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Abstract

In the age of smartphones, finding the nearest points of inter-
est (POIs) is a highly relevant problem. A popular way to
solve this is to use a k Nearest Neighbor (kNN) query to
retrieve POIs by their road network distances from a query
location. However, we find that existing kNN methods have
not been carefully compared. We present a detailed and fair
experimental study of the state-of-the-art, documenting the
many insights gleaned along the way. Notably, a long over-
looked Euclidean distance heuristic is often the best perform-
ing method by a wide margin. We have also released all code
as open-source for readers to reproduce experiments and eas-
ily add methods or queries to the testbed for new studies.1

1 Problem Definition
Let us consider a road network as an undirected graph G =
(V,E), with V being the set of vertices and E the edges be-
tween them. Each edge in E possesses a weight (e.g., travel
distance) and the network distance between any two vertices
is the minimum sum of weights connecting the vertices.

Now given a query vertex q and a set of object vertices
O, a k Nearest Neighbor (kNN) query retrieves the k closest
objects by network distance from q. For example, if O is
the set of restaurants, a query might retrieve the 10 closest
restaurants to the issuer’s location by network distance.

2 Motivation
Finding kNNs is a challenging problem in graphs. For ex-
ample, it is not practical to simply compute shortest paths
to all objects in O to find the closest. However, kNN queries
afford greater accuracy and flexibility, e.g., edge weights can
be any metric like travel time. As a result the kNN problem
is extremely popular and has been extensively studied.

But we observe several irregularities in existing work, in-
cluding discrepancies in the relative performance of tech-
niques and several overlooked comparisons. Chief among
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them is a neglected competitor using a simple Euclidean dis-
tance heuristic that was always hampered by an uneven play-
ing field. Motivated by these anomalies, we present a careful
and in-depth experimental study to settle these issues.

3 The Euclidean Distance Heuristic
Incremental Euclidean Restriction (IER) (Papadias et al.
2003) was an early kNN technique using a simple Euclidean
distance lower-bounding heuristic reminiscent of the A*
shortest path algorithm. Given a query vertex q, IER first
retrieves the k closest objects to q by Euclidean distance as
a candidate set R. Now the network distance to each can-
didate is computed using another technique (e.g., Dijkstra).
These may not be the kNNs but the k-th furthest candidate
gives an upper-bound Dk on the real k-th nearest neighbor.

IER improves R by iteratively retrieving the next nearest
object c by Euclidean distance de(q, c) from q. Euclidean
distance is a lower-bound on the network distance when
edge weights are physical distance. Thus if de(q, c) ≥ Dk,
R can no longer be improved and IER terminates. Other-
wise, IER computes the network distance to c, updating R
and Dk if necessary. IER was consistently reported to have
inferior experimental performance (Papadias et al. 2003;
Samet, Sankaranarayanan, and Alborzi 2008; Lee et al.
2012) and has since been dropped (Zhong et al. 2015).

4 Revamping An Overlooked Heuristic
Curiously, Dijkstra’s algorithm has always been used by IER
to compute network distance. This is necessarily no faster
than simply using Dijkstra’s algorithm to incrementally set-
tle vertices until k object vertices are found. In fact, it comes
with the extra overhead of retrieving Euclidean candidates,
making it slower! Considering the plethora of shortest path
methods developed since Dijkstra, the true utility of the Eu-
clidean heuristic has never been properly investigated.

We compare IER with several modern network distance
methods (Wu et al. 2012) in Figure 1(a). Each technique
comes with different trade-offs, e.g., Pruned Highway La-
beling (PHL) (Akiba et al. 2014) provides the fastest query
times at the expense of index size. The largest relative cost
in IER is the network distance computation, and unsurpris-
ing IER-PHL is the clear winner given its faster queries.
Nonetheless, even the slowest variant is orders of magnitude
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(a) IER Variants on Travel Dist.
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(b) Matrix Cost on Travel Dist.
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(c) Query Time on Travel Dist.
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(d) Query Time on Travel Time

Figure 1: kNN on real road networks for uniformly random query and object locations with density d=0.001× |V | and k=10
(a) IER variants on NW-US (b) heuristic efficiency via G-tree matrix cost (c) travel distance queries (d) travel time queries

faster than Dijkstra, confirming our belief that IER’s past ex-
perimental performance did not truly reflect its potential.

5 Experimental Results
We implemented state-of-the-art kNN techniques ourselves
in C++ and made it available as open source1. To ensure
each technique was as efficient as possible we (a) imple-
mented carefully by benchmarking choices (b) made algo-
rithmic improvements and (c) compared with author’s code
when provided. We test kNN queries on real road networks2

for both synthetic and real POIs. Further details can be found
in the full paper (Abeywickrama, Cheema, and Taniar 2016).

One of the major goals of our experimental investigation
is to compare how a revitalized IER compares to the state-of-
the-art. We use IER-PHL as it delivers the best performance
at a higher memory cost. We also test IER utilizing the G-
tree road network index (Zhong et al. 2015) (denoted as IER-
GT). G-tree is also capable of answering kNN queries, using
a different search heuristic based on subgraph border dis-
tances (Zhong et al. 2015), thus making IER-GT and G-tree
an “apples-to-apples” comparison of different heuristics.

Figure 1(b) shows the matrix cost of kNN queries using
the G-tree index for travel distance. Matrix cost represents a
machine independent metric for how often the distance ma-
trices of the G-tree index are utilized. The lower cost for
IER-GT suggests that IER is using the G-tree index more ef-
ficiently than G-tree’s own kNN algorithm. In other words,
IER’s simple Euclidean heuristic outperforms the complex
heuristic used by G-tree’s algorithm on travel distance.

We compare IER’s query time performance against sev-
eral state-of-the-art techniques such as INE (Papadias et al.
2003), Distance Browsing (Samet, Sankaranarayanan, and
Alborzi 2008), ROAD (Lee et al. 2012) and G-tree (Zhong
et al. 2015). Figure 1(c) verifies IER-GT’s superior heuris-
tic performance does translate to faster queries over G-tree
with varying road network size for travel distance. This is
despite IER-GT having the additional overhead of retriev-
ing Euclidean NNs using an R-tree. However, IER-GT’s per-
formance degrades in Figure 1(d) as Euclidean distance can
only provide a loose lower-bound for travel times. IER-PHL
on the other hand consistently outperforms all techniques on
both travel distance and travel time, by a significant margin.

2http://www.dis.uniroma1.it/%7Echallenge9/

6 Analysis & Conclusions
Two factors influence the surprising performance of IER.
First, the heuristic is more accurate than expected, especially
for travel distance. If a simple heuristic like Euclidean dis-
tance can outperform state-of-the-art heuristics, as in Figure
1(b), then further thought is required to design more effec-
tive search heuristics. Second, IER benefits from decoupling
the search heuristic from the underlying road network in-
dex. This makes it orthogonal to research on shortest path
computation, allowing IER to easily leverage new develop-
ments. This is exemplified by IER-PHL’s query results on
travel times, where the loss in heuristic performance is more
than made up for by the efficiency of the network distance
computation. Developing such decoupled heuristics may be
a more promising direction for kNN search, e.g., by us-
ing tighter lower-bounds for travel time (Abeywickrama and
Cheema 2017). We refer the reader to the full paper for fur-
ther details and other experimental insights.
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