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Abstract

In the multi-agent path-finding (MAPF) problem, the task
is to find a plan for moving a set of agents from their ini-
tial locations to their goals without collisions. Following this
plan, however, may not be possible due to unexpected events
that delay some of the agents. We explore the notion of k-
robust MAPF, where the task is to find a plan that can be
followed even if a limited number of such delays occur. k-
robust MAPF is especially suitable for agents with a control
mechanism that guarantees that each agent is within a limited
number of steps away from its pre-defined plan. We propose
sufficient and required conditions for finding a k-robust plan,
and show how to convert several MAPF solvers to find such
plans. Then, we show the benefit of using a k-robust plan dur-
ing execution, and for finding plans that are likely to succeed.

1 Introduction and Overview
The Multi-Agent Path Finding (MAPF) problem is defined
by a graph, G = (V,E) and a set of n agents labeled
a1 . . . an, where each agent ai has a start position si ∈ V
and a goal position gi ∈ V . At each time step, an agent
can either move to an adjacent location or wait in its current
location. The task is to find a sequence of move/wait ac-
tions for each agent ai that moves it from si to gi such that
agents do not conflict, i.e., occupy the same location at the
same time. MAPF has practical applications in video games,
traffic control, and robotics (see (Felner et al. 2017) for a
survey). In many cases, there is also a requirement to mini-
mize some cumulative cost function such as the sum of costs
incurred by all agents before reaching their goals. Solv-
ing MAPF optimally is NP-Hard (Yu and LaValle 2013b;
Surynek 2010). Nonetheless, efficient optimal algorithms
exist, some are even capable of finding optimal plans for
more than a hundred agents (Wagner and Choset 2015;
Boyarski et al. 2015; Surynek 2012; Yu and LaValle 2013a).

In practice, unexpected events may delay some of the
agents, preventing them from following their pre-determined
sequence of move/wait actions. When such an event occurs,
one may need to adjust the plan of one or more agents to
avoid collisions. Such re-planning can be very costly or even
impossible, as it may require computing and communication
capabilities as well as time that the agents may not have.
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This is especially common in safety-critical settings such as
air traffic control. Thus, it is often desirable to generate a
plan that can withstand unexpected delays, without replan-
ning if they occur.

In this work, we explore a novel form of robustness for
MAPF problems called k-robust MAPF (kR-MAPF) which
is designed to produce MAPF plans that can be followed
even if unpredictable delays occur. In kR-MAPF we seek a
plan that is robust to k delays per agent during plan execu-
tion, i.e., each agent may be delayed up to k times during
plan execution and the plan would still be safe (no colli-
sions). Standard MAPF is a special case of kR-MAPF with
k = 0. k-robustness is useful in various settings, includ-
ing cases where agents’ localization is not perfect, and cases
where synchronization between the agents is imperfect, e.g.,
when an agent may not be able to track its path exactly,
but each agent can guarantee remaining within k steps of
its nominal trajectory. We describe sufficient and required
conditions for a k-robust MAPF solution and show that a
natural adaptation of a A∗-based MAPF solver to kR-MAPF
results in a state space that grows exponentially with k. We
then present two algorithms for solving kR-MAPF more ef-
ficiently. The first is based on the Conflict-Based Search
(CBS) framework (Sharon et al. 2015). The second is based
on expressing the problem in Picat (Zhou, Kjellerstrand, and
Fruhman 2015), a declarative constraint programming lan-
guage, and solving it using a suitable general-purpose solver.

We evaluate experimentally the proposed algorithms on
8x8 and 32x32 grids, as well as on larger grids from a com-
mercial video game. Our results show that finding a k-robust
solution indeed results in fewer re-plans during execution,
and the overall increase in plan cost is small. The Picat-
based solver performed well for small grids, while the CBS-
based solver performed better for large grids, being able to
find k-robust solutions for some problems with more than
90 agents.

Another form of robustness is probabilistic robust, where
the desire is be able to perform the plan (without re-
planning) within a given probability p. We briefly discuss
this variant in the end of the paper but a deeper handling of
probabilistic robust is left for future work.
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2 k-Robust MAPF
A solution to a MAPF problem is a plan π = {π1, . . . , πn}
such that ∀i ∈ [1, n], πi is a sequence of move/wait actions
that move agent ai from si to gi. The location of ai after
executing the first t move/wait actions in π without experi-
encing any delay is denoted by πi(t). Thus, πi(0) = si and
πi(|πi|) = gi.

