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Abstract

Merge-and-shrink heuristics are a successful class of abstrac-
tion heuristics used for optimal classical planning. With the
recent addition of generalized label reduction, merge-and-
shrink can be understood as an algorithm framework that re-
peatedly applies transformations to a factored representation
of a given planning task to compute an abstraction. In this
paper, we describe an efficient implementation of the frame-
work and its transformations, comparing it to its previous im-
plementation in Fast Downward. We further discuss partial
merge-and-shrink abstractions that do not consider all aspects
of the concrete state space. To compute such partial abstrac-
tions, we stop the merge-and-shrink computation early by im-
posing simple limits on the resource consumption of the al-
gorithm. Our evaluation shows that the efficient implementa-
tion indeed improves over the previous one, and that partial
merge-and-shrink abstractions further push the efficiency of
merge-and-shrink planners.

Introduction
A∗ search (Hart, Nilsson, and Raphael 1968) with an ad-
missible heuristic (Pearl 1984) is a state-of-the-art approach
to optimally solving classical planning problems (Ghallab,
Nau, and Traverso 2004). A popular method for obtaining
admissible heuristics is based on abstractions. Merge-and-
shrink (Dräger, Finkbeiner, and Podelski 2009; Helmert et
al. 2014) is a state-of-the-art algorithm framework for com-
puting abstractions of planning tasks. With the recent ad-
dition of generalized label reduction (Sievers, Wehrle, and
Helmert 2014), the algorithm can be understood as a frame-
work that repeatedly applies transformations to a given state
space to compute an abstraction.

Broadly speaking, the key idea of merge-and-shrink is to
operate on compact representations of large transition sys-
tems, called factored transition systems. Planning tasks in-
duce factored transition systems that consist of atomic fac-
tors which each represent a single variable of the task. Start-
ing from this factored transition system, the merge-and-
shrink framework repeatedly either merges two factors by
computing their product, shrinks a factor by applying an ab-
straction to it, prunes a factor by discarding dead states, or
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applies label reductions to the common label set of the fac-
tored transition system, which initially corresponds to the set
of operators of the task. The computation ends if only one
factor is left, which induces the merge-and-shrink heuristic.

Besides factored representations of transition systems, the
merge-and-shrink framework also computes factored map-
pings (e.g., Sievers 2017) to represent the state mapping of
the abstraction. Factored mappings are tree-like data struc-
tures that map states of the planning task to states of the
factors of the transformed factored transition system.

In the literature on merge-and-shrink, the algorithmic as-
pect as well as the question of how to efficiently imple-
ment a merge-and-shrink planner has not been addressed a
lot. Helmert et al. (2014) describe some techniques used in
their implementation which we base ours on. Recently, Fan,
Holte, and Müller (2018) suggested to compute very small
merge-and-shrink abstractions quickly and to complement
them with the usual, larger abstractions by computing the
maximum heuristic over both.

In this paper, we address the algorithmic aspect as well as
the question of how to efficiently compute merge-and-shrink
abstractions by making the following contributions:

1. We provide an algorithmic description of how to compute
exact generalized label reductions, which has only briefly
been mentioned in the original work introducing general-
ized label reduction (Sievers, Wehrle, and Helmert 2014).

2. We describe an efficient implementation of the merge-
and-shrink framework that exploits local label equiva-
lence relations to compactly represent transition systems.
In particular, we describe the implementation of merge-
and-shrink in Fast Downward (Helmert 2006) and com-
pare it to the previous implementation.

3. We discuss partial merge-and-shrink abstractions that do
not cover all variables of a planning task, which we com-
pute by imposing simple limits on the resource consump-
tion of the merge-and-shrink computation, further push-
ing the efficiency of the overall approach.

Background
In this section, we briefly review the concept of classi-
cal planning and provide a rather extensive exposition of
the merge-and-shrink framework to build a solid foundation
based on which we describe algorithms and implementation.
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Figure 1: Induced transition system Θ(Π) of the example
task. Also: product Θ⊗ of F (Π) (modulo names of states).

Classical Planning
A planning task in the SAS+ formalism (Bäckström and
Nebel 1995), augmented with action costs, is a tuple Π =
〈V,O, s0, s?〉 with the following components. V is a finite
set of variables v, each associated with a finite domain
dom(v). A partial state s is a partial assignment over a
subset vars(s) ⊆ V of the variables. We write s[v] to de-
note the value of v ∈ vars(s). If vars(s) = V , s is called
a state. We write S(V) for the set of states over V . Two
partial states s and s′ are consistent if s[v] = s′[v] for all
v ∈ vars(s)∩ vars(s′).O is a finite set of operators o, each
with associated partial states pre(o) and eff (o), called pre-
condition and effect, and an associated non-negative value
cost(o) ∈ R+

0 , called the cost. Finally, s0 is a state called
the initial state, and S? is a partial state called the goal.
Example 1. Consider a simple logistics planning task with
truck T and package P . Variable vT with dom(vT ) =
{A,B} represents the position of the truck, and vP with
dom(vP ) = {A,B,T} that of the package. There is an
operator DR-A-B that drives the truck from A to B and
has precondition pre(DR-A-B) = {vT 7→ A} and effect
eff (DR-A-B) = {vT 7→ B}. Analogously for DR-B-A.
Similarly, U-X and L-X load the package at location X ∈
{A,B}. We assume unit-cost. The goal is to have the pack-
age at B, which is initially at A, and the truck starts at B.

