCSP P “ xS “ xA,`,ˆ,0,1y,X ,
D, Cy where ˆ is idempotent and A is totally ordered, at any
fixed point F to which the BOMP algorithm converges on P ,
the SCSP P 1 “ xS,X ,D, Cb Y CF y is arc-consistent, where
Cb is the set of all binary constraints in C.

Proof. Proving this theorem is equivalent to proving that, for
any two variables Xi and Xj ,

@xi P DpXiq : ECFi
ptXi “ xiuq ďS

ă

xjPDpXjq

”

E
CFi

ptXi “ xiuq ˆ ECFj
ptXj “ xjuqˆ

ECij ptXi “ xi, Xj “ xjuq
ı

“

E
CFi

ptXi “ xiuqˆ

ă

xjPDpXjq

”

E
CFj

ptXj “ xjuq ˆ ECij ptXi “ xi, Xj “ xjuq
ı

(11)

holds. From Lemma 5, to prove this, it is equivalent to prove
@xi P DpXiq : ECFi

ptXi “ xiuq ďS

ă

xjPDpXjq

”

E
CFj

ptXj “ xjuq ˆ ECij ptXi “ xi, Xj “ xjuq
ı

.
(12)

To prove this, from Lemma 11, it is sufficient to prove
@xi P DpXiq : Dxj P DpXjq : ECFi

ptXi “ xiuq ďS

E
CFj

ptXj “ xjuq ˆ ECij ptXi “ xi, Xj “ xjuq.
(13)

We prove this by contradiction. We assume that there exists
a fixed point F 1 such that

Dxi P DpXiq : @xj P DpXjq : E
CF

1
i

ptXi “ xiuq ąS

E
CF

1
j

ptXj “ xjuq ˆ ECij ptXi “ xi, Xj “ xjuq.
(14)

We now consider such an xi. We define DF 1pXjq as

DF
1
pXjq “

#

xj P DpXjq | E
CF

1
j

ptXj “ xjuq “ ECj ptXj “ xjuq

+

. (15)

We now prove
@xj P DpXjq : ECij ptXi “ xi, Xj “ xjuq ˆ E

CF
1

j

ptXj “ xjuq

ěS ECij ptXi “ xi, Xj “ xjuq ˆ ν
p8q

XjÑCij
pXj “ xjq

(16)

for two different cases, xj P DF 1pXjq and xj P

DpXjqzDF
1

pXjq.

• xj P DF
1

pXjq: From Eqs. (6) and (7) and Lemma 6, we
have
@xj P DF

1
pXjq : ECij ptXi “ xi, Xj “ xjuq ˆ E

CF
1

j

ptXj “ xjuq

“ ECij ptXi “ xi, Xj “ xjuq ˆ ν̂
p8q

CjÑXj
pXj “ xjq (Eq. (6))

ěS ECij ptXi “ xi, Xj “ xjuq ˆ ν
p8q

XjÑCij
pXj “ xjq.

(17)

This implies Eq. (16) for this case.
• xj P DpXjqzDF

1

pXjq: We have

@xj P DpXjqzD
F 1
pXjq : E

CF
1

j

ptXj “ xjuq
Eq. (15)
“

ECj ptXj “ xjuq
Eq. (6)
“ ν̂

p8q

CjÑXj
pXj “ xjq.

(18)

In addition, from Eq. (8) and Lemma 7, we have
@xj P DpXjqzD

F 1
pXjq : DC P BXj :

ν̂
p8q

CÑXj
pXj “ xjq “ E

CF
1

j

ptXj “ xjuq.
(19)

Therefore, we have
@xj P DpXjqzD

F 1
pXjq : DC P BXjztCju :

ν̂
p8q

CÑXj
pXj “ xjq “ E

CF
1

j

ptXj “ xjuq.
(20)