Definition 2.1 (Conflict). A conflict 〈ai, aj , t〉 in a plan π
occurs iff agents ai and aj are located in the same location
at time step t, i.e., when πi(t) = πj(t), or when they traverse
the same edge when moving from time t−1 to t, i.e., πi(t−
1) = πj(t) ∧ πi(t) = πj(t − 1). A conflict due to a shared
location is called a vertex conflict and a conflict due to a
shared edge is called an edge conflict.

We say that π is a valid plan if it is conflict-free. A MAPF
solver is sound if it outputs a valid plan. A delay in a plan π
is defined by a tuple 〈π, i, t〉, representing that agent ai did
not perform the move action defined for it in πi and instead
stayed at time t in location πi(t − 1). A plan is robust to
a delay if the delayed agent can continue to follow its plan
after the delay without causing a collision. Formally, for a
plan π and a delay D = 〈π, i, tD〉, let D(π) be the plan that
is equivalent to π, except for replacing πi with

π′i(t) =


si t = 0

πi(t) t < tD
πi(t− 1) otherwise

.

A plan π is robust to a delayD ifD(π) is valid. π is robust to
a set of delays D iff applying any subset of D to π will yield
a valid plan, i.e., for every set of delays {D1, . . . DT } ⊆ D,
the plan DT (DT−1(. . . D1(π) . . .)) is valid.

Definition 2.2 (k-robust plan). A plan is k-robust iff it is
valid and it is robust to any set of delays that contains at
most k delays for each agent.

Having a k-robust plan is desirable in many cases, espe-
cially when agents’ localization is not perfect, and control
mechanisms are used to verify that it is k-steps from the
given plan.

Note that there cannot be edge conflicts in a k-robust plan
for any k > 0.1

Definition 2.3 (k-delay Conflict). A k-delay conflict
〈ai, aj , t〉 in a plan π occurs iff there exists ∆ ∈ [0, k] such
that agents ai and aj are located in the same location in time
steps t and t+ ∆, respectively, i.e, πi(t) = πj(t+ ∆).

Observation 1. A plan is k-robust iff it does not contain any
k-delay conflicts.

There can be more than one k-robust plan for a given
MAPF problem instance, and plans with lower costs are
usually preferred. We focus on a common MAPF cost func-
tion called the sum of costs, which is the summation of the
number of time steps required by each agent to reach its
goal (Standley 2010; Standley and Korf 2011; Sharon et al.

1Also, k > 0 disallows agents to move to a location that was
occupied by another agent in the previous time step. Such a train-
like motion is not allowed in some MAPF formulation.
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Figure 1: A MAPF problem (a) its search tree (b), and its k-
robust search tree (c). The red lines show k-delay conflicts.

2013; 2015). A k-robust plan is optimal if there is no other
k-robust plan with a lower cost. Next, we explore several
algorithms for finding optimal k-robust plans.

3 A∗-based Solutions
Many MAPF algorithms (Silver 2005; Standley 2010; Gold-
enberg et al. 2012; Wagner and Choset 2015) are based on
the well-known A∗ algorithm (Hart, Nilsson, and Raphael
1968). These algorithms search in a n-agent state space,
which includes all the possible ways to place n agents into
|V | vertices, one agent per vertex. The start and goal states
are (s1, . . . sn) and (g1, . . . gn), respectively. An action in
this state space represents n single-agent move/wait actions,
one single-agent action per agent. An action is applicable if
its constituent single-agent actions do not create conflicts.
Hence, a path in this n-agent state space from the start state
(s1, . . . sn) to the goal state (g1, . . . gn) corresponds to a
valid plan.