The semantics of a planning task can be naturally defined
in terms of a labeled transition system. A transition system
is a tuple Θ = 〈S,L, c, T, s0, S?〉, where S is a finite state
of states, L is a finite set of transition labels, c : L→ R+

0 is
a label cost function, T ⊆ S×L×S is a set of labeled tran-
sitions, s0 ∈ S is the initial state, and S? ⊆ S is the set of
goal states. We write s `−→ s′ to denote a transition 〈s, `, s′〉
from s to s′ with label `. A path from s to s′ is a sequence
π = 〈t1, . . . , tn〉 of transitions such that there exist states
s = s0, . . . , sn = s′ with ti = 〈si−1, `i, si〉 ∈ T for all
i ∈ {1, . . . , n}. The cost of such a path is the accumulated
cost of the labels of the transitions, i.e.,

∑n
i=1 c(`i).

Let Π = 〈V,O, s0, s?〉 be a planning task. Its induced
transition system Θ(Π) is defined as 〈S,L, c, T, s0, S?〉,
where S = S(V), L = O, c(`) = cost(`) for all ` ∈ L, s `−→
t ∈ T iff s is consistent with pre(`) and t is the state con-
sistent with eff (`) and t[v] = s[v] for all v 6∈ vars(eff (`)),
and S? = {s ∈ S | s consistent with s?}. A plan is a path
from s0 to a state in S?. Optimal planning deals with finding
plans of minimal cost or proving that no plan exists.

Figure 1 shows the induced transition system Θ(Π) for
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Figure 2: Top: induced factored transition system F (Π) of
the example task with two atomic factors ΘP (left) and ΘT

(right). Bottom: F2F mapping Σ consisting of two F2N map-
pings σP (left) and σT (right), corresponding to ΘP and ΘT .

the example task. Goal states are marked by double circles
and the initial state has an ingoing arrow. In this example,
we label states with two letters indicating the position of the
package and the truck.

A heuristic for a transition system Θ with states S is a
function hΘ : S → R+

0 ∪ ∞ that maps each state to an
estimate of the cost of reaching a goal state from s. hΘ is
perfect, denoted h∗Θ, if it computes the true cost for all states.
It is admissible if hΘ(s) ≤ h∗Θ(s) for all states s.

Merge-and-Shrink
The goal of the merge-and-shrink framework is to compute
an abstraction heuristic for a large transition system such as
the one induced by a planning task. To do so, it not only
computes the abstract transition system, but also the state
and label mappings of the abstraction. However, the given
transition system is usually too large to be represented ex-
plicitly. A key aspect of the merge-and-shrink framework to
address this issue is to work with factored representations of
both transition systems and state mappings.

In particular, a factored transition system F is a tuple of
transition systems (also called factors or variables of F ),
F = 〈Θ1, . . . ,Θn〉, where each element has the same la-
bel set and label cost function. It serves as a representa-
tion of the synchronized product (product for short) of all
of its elements, which is the transition system defined as⊗
F = 〈S⊗, L, c, T⊗, s⊗0 , S⊗? 〉, where S⊗ =

∏n
i=1 S

i,
i.e., the Cartesian product of the sets of states, T⊗ =
{〈s1, . . . , sn〉 `−→ 〈t1, . . . , tn〉 | si `−→ ti ∈ T i for all 1 ≤
i ≤ n}, s⊗0 = 〈s1

0, . . . , s
n
0 〉, and S⊗? =

∏n
i=1 S

i
?.

A planning task Π induces a factored transition system
F (Π) which consists of atomic factors Θv that reflect the
behavior of all variables v of Π: the states of Θv correspond
to values of v and all operators induce transitions depending
on their preconditions and effects on v. The top part of Fig-
ure 2 shows F (Π) for the example task. It consists of two
atomic factors for the two variables of the task. The prod-
uct of F (Π) corresponds to the transition system shown in
Figure 1, apart from names of states, which formally would
read, e.g., 〈0, 0〉 instead of AA and 〈2, 1〉 instead of TB.
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Algorithm 1 Merge-and-shrink Framework

Input: Planning task Π, function SELECTTF that selects
the next basic transformation to apply.

Output: Merge-and-shrink heuristic hM&S
Π for Π.

1: function MERGEANDSHRINK(Π, SELECTTF)
2: F ← F (Π), Σ← idF , λ← idL

3: while |F | > 1 do
4: 〈F ′,Σ′, λ′〉 ← SELECTTF(F,Σ, λ)
5: F ← F ′, Σ← Σ′ ◦ Σ, λ← λ′ ◦ λ
6: end while
7: hM&S

Π ← h∗Θ
8: return hM&S

Π
9: end function

A factored mapping σ (Sievers 2017), also called cascad-
ing table (Helmert et al. 2014) or merge-and-shrink repre-
sentation (Helmert, Röger, and Sievers 2015), is a tree-like
data structure inductively defined over a set of variables V . If
σ is atomic (a leaf), then it has an associated variable v ∈ V
and a table function σtab mapping from dom(v) to an arbi-
trary value set vals(σ). If σ is a merge (an inner node), then
it has two component factored mappings σL and σR and a
table function σtab mapping from vals(σL) × vals(σR) to
an arbitrary value set vals(σ). A factored mapping σ repre-
sents a function JσK : S(V) → vals(σ) inductively defined
as follows: if σ is atomic with v, then JσK(α) = σtab(α[v]).
If it is a merge with components σL and σR, then JσK(α) =
σtab(JσLK(α), JσRK(α)).

We call such factored mappings σ factored-to-non-
factored (F2N) mappings because JσK maps states to single
values. To represent state mappings between factored tran-
sition systems, we define factored-to-factored (F2F) map-
pings. An F2F mapping from a factored transition system F
to a factored transition system F ′ = 〈Θ′1, . . . ,Θ′n〉 is a tuple
Σ = 〈σ1, . . . , σn〉 where each σi is an F2N mapping defined
over F (viewing factors as variables with their states as val-
ues) which corresponds to Θ′i, i.e., it maps to the states of
Θ′i. Σ thus represents the function JΣK : S(F )→ S(F ′).