For all such xj’s, it is sufficient to prove

@xj P DpXjqzD
F 1
pXjq : E

CF
1

j

ptXj “ xjuq ěS

ECij ptXi “ xi, Xj “ xjuq ˆ ν
p8q

XjÑCij
pXj “ xjq,

(21)

since, from Lemma 2, it implies Eq. (16). We consider two
subcases:

– xj satisfies DC P BXjztCj , Ciju : ν̂
p8q

CÑXj
pXj “

xjq “ ECF 1j
ptXj “ xjuq. From Eq. (8) and Lemma 8,

we have
@xj P DpXjqzD

F 1
pXjq : @C P BXj :

ν̂
p8q

CÑXj
pXj “ xjq ěS E

CF
1

j

ptXj “ xjuq.
(22)

Then, by applying Eq. (7) to νp8qXjÑCij
pXj “ xjq and,

from Lemma 7, we have
ν
p8q

XjÑCij
pXj “ xjq “ E

CF
1

j

ptXj “ xjuq. (23)

From Lemma 6, this implies Eq. (21) for this subcase.

120

– xj satisfies @C P BXjztCj , Ciju : ν̂
p8q

CÑXj
pXj “

xjq “ ECF 1j
ptXj “ xjuq. From Eq. (20), this implies

ν̂
p8q

CijÑXj
pXj “ xjq “ ECF 1j

ptXj “ xjuq (and thus

ν̂
p8q

CijÑXj
pXj “ xjq ďS ECF 1j

ptXj “ xjuq). By apply-

ing Eq. (6) to ν̂p8qCijÑXj
pXj “ xjq, and, from Lemma 12,

we have

ECij ptXi “ xi, Xj “ xjuq ˆ ν
p8q

XiÑCij
pXi “ xiq ďS

E
CF

1
j

ptXj “ xjuq.
(24)

Then we have

ν
p8q

XiÑCij
pXi “ xiq ąS

E
CF

1
j

ptXj “ xjuq ˆ ECij ptXi “ xi, Xj “ xjuq,
(25)

because (a) if BXi “ tCij , Ciu, then

ν
p8q

XiÑCij
pXi “ xiq “ ν̂

p8q

CiÑXi
pXi “ xiq (Eq. (7))

ěS E
CF

1
i

ptXi “ xiuq (Eq. (8) (with“ replaced byďS) and Lemma 8)

ąS E
CF

1
j

ptXj “ xjuq ˆ ECij ptXi “ xi, Xj “ xjuq (Eq. (14)),

or (b) otherwise, if we assume that Eq. (25) does
not hold, since Eq. (9) (with “ replaced by ďS) and
Lemma 8 imply ECF 1i ptXi “ xiuq ďS ν

p8q

XiÑCij
pXi “

xiq, we have ECF 1i ptXi “ xiuq ďS ECF 1j
ptXj “

xjuq ˆ ECij ptXi “ xi, Xj “ xjuq, which contradicts
the assumption (Eq. (14)).
Equations (24) and (25) and Lemma 10 imply

ECij ptXi “ xi, Xj “ xjuq ďS E
CF

1
j

ptXj “ xjuq. (26)

From Lemma 6, this implies Eq. (21) for this subcase.

By combining Eqs. (14) and (16), we have
@xj P DpXjq : E

CF
1

i

ptXi “ xiuq

ąS ECij ptXi “ xi, Xj “ xjuq ˆ ν
p8q

XjÑCij
pXj “ xjq.

(27)

By applying Eq. (6) (with “ replaced by ěS) to
ν̂
p8q

CijÑXi
pXi “ xiq and from Lemma 12, we have

E
CF

1
i

ptXi “ xiuq ąS ν̂
p8q

CijÑXi
pXi “ xiq, (28)

which along with Lemma 6 contradicts Eq. (8).

While Theorem 2 applies to SCSPs with only binary con-
straints, there exist algorithms that convert any SCSP con-
straints to binary SCSP constraints (Larrosa and Dechter
2000). Therefore, this theorem is still applicable to general
SCSPs if their constraints are converted to binary constraints.