One way to adapt A∗ solvers to return k-robust plans
is to modify state generation to prevent combinations of
single-agent actions that lead to k-delay conflicts. However,
this may lead to the solver returning non-optimal plans.
For example, consider finding a 2-robust plan for the prob-
lem in Figure 1(a). The optimal 2-robust solution is π1 =
(s1, A,B,C, g1) and π2 = (s2, D, g2), with a cost of 6.
Consider running A* on this problem. First, A∗ expands
state (s1, s2), generating two children (A,C) and (A,D).
Assume that (A,C) was expanded first, generating state
(B, g2) with cost 4 (2 per agent). Next, (B, g2) is expanded.
Since a2 was in C at t = 1, state (C, g2) will not be gener-
ated due to the 2-robustness constraint. Next, state (A,D) is
expanded. It will not generate (B, g2), as this state was al-
ready reached via state (A,C) with the same cost (see Fig-
ure 1(b)). Thus, while there is a plan in which state (B, g2)
generates state (C, g2), this specific run of A∗ will not find
it. This results in finding a suboptimal plan of cost 7.

To remedy this, the n-agent state space needs to be mod-
ified to keep track of the last k steps of each agent in each
state. Thus, in this state space a state represents a possible
way to place n agents into |V | vertices, one agent per ver-
tex, over k−1 consecutive time steps. Figure 1(c) shows the
search tree of this extended state space. An A*-based MAPF
solver over this state space can find an optimal k-robust plan,
but the size of this state space is much larger than the classic
n-agent state space, since its size grows exponentially with
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k. In the next section, we describe k-robust algorithms that
mitigate this problem.

4 Conflict-Based Search Solutions

Conflict-based search (CBS) (Sharon et al. 2015) is a com-
monly used MAPF solver (Ma, Kumar, and Koenig 2017;
Boyarski et al. 2015) that does not explicitly search the n-
agent state space. CBS finds a plan by searching for a path
for each agent separately. Conflicts are avoided by imposing
a set of constraints of the form 〈ai, v, t〉, representing that
agent ai is prohibited from occupying vertex v at time step
t. A plan π = {π1, . . . πn} is called consistent with a set
of constraints if its constituent sequence of move/wait ac-
tions satisfy this set of constraints, i.e., for every constraint
〈ai, v, t〉 in this set it holds that πi(t) 6= v.

CBS works by searching a constraint tree (CT) for a set
of constraints such that a plan consistent w.r.t. this set of
constraints is valid and optimal. The CT is a binary tree,
in which each node N contains: (1) a set of constraints
imposed on the agents (N.constraints), (2) a single plan
(N.π) consistent with these constraints, and (3) the cost of
N.π (N.cost). The root of the CT contains an empty set of
constraints (thus, every plan is consistent with the root). A
successor of a node in the CT inherits the constraints of the
parent node and adds a single new constraint for one agent.
Generating a successor node N means finding a plan con-
sistent with N.constraints and identifying the conflicts in
this plan, if they exist. Since N was generated by adding a
single new constraint, only one agent needs to replan, which
can be done with any optimal single-agent path-finding al-
gorithm such as A*. The algorithm used for this purpose is
referred to as the CBS low-level solver. A CT node N is a
goal node when N.π is valid. To search the CT for a goal
node CBS runs a best-first search where nodes are ordered
by their costs (N.cost).

Next, we describe two key components of CBS: how it
identifies conflicts inN , and how to choose which constraint
to add when expanding N and generating its successors.
Identifying conflicts in a consistent plan.

Once a consistent plan has been found by the low-level
solver, it is validated by simulating the movement of the
agents along their planned paths (N.π). If all agents reach
their goals without any conflict, N is declared as the goal
node, and N.π is returned. Otherwise, a conflict is found the
node is declared a non-goal.
Resolving a conflict: When a non-goal CT node N is cho-
sen in the best-first search of the CT, CBS generates its suc-
cessor CT nodes. This is done by attempting to resolve a
conflict in N.π. Let 〈ai, aj , t〉 be a conflict in N.π, and let v
be the location of this conflict, i.e., v = N.πi(t) = N.πj(t).

CBS splitsN and generates two new CT nodes as children
of N , adding the constraint 〈ai, v, t〉 to one child and the
constraint 〈aj , v, t〉 to the other child.

Note that for each (non-root) CT node the low-level
search is activated only for one agent – the agent for which
the new constraint was added.

4.1 k-Robust CBS
Next, we introduce k-robust CBS (kR-CBS), an adaptation
of CBS designed to return optimal k-robust plans. kR-CBS
differs from CBS in how it identifies and resolves conflicts.