The bottom part of Figure 2 shows Σ = 〈σP , σT 〉, an F2F
mapping from F (Π) to F (Π). Its component F2N mappings
σP and σT each project states of F (Π) to their correspond-
ing state in ΘP and ΘT . Σ thus represents the identity func-
tion on states of F (Π). In the illustration, we only show the
node of the F2N mapping and its table, omitting its value set
which can be inferred from the the entries of the table.

We now discuss the pseudo-code of the merge-and-shrink
framework shown in Algorithm 1. The algorithm first com-
putes the induced factored transition system F = F (Π) of
the given task Π and further initializes the F2F mapping Σ
to the identity mapping from F to F and the label mapping
λ to the identity mapping on the label set L of F (line 2). In
the main loop (lines 3–6), the algorithm then repeatedly se-
lects a transformation (line 4) of the current factored transi-
tion system F using the user-specified SELECTTF function.
Such transformations of F specify the transformed factored
transition system F ′, the F2F mapping Σ from F to F ′,
and the label mapping λ defined on L. To “apply” the se-
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Figure 3: Merge factored mapping σ⊗.

lected transformation, the algorithm replaces F by F ′ and
composes the state and label mappings with the previous
one (line 5). When there is only one factor Θ of F left,
the algorithm computes the heuristic which is defined as
hM&S

Π (s) = h∗Θ(JΣK(s)) for all states s ∈ S(F (Π)).
We call the algorithm an algorithm framework rather than

a concrete algorithm because it leaves one important choice
point unspecified, namely how to select the transformations
using function SELECTTF. Before discussing a concrete in-
stantiation of the framework, we briefly review the four
types of merge-and-shrink transformations.

A shrink transformation computes an abstraction α of the
states of a given factor Θ of F and replaces Θ by the in-
duced abstract factor α(Θ). The F2N mapping correspond-
ing to α(Θ) represents the abstraction mapping α. An ex-
ample shrink transformation of F (Π) of the example task
abstracts states 1 and 2 of ΘP to the same state x, which
thus inherits the transitions of both 1 and 2, turning, e.g.,
1 L-B−−→ 2 into a self-looping transition. The transformed F2N
mapping α(σP ) maps both B and T to x (and still A to 0).

A merge transformation replaces two factors Θ,Θ′ of F
by their product Θ⊗. The F2N mapping for the new factor
is a merge factored mapping that maps pairs of states of Θ
and Θ′ to the corresponding product state in Θ⊗. An ex-
ample merge transformation for F (Π) of the example task
replaces the two atomic factors ΘP and ΘT by their prod-
uct Θ⊗ shown in Figure 1. The two corresponding factored
mappings σP and σT are replaced by the merge factored
mapping σ⊗ with components σP and σT , shown in Fig-
ure 3. It maps values as computed by σP and σT (which
correspond to states of the corresponding factors) to values
corresponding to the product states in the product system
(we annotated states of Θ⊗ in Figure 1 with corresponding
numbers from the value set of σ⊗). For example, for the as-
signment {vP 7→ 2, vT 7→ 1}, σ⊗ first computes values 2
and 1 from its components and then retrieves the result 5
from its table, which indeed corresponds to the state TB.

A prune transformation combines unreachable states or
states from which no goal can be reached of some factor Θ of
F into an isolated dummy state, removing all corresponding
transitions. In the corresponding F2N mapping, this change
is reflected like for shrink transformations.

Finally, a label reduction transformation applies a label
mapping λ to the label setLwith label costs c of F , mapping
it to some (usually smaller) label setL′ with label costs c′. In
all factors of the transformed factored transition system, all
transitions s `−→ t must be replaced by transitions s λ(`)−−→ t.
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Algorithm 2 The main loop of the merge-and-shrink frame-
work as implemented in Fast Downward.

1: while |F | > 1 do
2: Θ1,Θ2,← SELECT(F )
3: 〈F,Σ, λ〉 ← COMPOSETF(LABELRED(F ))
4: 〈F,Σ, λ〉 ← COMPOSETF(SHRINK(F,Θ1,Θ2))
5: 〈F,Σ, λ〉 ← COMPOSETF(MERGE(F,Θ1,Θ2))
6: 〈F,Σ, λ〉 ← COMPOSETF(PRUNE(F,Θ⊗))
7: end while

Label costs must not increase to guarantee admissibility, i.e.,
c′(`′) := min`∈λ−1(`′)(c(`)) for all `′ ∈ L′. An example la-
bel reduction for F (Π) of the example task reduces U-A,
U-B, L-A, L-B to a new label X. In the transformed fac-
tors, transitions are relabeled accordingly, collapsing identi-
cal transitions. For example, 0 L-A−−→ 0 and 0 U-A−−→ 0 of ΘT

are combined into 0 X−→ 0 in the transformed factor.
Sievers, Wehrle, and Helmert (2014) provide a full char-

acterization of label reductions, describing sufficient and
necessary conditions under which they are exact. Exact
transformations preserve perfect heuristic values and are
thus desirable. The exclusive condition used in previous
work to compute exact generalized label reductions is based
on Θ-combinability. Consider a factored transition system F
with labels L and some factor Θ of F . Labels `, `′ ∈ L are
locally equivalent in Θ if they label the same transitions in
Θ, and they are Θ-combinable in F if they are locally equiv-
alent in all factors Θ′ 6= Θ of F . A label reduction that only
combines Θ-combinable labels of the same cost for some Θ
of F is exact. In F (Π) of the example task, labels DR-A-B
and DR-B-A are ΘT -combinable because they both induce
the same self-looping transitions in the only other factor ΘP .