Theorem 3. For any SCSP P “ xS “ xA,`,ˆ,0,1y,X ,
D, Cy where ˆ is idempotent and S is totally ordered, the
SCSP P 2 “ xS,X ,DFα , Cy preserves all solutions with total
weights better than α for any fixed point F to which the
BOMP algorithm converges on P .

Proof. We construct a crisp CSP P 1 “ xX ,D, C1y from P ,
where each C 1 P C1 has a one-to-one correspondence with
a constraint C P C over the same variables. C 1 allows an
assignment a of values to variables in SpC 1q iff ECpaq ěS
α. Alternatively, we define EC1paq “ MpECpaqq, where
M : AÑ t0, 1u is

Mpxq “
!

0, if x ěS α
1, otherwise. (29)

Here, 0 and 1 represent allowed and disallowed assign-
ments of values to variables, respectively. When applying
the BOMP algorithm on P 1, if ˆ and ` are replaced by the
max and min operators, respectively, the values of messages
obtained in the intermediate steps (Eqs. (6) and (7)) are the
same as applying M to the values of the corresponding mes-
sages in the BOMP algorithm on P . The BOMP algorithm
is equivalent to the min-max message passing (MMMP) al-
gorithm on P 1 (Xu, Kumar, and Koenig 2017a). DF

α in P 2
is also equivalent to the message passing domains defined
in the context of the MMMP algorithm on P 1. From The-
orem 3 in (Xu, Kumar, and Koenig 2017a), after applying
the BOMP algorithm on P 1, all solutions to P 1 are preserved.
From Eq. (29), a solution to P 1 is valid iff it has a total weight
better than α in P . Therefore, all solutions to P with total
weights better than α are preserved in P 2.

The BOMP Algorithm on VCSPs
In this section, we study the BOMP algorithm on VCSPs.

We now rewrite Eqs. (3) and (4) specialized for a VCSP as

ν̂
ptq
CjÑXi

pXi “ xq “ best
aPApBCj ztXiuq

”

ECj pa Y tXi “ xuqf

“

f
XkPBCj ztXiu

ν
pt´1q
XkÑCj

pa|tXkuq
‰

ı

f ĉ
ptq
CjÑXi

(30)

ν
ptq
XiÑCj

pXi “ xq “

»

– f
CkPBXiztCju

ν̂
pt´1q
CkÑXi

pXi “ xq

fi

fl f c
ptq
XiÑCj

. (31)

Here, in practice, the normalization constants are usually
chosen to avoid issues such as overflow or underflow. For
example, a weighted constraint satisfaction problem (WCSP)
can be seen as a VCSP, in which E is a set of non-negative
real numbers, f is the addition operator on real numbers, ă

is the “less than” operator of real numbers, and J, K are `8
and 0, respectively. A value a P E is better if it is smaller.
The normalization constants can be set such that the best
component in the message at each iteration is zero.

VCSPs with an Idempotent f
In general, the BOMP algorithm on VCSPs does not have
many useful properties beyond those common to all message
passing algorithms. However, for a VCSP with an idempotent
f, many properties of the BOMP algorithm on SCSPs carry
over, since these VCSPs can be formulated as SCSPs.

Formally, a VCSP P “ xS “ xE,f,ă,J,Ky,X ,D, Cy,
where f is idempotent, can be rewritten as an SCSP P 1 “
xS1 “ xA,`,ˆ,0,1y,X 1,D1, C1y as follows. X “ X 1, D “
D1, C1 “ C, E “ A, 1 “ K and 0 “ J. ˆ is the same as f.
The total order on E defined by ľ should be the same as the
total order on A defined by ďS , and ` is defined to comply
with this requirement of ďS . Under this transformation, we
have the following theorems.