Identifying k-delay conflicts. After the low-level solver
returned a consistent plan for a CT node N , kR-CBS scans
N.π for k-delay conflicts by simulating the paths and check-
ing for conflicts with the k-last locations of all other agents.

Thus, finding a k-delay conflict 〈ai, aj , t〉 means that
N.πi(t) = N.πj(t+∆) for ∆ ∈ [0, k]. NodeN is a goal CT
node iff it has no k-delay conflicts. This process of checking
conflicts and identifying a goal is easy to implement, but its
runtime is larger by a factor of k than the equivalent plan
validation step in CBS.

Resolving conflicts (splitting CT nodes). Let N be a
non-goal node in the CT selected to be expanded next by
kR-CBS, and let 〈ai, aj , t〉 be a k-delay conflict in N . This
means that there is a vertex v and a value ∆ ∈ [0, k] such
that v = N.πi(t) = N.πj(t + ∆). Note that there is no k-
robust plan in which ai is at v at time twhile aj is at v at time
t+ ∆. Therefore, at least one of the constraints, 〈ai, v, t〉 or
〈aj , v, t+∆〉, must be added to the CT and must be satisfied
by the low-level solvers. Consequently, kR-CBS generates
two children to N , each having one of these constraints.
kR-CBS is sound, because it only halts when generating

a CT node that has no k-delay conflicts. It is complete in
the sense that if a solution exists then it will find it, because
splitting a CT node never loses any valid plans. Similarly,
kR-CBS returns optimal plans, as it searches the CT in a
best-first order according to the nodes’ costs, and the cost
of a node N is a lower bound on the cost of any valid plan
consistent with N.constraints.

Example. Consider a 2-robust MAPF problem on the
graph in Figure 2(a), with two agents whose start-goal pairs
are s1-g1 and s2-g2, respectively. Figure 2(b) shows the first
two levels of the CT generated by kR-CBS, where every
node N shows N.constraints (labeled Con), N.π1, N.π2,
and N.cost.

The plan in the root is valid, but it is not 2-robust since
it has a 2-delay conflict 〈a2, a1, 1〉 at location B for ∆ = 1
(since π2(1) = π1(2) = B). To try to resolve this conflict,
kR-CBS adds the constraint 〈a2, B, 1〉 to the left child and
the constraint 〈a1, B, 2〉 to the right child. Both children of
the root node are also not goal nodes. In fact, in this example
we will need to generate a total of 7 CT nodes before finding
an optimal plan. As we show next, it is possible to improve
kR-CBS such that it will find the goal sooner.

4.2 Improved k-Robust CBS
In Figure 2(b), the 2-delay conflict 〈a2, a1, 1〉 in the root CT
node is resolved by adding constraints such that either a2 is
not inB at time 1 (left child), or a1 is not inB at time 2 (right
child). Imposing these constraints is correct because in every
2-robust plan either a1 is not at B at time 1 or a2 is not in B
at time 2. This argument can be extended: in every 2-robust
plan either a2 is not inB at times 1 and 2 or a1 is not inB at
times 2 and 3. Thus, we can impose a stricter constraint on
the left subtree by adding the constraint 〈a2, B, 2〉, and add
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Figure 2: (a) The graph (b) The CT using the original time/location constraints (c) CT using the range constraints

the constraint 〈a1, B, 3〉 to the right subtree. Imposing more
constraints per CT node can reduce the size of the CT tree,
and consequently the overall runtime.

To exploit this understanding, we introduce the Improved
kR-CBS (IkR-CBS) that resolves conflicts in a CT node N
by imposing range constraints on its successors. A range
constraint is defined by the tuple 〈ai, v, [t1, t2]〉 and repre-
sents the constraint that agent ai must avoid vertex v from
time step t1 to time step t2.

Ideally, we would like to construct range constraints as
large as possible, to minimize the size of the CT tree. How-
ever, over-constraining CT nodes may result in losing com-
pleteness and optimality. The key question is thus which
pairs of range constraints to use to resolve conflicts without
losing completeness and optimality.
Definition 4.1 (Sound Range Constraints). A pair of range
constraints for a given k-delay conflict is called sound iff all
optimal k-robust plans satisfy at least one of the constraints.