We conclude this section with a description of the con-
crete instantiation of the merge-and-shrink main loop in
Fast Downward (Helmert 2006). Algorithm 2 shows pseudo-
code.1 The layout is based on the decision to perform one
merge transformation in each iteration. Selecting the factors
Θ1,Θ2 to merge is thus the first step (line 2), followed by
possibly applying a label reduction (line 3), shrinking one
or both factors that will be merged in order to satisfy a given
size limit imposed on transition systems (line 4), perform-
ing the merge transformation by replacing Θ1 and Θ2 by
Θ⊗ (line 5), and finally pruning Θ⊗ (line 6). Recall that per-
forming a transformation means to compose it with the pre-
vious transformation as described in line 5 of Algorithm 1,
for which COMPOSETF is a short-hand notation. This algo-
rithm still has parameters, namely the transformation strate-
gies that need to specify how to compute a specific transfor-
mation. For example, a shrink strategy needs to specify how
to compute an abstraction for a given factor.

Computation of Exact Label Reductions
In the following, we detail out the computation of exact la-
bel reductions based on Θ-combinable labels (combinable

1In the implementation, pruning can be applied to all atomic
factors once before the main loop.

Algorithm 3 Fixed point label reduction algorithm.

Input: Factored transition system F with labels L and label
costs c; Order O on factors of F .

Output: Transformed factored transition system F .
1: function LABELREDUCTION(F )
2: #UnsuccIt← 0
3: while #UnsuccIt < |F | do
4: Θ← NEXT(F ′, O)
5: eqRel← Θ-COMBINABLEREL(F,Θ))
6: if eqRel is trivial then
7: #UnsuccIt← #UnsuccIt + 1
8: else
9: λ, c′ ← LABELMAPPING(L,eqRel)

10: F ← APPLY(F, λ, c′)
11: #UnsuccIt← 0
12: end if
13: end while
14: return F
15: end function
16: function Θ-COMBINABLEREL(F , Θ ∈ F )
17: eqRel← UNIVEQREL(L)
18: for Θ′ ∈ F with Θ′ 6= Θ do
19: eqRel← REFINE(eqRel, EQREL(Θ′, L))
20: end for
21: return eqRel
22: end function

labels for short) that Sievers, Wehrle, and Helmert (2014)
only briefly mentioned. We begin with the following impor-
tant observations. The relation on locally equivalent labels
for a single factor is transitive; it is even an equivalence
relation, called local label equivalence relation in the fol-
lowing. However, the combinable relation is the union over
these local equivalence relations, and this union relation is
not transitive. This means that if `1 and `2 are combinable
and `2 and `3 are combinable for different factors of a fac-
tored transition system, this does not imply that `1 and `3 are
combinable for any factor. Intuitively, after merging `1 and
`2, the combined label is in general not locally equivalent
with `3 in all (but one) factors because we now have tran-
sitions with the new label that originated from `1 and have
no matching transition for `3. An immediate consequence of
this observation is that if we want to apply all possible label
reductions by computing combinable labels for all factors
until there are no more such combinable labels, the result
depends on the order in which we consider the factors.

Due to the above observations, Fast Downward imple-
ments the fixed point algorithm illustrated in Algorithm 3 for
computing exact label reductions based on Θ-combinability.
It keeps track of the number of iterations in which no more
labels could be combined (line 2) and reaches a fixed point if
the number of such unsuccessful iterations equals the num-
ber of factors in the given factored transition system F , i.e.,
if there are no more combinable labels in any of the factors
of F (line 3).

In each iteration, the algorithm chooses the next factor
Θ ∈ F according to some user-specified order O in which
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factors of F should be considered (line 4). For the chosen
factor, the algorithm computes the Θ-combinable equiva-
lence relation using the method Θ-COMBINABLEREL. If the
result is trivial in the sense that there are no Θ-combinable
labels, the iteration counts as unsuccessful (line 7). Other-
wise, the algorithm turns the equivalence relation into a la-
bel mapping λ (line 9) that maps all labels within a single
equivalence class to a new label `, setting c′(`) to the mini-
mum cost of all labels mapped to ` by λ. (To obtain an exact
label reduction, we have to further split each equivalence
class according to label costs.) Applying the label mapping
to the factored transition system (line 10) means to re-label
all transitions labeled by labels that have been reduced, po-
tentially combining transitions. Finally, the algorithm con-
tinues with the next iteration or terminates, returning the
transformed factored transitions system (line 14).

The function Θ-COMBINABLEREL for computing Θ-
combinable labels starts with the universal label equivalence
relation in which all labels are considered equal (line 17). It
then subsequently refines this equivalence relation through
the local label equivalence relations of all factors other than
Θ (line 19). (As observed above, the order on the factors of
F does not matter for this iterative refinement.)

We remark that the merge-and-shrink framework com-
putes single transformations at each step and composes them
(cf. lines 4–5 in Algorithm 1), which does not directly fit
the fixed point algorithm that computes a sequence of la-
bel reductions. Hence, in this algorithm, each call to AP-
PLY(F, λ, c′) has to be understood as composing the label re-
duction transformation of the current iteration with the trans-
formation maintained by the merge-and-shrink framework.

Secondly, we remark that the local label equivalence re-
lation of a factor Θ (EQUIVREL(Θ, L)) can be computed
in time polynomial in the number of label groups and their
transitions in Θ. Refining an equivalence relation A through
another one called B (REFINE(A,B)) is possible in time
linear in the number of elements (here: labels) of A and B
when using suitable data structures such as linked lists.

Finally, to avoid introducing any bias with the selection of
an order O, the default order of the implementation in Fast
Downward is a random one. This order has been used for
producing all results reported in the literature to the best of
our knowledge.