121

Table 1: “Total”, “Converged”, “Rate”, and “Timeout” refer
to the total number of benchmark instances, the number of
converged benchmark instances, the fraction of converged
benchmark instances, and the number of benchmark instances
that did not finish 10,000 iterations within 5 minutes, respec-
tively.

Instance set Total Converged Rate Timeout

UAI (MPMP) 173 140 80.92% 20
UAI (MSMP) 173 139 80.34% 19

toulbar2 (MSMP) 2220 1748 78.74% 418

Theorem 4. Using the transformation procedure above, a
solution sol for a VCSP P “ xS “ xE,f,ă,J,Ky,X ,
D, Cy is optimal iff it is optimal for the SCSP P 1 “ xS1 “
xA,`,ˆ,0,1y,X 1,D1, C1y.

Proof. We are required to prove that

@sol P ApX q :
`

p@sol
1
P ApX q : W psolq ĺ W psol

1
qq

ôp@sol
1
P ApX q : W 1

psolq ěS W
1
psol

1
qq
˘

(32)

holds, where W psolq and W 1psolq are the valuations of sol
in P and P 1, respectively.

In the transformation, W p¨q and W 1p¨q are equivalent
(since ˆ is the same as f), and ĺ is the same as ěS . There-
fore, the equation above holds and implies that this theorem
holds as well.

Theorem 5. For a VCSP with an idempotent f, there exists
an order of message update operations such that the run-
ning time of the BOMP algorithm is polynomially bounded
(provided that the normalization constants are K).

Proof. This theorem follows from Theorems 1 and 4.

VCSPs in General
If f is not idempotent, then the convergence of the BOMP
algorithm is not guaranteed. Even upon convergence, the
relationship between the BOMP algorithm and AC is un-
clear, despite some known relationships between message
passing algorithms on specialized instances of VCSP and
AC (Dechter and Mateescu 2003). In this section, we there-
fore empirically study the convergence of the BOMP algo-
rithm and the α-quality of solutions produced by it.

In our experiments, we used two benchmark instance sets:
the PR benchmark instances from the UAI 2014 Inference
Competition1 (which we refer to as the UAI benchmark in-
stance set) and the WCSP benchmark instances from (Hurley
et al. 2016)2 (which we refer to as the toulbar2 benchmark
instance set), which includes benchmark instances from the
Probabilistic Inference Challenge 2011, the Computer Vision
and Pattern Recognition OpenGM2 benchmark, the Weighted
Partial MaxSAT Evaluation 2013, the MaxCSP 2008 Compe-
tition, the MiniZinc Challenge 2012 & 2013, and the CFLib
(a library of cost function networks).

1
http://www.hlt.utdallas.edu/„vgogate/uai14-competition/

2
http://genoweb.toulouse.inra.fr/„degivry/evalgm/

0%

20%

40%

60%

80%

100%

0.20 0.40 0.60 0.80 1.00
α / maximum weight

α−
qu

al
ity

 r
at

e

betterÝÑ

(a) The UAI benchmark in-
stance set (MPMP)

0%

20%

40%

60%

80%

100%

0.20 0.40 0.60 0.80 1.00
α / maximum weight

α−
qu

al
ity

 r
at

e

betterÐÝ

(b) The UAI benchmark in-
stance set (MSMP)

0%

20%

40%

60%

80%

100%

0.20 0.40 0.60 0.80 1.00
α / maximum weight

α
−

q
u

a
lit

y
ra

te

betterÐÝ

(c) The toulbar2 benchmark
instance set (MSMP)

Figure 2: The α-quality rates of the solutions sol produced
by the BOMP algorithm versus α / maximum weight for the
two benchmark instance sets. The x-axes are normalized by
dividing α by the maximum weight among all constraints,
maxC ECpsol|SpCqq, in each benchmark instance.