Proposition 4.1. A kR-CBS variant that resolves conflicts
with sound pairs of range constraints is sound, and is guar-
anteed to return an optimal k-robust plan if such exists.

Proof: For a CT node N , let N1 and N2 be its children,
generated by the sound pair of range constraints R1 and
R2, respectively. Now, π(N) denotes all the k-robust plans
that do not violateN.constraints. Observe that π(N1) con-
tains all the plans in π(N) that satisfy R1, and similarly
π(N2) contains all the plans in π(N) that satisfy R2. Since
R1 and R2 are a sound pair of constraints, it holds that
π(N) = π(N1) ∪ π(N2). Thus, splitting CT nodes by re-
solving conflicts with a sound pair of constraints does not
lose any plans and thus preserves the soundness and opti-
mality, and is guaranteed to return a k-robust plan if exists.�
We call a pair of range constraints symmetric if they con-
strain the same vertex and the same time range.
Corollary 4.2 (Symmetric range constraints). For any time
step t, vertex v, and agents ai and aj , the range constraints
〈ai, v, [t, t+ k]〉, 〈aj , v, [t, t+ k]〉 are sound for solving a
k-robust MAPF problem.

Proving Corollary 4.2 is straightforward. Note that setting

a symmetric range constraint on a range larger than k is in
general not sound. Thus, Corollary 4.2 gives an upper bound
on the size of the largest pair of symmetric range constraints
that is sound. Nevertheless, there are more than one k-sized
symmetric pairs of range constraints for a given k-delay con-
flict 〈ai, aj , t〉 over vertex v. In our implementation, we used
the time range [t, t + k], but the pair of range constraints
[t− k, t] is also sound.

A pair of sound range constraints can also be asymmetric,
i.e., constrain one agent to a longer time range than the other
agent. For example, consider a conflict 〈ai, aj , t〉 over vertex
v and pair of range constraints R1 = 〈ai, v, [t− k, t+ k]〉
and R2 = 〈aj , v, [t]〉. R1 and R2 are a sound pair of con-
straints, because a solution must satisfy either R1 or R2,
since violating both results in a k-delay conflict. R1 and R2

are extremely asymmetric, but one can imaging asymmetric
range constraints that are more balanced. An open question
for asymmetric range constraints is how to choose on which
agent to impose the more restrictive constraint.

4.3 Experimental Results
Next, we experiment with kR-CBS and IkR-CBS using
symmetric and asymmetric pairs of range constraints.

8x8 open grid 60 random problem instances were gen-
erated in an open 8x8 grid. Then a kR-MAPF solver for
k = 0, 1, and 2 was executed and the resulting plan cost
and CPU runtime were measured.

Table 1 shows the average plan cost and CPU runtime
when finding k-robust solutions using kR-CBS (labeled KR)
and IkR-CBS with the asymmetric and with the symmetric
range constrains (labeled IKR(A) and IKR(S), respectively)
for 4, 6, 7, 8, 9, and 10 agents (different rows). Since all
solvers return optimal k-robust plans, we show the plan cost
only once for every value of k. Note that k = 0 is standard
CBS.

First, consider the plan costs. As can be seen, the k-robust
plans are often more costly than a plan that are not robust
(k = 0), but the added cost is relatively small. In fact, the
largest relative increase in cost when moving from k = 0
to k = 1 was observed for 4 agents, where for k = 0 the
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Plan cost Plan time (ms)
k=0 k=1 k=2

n k=0 k=1 k=2 All KR IKR(A) IKR(S) KR IKR(A) IKR(S)
4 21 22 22 6 15 14 15 193 110 67
6 31 32 32 5 28 26 20 990 388 94
7 36 37 39 7 31 26 17 1,618 826 184
8 41 41 43 6 29 23 20 2,625 1,051 229
9 48 49 51 9 379 218 76 20,006 4,408 556

10 49 51 53 41 162 124 78 22,464 7,097 875

Table 1: Average plan cost and planning runtime for different CBS-based k-robust solvers, on an 8x8 open grid.

average cost was 21 and for k = 1 the average cost increased
to 22, which amounts to an increase of less than 5%.

