
Fast and Almost Optimal Any-Angle Pathfinding Using the 2k Neighborhoods

Nicolás Hormazábal, Antonio Dı́az,
Carlos Hernández

Departamento de Ciencias de la Ingenierı́a
Universidad Andrés Bello

Santiago, Chile

Jorge A. Baier
Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Abstract

Any-angle path finding on grids is an important problem with
applications in autonomous robot navigation. In this pa-
per, we show that a well-known pre-processing technique,
namely subgoal graphs, originally proposed for (non any-
angle) 8-connected grids, can be straightforwardly adapted
to the 2k neighborhoods, a family of neighborhoods that al-
low an increasing number of movements (and angles) as k is
increased. This observation yields a pathfinder that computes
2k-optimal paths very quickly. Compared to ANYA, an opti-
mal true any-angle planner, over a variety of benchmarks, our
planner is one order of magnitude faster while being less than
0.0005% suboptimal. Important to our planner’s performance
was the development of an iterative 2k heuristic, linear in k,
which is also a contribution of this paper.

Introduction

Optimal any-angle grid pathfinding is the problem of find-
ing a shortest path between two points on a grid, allowing
any straight movement between two grid points that does
not intersect an obstacle. It is an important problem with ap-
plications in autonomous robot navigation over 2D terrain.

Although planners specifically designed to generate any-
angle paths do exist—two examples are Theta* (Daniel et
al. 2010) and ANYA (Harabor et al. 2016)—, the ques-
tion of whether or not similar or better performance can
be achieved using standard grid pathfinding with bounded
connectivity seems still open. This is particularly intrigu-
ing given the recent development of the 2k neighborhood
(Rivera, Hernández, and Baier 2017), a family of neighbor-
hoods in which 2k movements are allowed in each cell. As
k is increased, more movements and thus more angles are
available in each cell.

The motivation for the work we report in this paper was to
investigate the result of applying 2k neighborhoods to one of
the fastest, optimal approaches to pathfinding in 8-connected
grids: subgoal graphs (Uras, Koenig, and Hernández 2013).
We chose this technique because of its key role in plan-
ners that have obtained remarkable performance in the Grid-
Based Path Planning Competition (GPPC) (Sturtevant et al.
2015). Subgoal graphs is a preprocessing technique; that is,
it is only applicable when the map is known in advance.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we show that it is straightforward to
adapt subgoal graph preprocessing to the 2k-neighborhoods.
While Uras, Koenig, and Hernández (2013) rely strongly
on the octile distance to compute their graph, our adapta-
tion relies on the h2k heuristic of Rivera, Hernández, and
Baier (2017). To improve performance of the resulting sys-
tem, we develop a novel iterative algorithm for computing
h2k , which is simple to implement and linear in k, unlike
heuristics previously described.

We compared our implementation to subgoal-graph-based
planners and to ANYA, an optimal any-angle pathfinder. We
show our system computes nearly any-angle optimal paths
(indeed, 0.0003%-suboptimal). Our planner outperforms
Sub2(Theta*) (Uras and Koenig 2015a), the current best ex-
isting system for suboptimal any-angle planning based on
the subgoal graph preprocessing. Moreover, it is over one
order of magnitude faster than ANYA.

Background

Grid Pathfinding

An N ×M grid is the set of ordered pairs G = {(i, j) | 0 ≤
i ≤ N, 0 ≤ j ≤ M}. Traditionally, in grid pathfinding an
agent is assumed to be located at the center of the cells of the
grid. Here we follow Uras and Koenig (2015b) and assume
the agent moves between the vertices of cells.

At each cell (a, b) the agent is allowed a number of moves,
which are taken from neighborhood, N . Moves are ordered
pairs of integers. Below we treat ordered pairs as vectors and
use boldface to denote them. We say (a, b) is clockwise-left
of (c, d), denoted (a, b) � (c, d), iff ad ≤ cb. We define
‖(x, y)‖ as

√
x2 + y2.

