
Extended Abstract: The Heuristic
Search Research Framework

Meir Goldenberg
The Jerusalem College of Technology

Israel
mgoldenbe@gmail.com

Abstract

This paper is an extended abstract of the recently published
journal article (Goldenberg 2017b).
The Heuristic Search Research Framework is a software
framework for implementing heuristic search algorithms and
exploring their properties. The framework uses policy-based
design to enable efficient, flexible and well-organized imple-
mentations. In addition, the framework provides effective
tools for exploring the properties of the implemented algo-
rithms. The extensive online documentation includes a video
demo.

Introduction
Studying heuristic search algorithms involves serious chal-
lenges at all stages: implementation, exploration and eval-
uation of performance relative to competitors for a large
number of problem instances and parameter settings. The
Heuristic Search Research Framework aims to aid the re-
searcher in surmounting these challenges. The framework
is written in C++11 and uses policy-based design (Alexan-
drescu 2001). This paper is an extended abstract of the
journal paper that introduced the framework (Goldenberg
2017b). The video tutorial and the extensive online doc-
umentation (Goldenberg 2017a; 2017c) enhance the origi-
nal paper, which references the online documentation exten-
sively.

The challenges
A researcher implementing heuristic search algorithms has
to face the fact that an algorithm like A* (Hart, Nilsson, and
Raphael 1968) may have hundreds of variants. Naive ap-
proaches to implementing these variants result in compli-
cated code with many deeply nested conditional statements.
This code will inevitably prove to be buggy and inefficient.
Furthermore, the code blocks pertaining to various variants
mingle together and are extremely difficult to locate and
maintain despite all attempts at organizing them. All these
qualities become much more pronounced with each new im-
plemented variant, soon making adding a new variant too
cumbersome.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Once an algorithm is implemented, the researcher can per-
form measurements, but is utterly limited in his ability to
acquire insights into the algorithm’s properties by means of
direct observation of algorithm’s behavior.

The framework

The framework addresses the challenge of the multiplic-
ity of variants by promoting policy-based design (Alexan-
drescu 2001). Using this technique lets the researcher rep-
resent facets specific to a given algorithmic variant as poli-
cies, which can be implemented separately from the algo-
rithm and each other. Compile-time techniques enable run-
time performance comparable or even exceeding that of a
hand-crafted implementation. This has been demonstrated
by comparing the performance of a generic implementation
of IDA* (Korf 1985) with that of the famous implementation
of Korf for solving instances of the sliding-tile puzzle. As far
as performance characteristics are concerned, this work may
be seen as an extension of the work by Burns et al. (2012). In
addition, each algorithmic variant is uniquely identified by
the policies that comprise it. This may give rise to a unique
way of systematizing the algorithms.

The framework provides tools for direct observation
of algorithm’s behavior, thereby enabling insights that
can inspire theoretical derivations and complement the re-
searcher’s intuition and the collected statistics about solving
sets of problem instances. In particular, the researcher can
visualize an algorithm in action by defining visualizable al-
gorithmic events and domain layouts. The latter ability is not
limited to grid-based domains and is complemented by the
automated layout feature. Needless to say, one can use the
resulting visualizations as effective examples for conference
and classroom presentations.

We refer the reader to the original paper and the online
documentation (Goldenberg 2017b; 2017c) for the detailed
description of the framework, examples of its use and a brief
comparison with the related projects cited1 in the following
references section.

1Whenever the year of publication was not available, the year
of the last commit was used instead.

The Eleventh International Symposium on Combinatorial Search 
(SoCS 2018)

186



References
Alexandrescu, A. 2001. Modern C++ Design: Generic Pro-
gramming and Design Patterns Applied. Addison-Wesley
Professional.
Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W.
2012. Implementing fast heuristic search code. In Pro-
ceedings of the Fifth Annual Symposium on Combinatorial
Search, SOCS 2012, Niagara Falls, Ontario, Canada, July
19-21, 2012.
Ethan Burns. 2016. Research Code for Heuristic Search.
https://github.com/eaburns/search.
Goldenberg, M. 2017a. A video demo of the
Heuristic Search Research Framework. https://youtu.be/
cElxLWve1Zw.
Goldenberg, M. 2017b. The heuristic search research frame-
work. Knowl.-Based Syst. 129:1–3.
Goldenberg, M. 2017c. The online documentation of the
Heuristic Search Research Framework. jct.ac.il/∼mgoldenb.
Hart, P.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4:100–107.
Jeremy Siek; Lie-Quan Lee; and Andrew Lumsdaine. 2001.
The Boost Graph Library. https://www.boost.org/doc/libs/
1 67 0/libs/graph/doc/index.html.
Jordan Thayer. 2016. OCaml Search Code. https://github.
com/jordanthayer/ocaml-search.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artif. Intell. 27(1):97–109.
Malte Helmert. 2016. Fast Downward. http://www.fast-
downward.org/.
Matthew Hatem. 2015. Combinatorial Search for Java.
https://github.com/matthatem/cs4j.
Nathan Sturtevant. 2015. HOG2. https://github.com/
nathansttt/hog2.
Robert Holte. 2014. PSVN. https://era.library.ualberta.ca/
downloads/7m01bn08g.

187