Second, the runtime of finding a k-robust solution in-
crease as k increases. For example, finding an optimal valid
plan with kR-CBS for 9 agents required 9 milliseconds but
finding an optimal 1-robust plan required 379 milliseconds.
As expected, both IkR-CBS variants run much faster than
kR-CBS and this improvement increases when increasing
k and when there are more agents. When comparing the
symmetric and the asymmetric range constraints, we see a
clear advantage for the symmetric range constraints. For ex-
ample, consider finding an optimal 2-robust solution for 9
agents: it required 20,006 milliseconds for kR-CBS, 4,408
for IkR-CBS with asymmetric constraints, and only 556 mil-
liseconds for IkR-CBS with the symmetric constraints. We
conjuncture that this is due to the arbitrary way in which we
choose which agent to constrain more when using the asym-
metric range constraints; better ways of choosing asymmet-
ric range constraints may exist.

brc202.d Map We also performed some experiments
on a larger map from the Dragon Age Origins (DAO)
video game, which is available in the movingai reposi-
tory (Sturtevant 2012). Specifically, we generated 50 ran-
domly generated instances with 30 agents on the brc202d
map, which has 43,151 vertices. The results show the same
trends observed in the 8x8 grid results reported above: in-
creasing k results in slightly higher plan costs and longer
runtime. Since this map is very large, the optimal k-robust
plan often has the same cost as the optimal plan that is not ro-
bust. When averaging over 50 random instances, the average
plan cost was 3,818.35, 3,818.43, and 3,818.53 for k = 0, 1,
and 2, respectively. The increase in runtime when increas-
ing k was also more modest compared to the 8x8 results:
213, 284, and 381 seconds, for k = 0, 1, and 2, respectively.
This lower impact of k on plan cost and runtime is because
the map’s large size provides more room to find alternative
plans that are more robust.

Increasing k Larger values for k increase the ranges that
are checked and has the potential to increase the number of
conflicts that should be checked. Nevertheless, the effect of
increasing k is moderate and problems with large values of
k can be solved in relatively reasonable time. Table 2 shows
the number of instances out of 50 that could be solved within
5 minutes when trying to solve problems on 16x16 open
grid with IkR-CBS with the symmetric constraints for dif-

#agents 5 10 15
k=0 50 50 49
k=1 50 50 45
k=2 50 46 35
k=3 50 43 19
k=4 47 34 13
k=5 47 29 8
k=6 45 21 3
k=7 41 15 1

Table 2: Number of instances solved within the allocated
time out. The grids used are 16x16 grids

ferent values of k (rows) and different number of agents n
(columns). As can be seen, increasing k and increasing n
both have an effect on the success rate. However, unless both
were large, the majority of the problem instances could be
solved.

5 A Declarative Solution
An alternative approach to solve MAPF problems is to com-
pile them into other known NP-hard problems that have ma-
ture and effective general purpose solvers (Surynek 2012;
Yu and LaValle 2013a; Erdem et al. 2013; Surynek et al.
2016).

Generally speaking, these approaches express a set of
constraints that define the MAPF problem in some declar-
ative language and then call a general purpose solver, e.g.,
a SAT solver or a Mixed Integer Linear Program (MILP)
solver, to obtain the solution. Adapting such solvers to the
k-robust variant is relatively simple, requiring a simple mod-
ification to the constraints. To demonstrate this, we imple-
mented a MAPF solver using Picat (Zhou, Kjellerstrand,
and Fruhman 2015), a logic-based programming language
that has three constraint modules. The encoding we used is
based on Surynek’s SAT-based MAPF solver (Surynek et al.
2016), in which there is a Boolean variable for every triplet
(a, t, v) of agent (a), time (t), and location (v), where this
variable is true iff agent a occupies location v at time t. A
set of constraints is imposed on these variables, namely:

1. Each agent occupies exactly one vertex at each time step.

2. No two agents occupy the same vertex at any time.

3. In every time step an agent may only transition between
two adjacent locations.
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For producing k-robust solutions, the second constraint is
extended such that no two agents occupy the same ver-
tex in time steps that are closer than k from each other.
The exact Picat model we developed is available at https:
//tinyurl.com/kRobust. The advantage of using Picat to en-
code MAPF is that the model can be compiled to SAT, to a
constraint program (CP), or to MILP. In our experiments we
only run a SAT compilation.