Efficient Implementation
In this section, we describe our optimized implementation
of the merge-and-shrink framework for classical planning.
This implementation is publicly available in Fast Downward
(Helmert 2006). It has first been used for the results reported
by Sievers, Wehrle, and Helmert (2016). All results reported
prior to this work used the previous, already highly engi-
neered implementation of merge-and-shrink, which Helmert
et al. (2014) describe in Section 4.3, extended with a ba-
sic implementation of generalized label reduction. In the
following, we distinguish clearly between optimizations
present already in the previous implementation and those
new to our optimized one.

We first remark that our optimized implementation is
solely based on an improved representation of transition sys-

prev opt

DR-A-B : {〈0, 0〉, 〈1, 1〉, 〈2, 2〉} {DR-A-B, DR-B-A} :

DR-B-A : {〈0, 0〉, 〈1, 1〉, 〈2, 2〉} {〈0, 0〉, 〈1, 1〉, 〈2, 2〉}
L-A : {〈0, 2〉} {L-A} : {〈0, 2〉}
U-A : {〈2, 0〉} {U-A} : {〈2, 0〉}
L-B : {〈1, 2〉} {L-B} : {〈1, 2〉}
U-B : {〈2, 1〉} {U-B} : {〈2, 1〉}

Table 1: Representing ΘP of the example (cf. Figure 2) in
the previous (prev) and the optimized (opt) implementation.

tems, and that the implementation of factored mappings fol-
lows the inductive definition in a straightforward way and is
identical in both versions. To represent transition systems,
both implementations do not store transitions as an adja-
cency list as it is commonly done to represent graphs, but
rather store all transitions grouped by labels. This allows
an efficient application of all merge-and-shrink transforma-
tions, as we will see below.

The central difference to the previous implementation is
that we store label groups of locally equivalent labels, disre-
garding their cost (the cost of a label group is the minimum
cost of any participating label), and thus only have to store
the transitions of locally equivalent labels once rather than
separately for each label. This was not possible in the previ-
ous implementation where labels were associated with pre-
conditions and effects of planning operators in order to en-
able the old, syntax-based theory of label reduction (Helmert
et al. 2014). Table 1 shows the representation of ΘP of the
example in the the previous (prev) and optimized (opt) im-
plementation, using the notation x : y to the denote the set y
of transitions of a label (prev) or a label group (opt) x.

Due to this more memory-efficient representation of tran-
sition systems, we can also represent so-called irrelevant la-
bels,2 i.e., have one group that represents irrelevant labels.
The previous implementation could not store transitions of
irrelevant labels explicitly due to a prohibitive memory con-
sumption, which led to various error-prone special-casing.
In ΘP of the example, labels DR-A-B and DR-B-A are ir-
relevant and thus form a single label group (cf. Table 1).

A further, small conceptual difference of the two imple-
mentations is that the previous implementation computed
pruning transformations as part of shrinking, whereas the
optimized implementation only attempts pruning after merg-
ing, which is the only place where pruning opportunities can
occur. Furthermore, we allow computing g- and h-values de-
pending on which information is required by the transforma-
tion strategies, whereas the previous implementation always
computed both. Both implementations compute distances of
transition systems with Dijkstra’s algorithm (Dijkstra 1959).
This is the only place where we need an explicit adjacency
list representation of transition systems.

We now turn our attention to the different merge-and-
shrink transformations, beginning with shrinking, which is

2A label l is irrelevant in Θ if for all states s of Θ, it labels
exactly one self-looping transition s l−→ s ∈ Θ. A label l is relevant
if it is not irrelevant.
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done identically in both implementations. First, the shrink
strategy computes a state equivalence relation for the given
factor. An example shrink transformation combines states 0
and 1 of ΘP . We transform this equivalence relation into an
explicit state mapping, assigning a consecutive number to
each equivalence class. In the example, 0 7→ 0, 1 7→ 0, and
2 7→ 1. Then we use this state mapping for an in-place mod-
ification of the factor by going over all transitions and updat-
ing their source and target states. This can be done efficiently
because we store transitions by labels or label groups, see
Table 1. If we used an adjacency list representation of tran-
sition systems, we would possibly need to reorder all entries
of the list, besides renumbering the entries within succes-
sor lists. Finally, we perform an in-place modification of the
F2N mapping corresponding to the shrunk factor by by ap-
plying the state mapping to its table. In Figure 2, we would
relabel the second row of σP to read 0, 0, and 1.

When merging two transition systems Θ1 and Θ2, the pre-
vious implementation considered each label separately and
computed its transitions in the product by pair-wise com-
binations of its transitions in Θ1 and Θ2. In the optimized
implementation, we do not compute this full product, be-
cause this would require to compute the local label equiva-
lence relation from scratch afterwards. Instead, we use the
following simple bucket-based approach to directly com-
pute the refinement of the local label equivalence relations
EqRel1 and EqRel2 of Θ1 and Θ2: for each label group x
of EqRel1, first partition its labels according to EqRel2,
and then, for each resulting new label group y, compute the
product of the transitions of x and of the label group of Θ2

that corresponds to y. We remark that computing product
transitions is facilitated by storing transitions grouped by
labels rather than using an adjacency list, which allows to
quickly access the transitions of a label or a label group.

Computing the F2N mapping σ⊗ corresponding to the
product is straightforward and identical to the previous im-
plementation: it has two components, which are the two F2N
mappings of the previous transformation that map to the fac-
tors Θ1 and Θ2, and it has a table that maps pairs of compo-
nent states to their product state. Starting from the factored
transition system shown in Figure 2, Figures 1 and 3 illus-
trate the result of a merge transformation.

When pruning, the prune strategy computes a set of to-
be-pruned states for the given factor. We then modify the
factor in-place by removing these states together with their
transitions. The table of the corresponding F2N mapping is
updated in-place to map removed states to a special symbol
which is evaluated to∞ by the heuristic. This implementa-
tion of pruning is identical to the previous one.