For the UAI benchmark instances, we used the max-
product message passing (MPMP) algorithm (Koller and
Friedman 2009), i.e., the BOMP algorithm for VCSPs in
which E is the set of real numbers between 0 and 1, K is 1,
J is 0, and f is the multiplicative operator on real numbers.
A value a P E is better if it is closer to 0 and worse if it is
closer to 1. The normalization constants in Eqs. (30) and (31)
are chosen so that the sum of all components of each updated
message is always 1. For the UAI benchmark instances, we
also used the min-sum message passing (MSMP) algorithm,
the message passing algorithm that solves WCSPs (Xu, Ku-
mar, and Koenig 2017b), by using the negative logarithms
of the weights in the factor tables after normalizing them.
In this algorithm, the normalization constants in Eqs. (30)
and (31) are chosen so that the smallest (best) component of
each updated message is always 0. For the toulbar2 bench-
mark instances, we used the MSMP algorithm. We initialized
the messages to 1’s and 0’s in the MPMP and MSMP algo-
rithms, respectively. For each benchmark instance, for each
constraint C in the order specified by the input file, we first
updated all messages to C and then updated all messages
from C. Convergence was declared iff all messages had dif-
ferences less than 10´4 between two consecutive iterations.
If the runs did not converge after 10,000 iterations (of mes-
sage update operations), they were terminated. In addition
to this termination condition, we also enforced a 5-minute
running time limit.3 Table 1 shows the convergence results.

To elaborate on the experimental results, we use the con-
cept of the α-quality rate of a solution sol, i.e., the percent-

3The BOMP algorithm was implemented in C++ and compiled
by clang(800.0.42.1)+LLVM(8.0.0), and was run on a MacBook
with an Intel Core i5 processor (3MB Cache, 2.7 GHz) and 8GB
RAM.

122

age of constraints with respect to which sol is α-qualified.
For each benchmark instance, we extracted a final solution
sol using Step 4 of the BOMP algorithm. We then checked
whether sol is α-qualified with respect to each constraint.
Figure 2 shows the average α-quality rate over all benchmark
instances versus α in each benchmark instance set. As ex-
pected, the α-quality rate decreases as α becomes better (as
defined by ľ). However, the nature of these curves depends
on the formulation of the problem instances and the BOMP
algorithm that works with it. For example, even within the
same benchmark instance set (the UAI benchmark instance
set in our experiments), the α-qualities of the solutions pro-
duced by the MPMP and MSMP algorithms exhibit different
curves. This indicates that the BOMP algorithm is sensitive
to the choice of the best and f operators as well as the
normalization constants. We also note that the MSMP algo-
rithm has a tendency to produce sharp turns, markedly for
the points of α « 0.2 in the UAI benchmark instance set and
α « 0.9 in the toulbar2 benchmark instance set. Our empiri-
cal observations indicate the need for a deeper understanding
of the connections between message passing and different
formulations of combinatorial problems.

Conclusions and Future Work
In this paper, we developed the BOMP algorithm for SCSPs
and VCSPs. Our study facilitates the understanding and ap-
plicability of message passing techniques—popularly used
for solving large-scale optimization problems—to expressive
frameworks such as SCSPs and VCSPs. We proved the con-
vergence of the BOMP algorithm on SCSPs as well as VCSPs
with an idempotent f. We established a theoretical connec-
tion between AC and the BOMP algorithm for SCSPs with
an idempotent ˆ and a totally ordered A upon convergence.
We also empirically studied the α-quality of the solutions
produced by the BOMP algorithm for general VCSPs. Future
work includes developing deeper theoretical results that relate
generalized message passing algorithms to higher levels of
local consistency in SCSPs and VCSPs. In the same direction,
we intend to bring search techniques used in the probabilistic
reasoning and constraint reasoning communities closer to
each other.

Acknowledgment The research at the University of South-
ern California was supported by the National Science Foun-
dation (NSF) under grant numbers 1724392, 1409987, and
1319966.