5.1 Experimental Results
Next, we experimentally evaluated our Picat-based solver,
and compared it with IkR-CBS with symmetric range con-
straints, which is the CBS-based solver that performed best
in our experiments.

Table 3 shows the average plan cost and planning runtime
for 50 problem instances on a 8x8 grid with 6 agents and k =
0, 1, and 2. We experimented here with problem instances
with a different number of randomly allocated obstacles (the
“Obs.” column). As expected, increasing k results in plans
of higher cost and higher runtime. For both algorithms, the
impact of varying the number of obstacles on the planning
time follows a classical easy-hard-easy pattern: with either
a few or many obstacles is easy, and it becomes harder for
the middle-ground, where the problem is not under- or over-
constrained.

Now we compare the results of kR-CBS and the Picat-
based solvers. Since both Picat and kR-CBS solvers solve
kR-MAPF optimally, their solution cost is the same, and
the comparison between them is in the runtime of finding
an optimal solution.2 For this small grid, the Picat-based
solver shows better performance in most settings. Indeed,
compilation-based approaches are known to perform well
for small and relatively dense grids (Surynek et al. 2016).

Next, we compared the Picat-based and CBS-based
solvers on a larger, 32x32 grids, with 20% obstacles at
random locations, with 10, 15, 20, 25 and 30 agents, and
k = 0, 1, and 2. These problems were harder to solve and
thus we set a 5 minutes timeout for every problem instance.
Table 4 shows the number of instances solved under this
timeout, out of a total of 50 problem instances. Here, the
results of both solvers are very similar, and there is no clear
advantage to either.

Finally, we experimented with the brc202d DAO map
described earlier, which is much larger than the 32x32 grid
used in Table 4. Here, the Picat-based solver was not able
to solve any problem instance, even with only 5 agents. By
contrast, the CBS-based solver was able to find even opti-
mal 2-robust solutions for some instances with 95 agents.
Figure 3 shows the number of problems solved within the 5
minutes timeout from a total of 50 problem instances, with
k = 0, 1, and 2 and 5, 10, 15, .. ,100 agents.

In conclusion, there is no universal winner: for small grids
the Picat-based solver is best, while for very large grids the

2For k = 0, the problem formulation used by kR-CBS and
the Picat-based solver differs slightly, as our Picat mode do not
consider edge conflict. Thus, the runtime results for k = 0 are not
directly comparable. As discussed earlier, for k > 0 edge conflicts
are not allowed anyhow, and the results can be compared safely.
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Figure 3: Success rate for kR-CBS over the brc202d DAO
map.

CBS-based solver is much better. This trend was also ob-
served in prior works in regular MAPF (Surynek et al. 2016;
Zhou et al. 2017).

6 Robust Planning and Execution
An important motivation for creating robust plans is to avoid
the need to replan during execution when experiencing un-
expected delays. Recent work by Ma et al. 2017 proposed
an execution policy called MCP that is designed to mini-
mize the number of times agents need to communicate and
re-plan during execution to avoid conflicts from occurring.

As an application of robust MAPF, we implemented MCP
so that the initial plan it is given is k-robust, and evaluated
experimentally whether or not this results in fewer replans
needed during execution. The results of these experiments
are given in Figure 4. The x-axis shows the number of agents
and the y-axis shows the average number of re-plans needed.
The different curves represent different values of k. The re-
sults clearly show the benefit of using a k-robust plan: in-
creasing k indeed reduces the number of modifications dra-
matically. For example, when k = 2 the average number of
modifications is less than 0.5 even for 12 agents, while it is
almost 3.5 when using an optimal plan (which is not robust,
i.e., k = 0).

7 Probabilistic Robust MAPF
In some cases, it is possible to estimate the probability that
agents will be delayed. This raises a probabilistic form of
robustness, where the aim is to find a low-cost plan that
keeps the probability of collisions below a given threshold p.
Wagner and Choset (2017) studied this form of probabilis-
tic robustness and proposed a corresponding solver based on
M* (Wagner and Choset 2015).