Computing an exact label reduction with Algorithm 3
is favored by the representation that stores the local la-
bel equivalence relation of all factors: the loop of the
method Θ-COMBINABLEREL can simply use the already
computed local label equivalence relations (instead of call-
ing EQUIVREL(Θ′, L) in line 19). The previous implemen-
tation needed to compute this information on demand and
cache it over the iterations of the algorithm.

For efficient refinement of label equivalence relations
(REFINE), we store label groups in linked lists as discussed

in the description of the algorithm. Computing the label
mapping (LABELMAPPING) is straightforward and is done
like computing a state mapping from a state equivalence re-
lation when shrinking. Applying the label mapping (APPLY)
can be efficiently done as follows. When updating a factor
other than Θ, all we have to do is to remove the old la-
bels from their group (they are all in the same group) and
to add the new label to it; the transitions remain. Otherwise,
when updating Θ, we need to remove the old labels from
their groups (potentially different ones) and add a new sin-
gleton group for the new label. While doing so, we collect
the transitions of all to-be-removed labels and combine them
to form the transitions of the new label. If label groups be-
come empty, we remove them together with their transitions.
We also need to recompute the costs of all modified groups.
This part of label reduction is identical to the previous imple-
mentation. In the optimized implementation, we additionally
recompute the local label equivalence relation to restore the
compact representation of transition systems.

We remark that our optimized implementation also
greatly benefits two transformation strategies of the merge-
and-shrink toolbox. The state-of-the-art shrink strategy
based on bisimulation (Nissim, Hoffmann, and Helmert
2011) is accelerated significantly due to only considering
transitions of label groups rather than of individual labels.
For the same reason, computing factored symmetries (Siev-
ers et al. 2015) that can be used to enhance merge strategies
is faster with the optimized implementation.

Partial Merge-and-Shrink Abstractions
The regular termination criterion of the merge-and-shrink
framework is to stop when the transformed factored tran-
sition system only contains a single factor. Then we have
exactly one abstraction for computing the heuristic. How-
ever, nothing prevents us from stopping the algorithm early,
ending up with several factors and factored mappings, and
hence with several abstractions that induce heuristics.

Paired with the observation that merge-and-shrink based
planners fail to finish computing the heuristic in the given
time and memory limits in a non-negligible number of
cases (151–267 out of 1667 tasks for state-of-the-art-
configurations3), we will evaluate two simple ways of stop-
ping the merge-and-shrink computation by limiting resource
consumption. Both have been used before by Torralba and
Hoffmann (2015) to limit the merge-and-shrink compu-
tation. However, they did not compute merge-and-shrink
heuristics but used the framework as a basis for computing
label dominance relations.

The first limit restricts the number of transitions that a
factor may have at any time. This is reasonable because this
number has a much higher impact on the runtime of merge-
and-shrink than the number of states, which is controlled by
the shrink strategy: both computing exact label reductions
and product systems is dominated by the number of transi-
tions. However, controlling the number of transitions is not
possible in a straightforward way with an approach simi-
lar to how shrinking controls the number of states because

3See rows “# constr” of column “base” of Table 3 or 4.
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removing or ignoring transitions can result in inadmissible
heuristics. Therefore, we terminate the merge-and-shrink al-
gorithm once the limit is reached by any factor. The sec-
ond limit restricts the runtime of the merge-and-shrink al-
gorithm, which we allow to be terminated even during the
computation of atomic factors.

In both cases, when terminating the merge-and-shrink
computation early, we are left with a factored transition
system F = 〈Θ1, . . . ,Θn〉 and an F2F mapping Σ =
〈σ1, . . . , σn〉 that contain several elements. Thus, instead of
computing hM&S

Π = h∗Θ for the single remaining factor Θ
as usually, for each factor Θi, we can compute the factor
heuristic hi(s) = h∗Θi

(σi(s)) for all states s of the task. The
decision we then face is to compute a (merge-and-shrink)
heuristic from this set of heuristics.

The first, possibly most obvious variant we consider is
to compute the max-factor heuristic hmf

F = max1≤i≤n hi
that maximizes over all factor heuristics. The second, less
expensive alternative is to choose a single factor heuristic
(hsg
F ) and use it as the merge-and-shrink heuristic. We use

the following simple rule of thumb for this choice: we pre-
fer the heuristic with the largest estimate for the initial state
(rationale: better informed heuristic), breaking ties in favor
of larger factors (rationale: more fine-grained abstraction),
and choose a random heuristic among all remaining can-
didates of equal preference. Other choices or tie-breakers
are certainly possible, such as choosing the heuristic with
the largest average estimate or the heuristic with the largest
number of distinguishable estimates. We leave an evaluation
of these options as future work.

Experiments
In the following, we first compare the previous to the opti-
mized implementation of merge-and-shrink in Fast Down-
ward and then evaluate partial merge-and-shrink abstrac-
tions.4 The technical setup is the same for all experiments:
we use all (optimal) benchmarks of all all IPCs up to 2014,
a set comprised of 1667 planning tasks distributed across 57
domains.5 We limit time to 30 minutes and memory to 3.5
GiB per task, using Downward-Lab (Seipp et al. 2017) for
conducting the experiments on a cluster of machines with
Intel Xeon Silver 4114 CPUs running at 2.2 GHz.