References
Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie, G.;
and Fargier, H. 1999. Semiring-based CSPs and valued CSPs:
Frameworks, properties, and comparison. Constraints 4(3):199–
240.
Dechter, R., and Mateescu, R. 2003. A simple insight into iter-
ative belief propagation’s success. In the Annual Conference on
Uncertainty in Artificial Intelligence, 175–183.
Farinelli, A.; Rogers, A.; Petcu, A.; and Jennings, N. 2008. Decen-
tralised coordination of low-power embedded devices using the max-
sum algorithm. In the International Conference on Autonomous
Agents and Multiagent Systems, 639–646.

Fioretto, F.; Xu, H.; Koenig, S.; and Kumar, T. K. S. 2018. Con-
straint composite graph-based lifted message passing for distributed
constraint optimization problems. In the International Symposium
on Artificial Intelligence and Mathematics.
Freuder, E. C. 1982. A sufficient condition for backtrack-free search.
Journal of the ACM 29(1):24–32.
Hurley, B.; O’Sullivan, B.; Allouche, D.; Katsirelos, G.; Schiex, T.;
Zytnicki, M.; and de Givry, S. 2016. Multi-language evaluation of
exact solvers in graphical model discrete optimization. Constraints
21(3):413–434.
Jeavons, P. G., and Cooper, M. C. 1995. Tractable constraints on
ordered domains. Artificial Intelligence 79(2):327–339.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models:
Principles and Techniques. MIT Press.
Kolmogorov, V. 2005. Primal-dual algorithm for convex Markov
random fields. Technical Report MSR-TR-2005-117, Microsoft
Research.
Kolmogorov, V. 2006. Convergent tree-reweighted message passing
for energy minimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28(10):1568–1583.
Larrosa, J., and Dechter, R. 2000. On the dual representation of non-
binary semiring-based CSPs. In Workshop 1 (Soft Constraints) of the
International Conference on Principles and Practice of Constraint
Programming.
Larrosa, J., and Schiex, T. 2003. In the quest of the best form
of local consistency for weighted CSP. In the International Joint
Conference on Artificial Intelligence, 239–244.
Larrosa, J., and Schiex, T. 2004. Solving weighted CSP by main-
taining arc consistency. Artificial Intelligence 159(1):1–26.
Mézard, M., and Montanari, A. 2009. Information, Physics, and
Computation. Oxford University Press.
Mézard, M., and Zecchina, R. 2002. Random k-satisfiability prob-
lem: From an analytic solution to an efficient algorithm. Physical
Review E 66(5):056126.
Nakajima, M.; Xu, H.; Koenig, S.; and Kumar, T. K. S. 2018.
Towards understanding the min-sum message passing algorithm
for the minimum weighted vertex cover problem: An analytical
approach. In the International Symposium on Artificial Intelligence
and Mathematics.
Weigt, M., and Zhou, H. 2006. Message passing for vertex covers.
Physical Review E 74(4):046110.
Werner, T. 2015. Marginal consistency: Upper-bounding parti-
tion functions over commutative semirings. IEEE Transactions on
Pattern Analysis and Machine Intelligence 37(7):1455–1468.
Xu, H.; Sun, K.; Koenig, S.; and Kumar, T. K. S. 2018. A warning
propagation-based linear-time-and-space algorithm for the mini-
mum vertex cover problem on giant graphs. In the International
Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, 567–684.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2017a. Min-max mes-
sage passing and local consistency in constraint networks. In the
Australasian Joint Conference on Artificial Intelligence, 340–352.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2017b. The Nemhauser-
Trotter reduction and lifted message passing for the weighted CSP.
In the International Conference on Integration of Artificial Intelli-
gence and Operations Research Techniques in Constraint Program-
ming, 387–402.
Zytnicki, M.; Gaspin, C.; and Schiex, T. 2008. DARN! A weighted
constraint solver for RNA motif localization. Constraints 13(1):91–
109.

123