We started to adapt our ideas for finding k robust solu-
tions on this setting, as follows. Instead of defining a k-delay
conflict that either exists or not, we define a potential con-
flict, which occurs if two agents have a k delay conflict for
any k. That is, a pair of agents do not have a potential con-
flict only if their paths are vertex and edge disjoint. Using
the given delay probabilities, we compute for each potential
conflict the probability that it will occur. Next, we used a
CBS-based approach, starting with an initial plan created by
having each agent plan separately. Then, potential conflicts
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Obstacles Cost Planning time (ms)
0 1 2 0 1 2

CBS Picat CBS Picat CBS Picat
12 33.06 35.16 36.30 22 447 1,511 1,026 454 1,805
16 36.78 39.24 40.68 3,413 431 4,142 1,401 6,572 2,590
19 36.38 39.67 42.47 631 434 3,362 1,506 8,727 3,235
22 30.66 34.20 36.91 594 341 6,979 1,439 14,042 3,104
25 24.42 28.26 29.52 1,691 292 9,834 1,206 12,957 1,813
32 14.46 16.28 18.73 5,632 94 95 322 1,488 810

Table 3: Solution cost and runtime results for 8x8 grids with 6 agents, and a different number of obstacles.

#agents 10 15 20 25 30 35 40 45 50

k=0 Picat 50 50 49 48 44 29 15 1 2
CBS 50 49 49 45 42 26 22 9 0

k=1 Picat 50 50 47 35 15 2 0 0 0
CBS 50 49 42 27 22 7 1 0 0

k=2 Picat 50 49 38 9 0 0 0 0 0
CBS 50 45 31 6 4 0 0 0 0

Table 4: Number of instances solved within the allocated
time out. The grids used are 32x32 grids with 20% obsta-
cles.
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Figure 4: figure
Number of replans when using a k-robust plan

are identified and the most-likely conflict is chosen. To re-
solve this potential conflict, we split it to two CT nodes by
setting a symmetric constraint of size k to each of the con-
flicting agents. To determine the correct k to use, we con-
sider the difference between the planned arrival time of the
two agents to the potential conflict’s location. This process
is repeated until a solution with the desired probabilistic ro-
bustness has been found. While our initial results for this
approach are promising, a detailed exploration of this form
of robustness is beyond the scope of this paper.

8 Related Work
As part of their work on execution policies for MAPF with
delays, Ma, Kumar, and Koenig (2017) also proposed a
CBS-based algorithm that aims to minimize the expected

makespan. Unlike our work, they assumed prior knowledge
of delay probabilities and do not provide any guarantee on
the returned plan.
kR-MAPF can be viewed as a special case of conformant

planning (Cimatti and Roveri 2000; Brafman and Hoffmann
2006), where the task is to find a plan that will be success-
ful regardless of imperfect information about the initial state
and action outcomes and without sensing capabilities. kR-
MAPF is different from Nguyen et al.’s (2017) robust plan-
ning, which is for planning and not MAPF, and address a
setting in which an incomplete model of the domain is avail-
able and the task is to find a plan that is likely to succeed.

Many improvements to CBS have been introduced
throughout the years (Boyarski et al. 2015; Cohen et al.
2016).

Most can be applied on top of our k-robust CBS without
further adjustments. An exception is the Meta-agent CBS
(MA-CBS) (Sharon et al. 2015) algorithm, where agents
with many mutual conflicts are merged into a meta-agent
that is then treated as a joint composite agent by the low-
level solver. A k-robust version of MA-CBS requires a low-
level solver that is also k-robust for meta-agents consisting
two or more agents. This is a topic for future work.

9 Conclusions and Future Work
In this paper, we explored a form of robustness for MAPF
called k-robust, where a k-robust plan is a plan in which
each agent can experience up to k delays while still preserv-
ing the ability to follow the generated plan. Several ways to
obtain k-robust plan were proposed, including solvers based
on A∗, CBS, and constraint programming. Our experimental
results show that finding a k-robust plan is possible, results
in fewer re-plans during execution, and requires only a min-
imal increase in plan cost. There are many possible lines of
future work, including adapting other MAPF solvers such as
the ICTS algorithm ((Sharon et al. 2013)) to find k-robust
plans, and a deeper integration of robust MAPF plans with
execution policies.
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