All results6 are obtained with the state-of-the-art shrink
strategy based on bisimulation with a size limit of 50000.
We allow shrinking even if the size limit is not violated to al-
low exploiting potential perfect shrinking opportunities. We
use full pruning of dead states. Label reductions are com-
puted with the fixed point algorithm described earlier. In
the first experiment, we can only use the merge strategies
that were available already in the previous implementation.
This includes two representatives of simple linear strate-
gies, causal graph goal level (CGGL) (Helmert, Haslum,
and Hoffmann 2007) and reverse level (RL) (Nissim, Hoff-
mann, and Helmert 2011), as well as the non-linear merge

4Code: https://doi.org/10.5281/zenodo.1290524
5Suite “optimal strips” from https://bitbucket.org/aibasel/

downward-benchmarks
6Dataset: https://doi.org/10.5281/zenodo.1290644

strategies DFP (Dräger, Finkbeiner, and Podelski 2009;
Sievers, Wehrle, and Helmert 2014) and maximum inter-
mediate abstraction size minimizing (MIASM) (Fan, Müller,
and Holte 2014), the latter using DFP as fallback mechanism
(MIASMdfp or Mdfp for short). In the second experiment, we
also use the most recent, state-of-the-art non-linear merge
strategies score-based MIASM (sbM), also called DYN-
MIASM, and the strategy based on strongly connected com-
ponents of the causal graph (Sievers, Wehrle, and Helmert
2016), which uses DFP for internal merging (SCCdfp).

Previous and Optimized Implementation
Recall that in this comparison we want to reproduce re-
sults of an older implementation of merge-and-shrink in Fast
Downward. Since Fast Downward versions that are several
years apart usually have huge differences in performance,
we integrated the previous implementation of merge-and-
shrink into the most recent version of Fast Downward, at-
tempting to keep the required modifications at a minimum.
We think that this is the best way to allow for a fair compar-
ison to state-of-the art techniques.

We further remark that the previous implementation uses
the first implementation of MIASM that its authors used for
their original paper, whereas the optimized implementation
uses a re-implementation of MIASM which its authors de-
veloped based on a newer version of Fast Downward. Unfor-
tunately, integrating the newer implementation of MIASM
into the previous implementation of merge-and-shrink was
not possible without major changes. Hence the following
comparison of MIASM has to be taken with a grain of salt.

Table 2 shows the comparison of the previous implemen-
tation (column prev) against the optimized one (column opt).
For each merge strategy (vertical blocks), the table reports,
in different rows, the number of solved tasks (coverage), the
number of tasks for which the construction of the heuristic
finished (# constr), the runtime of the construction in sec-
onds (Constr time), aggregated using the geometric mean
first over all tasks and then over all domains, the number of
tasks for which the construction ran out of memory (oom) or
time (oot), and the number of expansions (rounded to thou-
sands) until the last f -layer, aggregated using the 75th per-
centile (E 75th perc). The table also includes columns dis-
playing the difference (diff) between opt and prev, which is
highlighted in bold if it is favorable for the optimized imple-
mentation, and the number of tasks for which opt is better
(+) and worse (-) than prev.

We observe that the optimized implementation indeed
leads to an improved efficiency of the merge-and-shrink
computation: the smaller representation size of transition
systems results in fewer tasks for which the computation
runs out of memory, which also transfers to a great decrease
of construction time on average.7 This increase of the num-
ber of successful heuristic constructions in turn yields better

7However, for some tasks with a large number of variables or
operators, the (expensive) fixed point computation of label reduc-
tions causes the heuristic construction to run out of time or memory
in the optimized implementation because it explicitly represents ir-
relevant labels of each factor. We still prefer the cleaner implemen-
tation over an even more efficient computation for those few cases.
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prev opt diff + -

Coverage 733 754 21 23 2

C
G

G
L

# constr 1387 1467 80 85 5
Constr time 104.79 55.75 -49.03 1146 236
Constr oom 137 57 -80 98 18
Constr oot 140 143 3 22 23
Exp 75th perc 3117k 3117k 0 16 34

Coverage 768 774 6 9 3

D
FP

# constr 1419 1504 85 89 4
Constr time 96.10 59.61 -36.50 1193 222
Constr oom 106 21 -85 94 9
Constr oot 139 142 3 16 17
Exp 75th perc 1957k 1861k -96k 44 44

Coverage 778 804 26 32 6

M
IA

SM

# constr 1382 1480 98 98 0
Constr time 80.61 59.95 -20.66 735 647
Constr oom 117 68 -49 93 43
Constr oot 161 119 -42 81 34
Exp 75th perc 1048k 1047k -1k 142 165

Coverage 756 773 17 17 0
R

L

# constr 1433 1515 82 85 3
Constr time 80.09 53.70 -26.39 1148 282
Constr oom 90 16 -74 82 8
Constr oot 141 136 -5 15 8
Exp 75th perc 1879k 2219k 340 27 27

Table 2: Comparison of the previous against the optimized
implementation of merge-and-shrink.

coverage of all configurations. The very similar number of
expansions also confirms that the difference of the imple-
mentations is of a pure optimization nature.

Partial Merge-and-Shrink Abstractions
We now evaluate partial merge-and-shrink abstractions, i.e.,
heuristics computed based on the set of factor heuristics that
remain when terminating the merge-and-shrink computation
early. Recall that we use two approaches for computing the
final heuristic given the set of factor heuristics: choosing a
single one as described (hsg), or maximizing over all (hmf).
We first evaluate imposing a limit on the number of transi-
tions that, once hit by any factor, terminates the computa-
tion. Table 3 shows results for limits of 2, 5, and 10 millions
of transitions (t2m, t5m, t10m).

With the exception of CGGL, limiting the number of tran-
sitions does not increase coverage. The reason comes appar-
ent when comparing the number of successful heuristic con-
structions and the heuristic quality in terms of expansions:
only for small limits on the number of transitions does the
limit actually trigger frequently enough to effect a signif-
icant increase of successful heuristic constructions, but at
the same, the number of expansions also increases signifi-
cantly. For larger limits, the results are close to that of the
baseline. We conclude that limiting the number of transi-
tions does not serve to reliably stop the merge-and-shrink
computation in those cases where it would be needed, be-
cause a low limit may unnecessarily reduce the quality of
the computed heuristic and a larger limit may not stop the

hsg hmf

base t2m t5m t10m t2m t5m t10m

Coverage 754 745 757 766 748 757 767

C
G

G
L

# constr 1466 1547 1533 1529 1547 1532 1529
E 75th perc 3170k 4378k 3170k 3170k 4378k 3170k 3170k

Coverage 775 735 764 770 740 766 772

D
FP# constr 1506 1530 1516 1513 1531 1517 1515

E 75th perc 1084k 2687k 1084k 1084k 2584k 1084k 1084k

Coverage 804 775 791 801 775 791 801

M
df

p

# constr 1482 1515 1493 1490 1515 1493 1490
E 75th perc 1367k 2268k 1367k 1367k 2124k 1367k 1367k

Coverage 773 745 759 767 744 758 767

R
L# constr 1516 1525 1514 1518 1523 1517 1516

E 75th perc 1763k 2467k 1763k 1763k 2421k 1763k 1763k

Coverage 802 787 797 802 792 798 802

sb
M# constr 1400 1453 1422 1414 1452 1424 1417

E 75th perc 734k 1569k 734k 734k 1474k 734k 734k

Coverage 813 778 801 811 778 801 811

SC
C

df
p

# constr 1506 1532 1515 1514 1532 1515 1512
E 75th perc 1217k 3631k 1217k 1217k 3338k 1217k 1217k

Table 3: Comparison of the baseline against two versions of
partial merge-and-shrink, using different limits on the num-
ber of transitions.

construction before running out of time.8
A second conclusion we draw from Table 3 is that there

is no significant difference between hmf and hsg. While hmf

theoretically dominates any factor heuristic by definition,
evaluating the former can be slightly more expensive. Fur-
thermore, in scenarios where there is one large factor and
many small (e.g., atomic) factors in the end, the large one
likely dominates the others, and thus hsg is equally informed
as hmf. This scenario always occurs with linear merge strate-
gies because they maintain only one non-atomic factor.

We now evaluate adding a time limit to the computation.
Table 4 shows the results for limits of 450s, 900s, and 1350s.
As expected, this is a very effective measure for greatly in-
creasing the number of successful heuristic constructions,
which also directly transfers to a significant increase in cov-
erage of all configurations, with 450s and 900s achieving
slightly better results than 1350s. In contrast to limiting the
number of transitions, stopping the computation early does
not affect the heuristic quality at all. The likely reason is
that with limiting the time, we catch precisely those tasks
for which the construction otherwise does not terminate or
terminates too late for a successful search. Tasks which we
can already solve without imposing a time limit (base) usu-
ally require a rather short construction time, and therefore
limiting the time to 900s or more does not stop the heuris-

8We also tested to only exclude a factor from further considera-
tion if it violates the transition limit rather than aborting the compu-
tation. This is only possible with merge strategies such as DFP and
sbMIASM that are able to base their selection on a subset of fac-
tors. In this variant, coverage decreased less compared to aborting
the computation, but still did not increase for any tested limit.
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hsg hmf

base 450s 900s 1350s 450s 900s 1350s

Coverage 754 790 789 784 789 789 784

C
G

G
L

# constr 1466 1599 1586 1571 1598 1585 1568
E 75th perc 3117k 3117k 3117k 3117k 3117k 3117k 3117k

Coverage 775 805 805 801 805 806 801

D
FP# constr 1506 1622 1620 1608 1622 1620 1604

E 75th perc 1739k 1739k 1739k 1739k 1739k 1739k 1739k

Coverage 804 835 832 827 835 833 826

M
df

p

# constr 1482 1595 1591 1568 1592 1590 1566
E 75th perc 1403k 1403k 1403k 1403k 1403k 1403k 1403k

Coverage 773 796 796 796 796 797 792

R
L# constr 1516 1626 1626 1617 1626 1626 1616

E 75th perc 2221k 2221k 2221k 2221k 2221k 2221k 2221k

Coverage 802 835 835 835 836 836 835

R
L# constr 1400 1637 1628 1616 1636 1628 1615

E 75th perc 1342k 1368k 1342k 1342k 1368k 1342k 1342k

Coverage 813 844 844 840 844 845 840

R
LSearch time 0.30 0.31 0.30 0.30 0.30 0.30 0.30

# constr 1506 1622 1620 1608 1622 1620 1610
E 75th perc 1860k 1860k 1860k 1860k 1860k 1860k 1860k

Table 4: Compassion of the baseline against two versions of
partial merge-and-shrink, using different time limits.

tic computation early and hence does not reduce heuristic
quality in these cases. Regarding the difference between hsg

and hmf, it is again very small, showing no clear dominance
trend.

Conclusions
In this paper, we provided an extensive theoretic and al-
gorithmic description of the merge-and-shrink framework
based on generalized label reduction. Furthermore, we de-
scribed an efficient implementation in Fast Downward, high-
lighting improvements compared to a previous implemen-
tation. We also discussed partial merge-and-shrink abstrac-
tions and proposed imposing two simple limits on the al-
gorithm for computing such abstractions. Our experimen-
tal evaluation showed that the optimized implementation
clearly improves over the previous one. While limiting the
number of transitions did not result in partial abstractions
that are informed enough, imposing a time limit significantly
pushed the performance of merge-and-shrink planners.

We think that partial merge-and-shrink abstractions have
further potential. In particular, we would like to come up
with a way of deterministically computing them rather than
imposing a time limit which does not allow full reproducibil-
ity due to computational fluctuations. Furthermore, we want
to investigate other alternatives for computing a merge-and-
shrink heuristic given a set of partial factor heuristics, such
as using cost partitioning techniques.
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Torralba, Á., and Hoffmann, J. 2015. Simulation-based admis-
sible dominance pruning. In Proc. IJCAI 2015, 1689–1695.

98