A N × M map is a tuple (G,O) where G is an N × M
grid and O ⊆ G is a set of obstacle cells. Intuitively, when
o is an obstacle, the cell whose lower-left corner is o is not
traversable. A move m ∈ N is legal in cell c iff (1) c+m ∈
G, and (2) when the segment between c and c + m does
not penetrate any of the obstacle cells. Intuitively, a move
penetrates an obstacle o ∈ O when it penetrates the square
cell associated with o. Formally, a movement m on cell c
penetrates an obstacle cell o iff there exist λ ∈ [0, 1] and
μ, ν ∈ (0, 1) such that the following equation holds:

c+ λm = o+ μ(1, 0) + ν(0, 1).

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

139

k = 2 k = 3 k = 4 k = 5 k = 6

Figure 1: The 4-, 8-, 16-, 32-, and 64- neighborhoods.

The set of successors of a cell u is defined as SuccN (u) =
{m+u | m ∈ N and m is legal in u}. A path over N from
u to v is a sequence of cells c1c2 · · · cn such that c1 = u,
cn = v, and for every i ∈ {1, . . . , n − 1} it holds that
ci+1 ∈ SuccN (ci). The cost of a path σ = c1 · · · cn is
c(σ) =

∑n−1
i=1 ‖ci+1 − ci‖. A path over N σ from u to v is

optimal if for every path σ′ over N from u to v it holds that
c(σ) ≤ c(σ′). A path σ traverses a cell c iff c is in σ.

A grid pathfinding problem is a tuple P =
(G,O,N ,ustart ,ugoal), where (G,O) is a map, N
is a neighborhood, ustart ∈ G is the initial cell, and
ugoal ∈ G is the goal cell. A solution (resp. optimal
solution) for P is a path (resp. optimal path) over N from
ustart to ugoal containing only moves in N .

The 8-connected (octile) neighborhood has been used tra-
ditionally to evaluate grid pathfinding algorithms. It is de-
fined as N8 = {(i, j) | i, j ∈ {−1, 0, 1}, |i| + |j| > 0}.
The octile distance, given two pairs of cells u and v, returns
the cost of an optimal path over N8 assuming the set of ob-
stacles is empty. We denote the octile between u and v as
h8(u,v).

2k Neighborhoods Rivera, Hernández, and Baier (2017),
generalize the octile neighborhood to 2k-connected neigh-
borhoods, for any natural k ≥ 2. The 2k-neighborhood,
which we denote by N2k , is in turn defined using a series
Q0,Q1, . . ., where Qm, for any natural m, contains the first-
quadrant moves of the N2m+2 neighborhood. Assuming that
given a sequence, σ = a0 · a1 · · · an, σj denotes the ele-
ment aj , sequence {Q}i is inductively defined as follows:
Q0 = (1, 0) · (0, 1) and the j-th element in Qm, for every
m > 0, is given by:

Qj
m =

{
Qj/2

m−1, if j is even,
Q�j/2�m−1 +Q�j/2�m−1 otherwise,

(1)

where j is an integer in {0, . . . , 2m + 1}. Finally, N2k =
{(±x,±y) | (x, y) ∈ Qk−2}. Figure 1 depicts N2k as k
increases.
The Any-Angle Neighborhood Any-Angle grid pathfind-
ing is obtained when using a neighborhood that allows
reaching any point in the grid. Formally, the any-
angle neighborhood for a grid G is defined as NG

any =
{(±x,±y) | (x, y) ∈ G)}.

Subgoal Graphs

Given a problem P = (G,O,N ,ustart ,ugoal), one can use
an admissible heuristic along with A* to find optimal solu-
tions. Nevertheless, if the map and neighborhood are known
in advance, there are preprocessing techniques that can be
applied to speed up search. A well-known preprocessing
technique for 8-connected maps is subgoal graphs (Uras,
Koenig, and Hernández 2012).

Building upon the fact that optimal solutions always
“touch the corners of obstacles”, a subgoal graph, where
the nodes of the graph are subgoals, is built in the following
way. Given an obstacle o = (i, j), we define the corners
of o as the set {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)}.
Now, given a map (G,O), s ∈ G is a subgoal iff (1) s is
the corner of an obstacle o ∈ O and (2) both d and −d are
legal moves in s, for some d ∈ {(1, 1), (−1, 1)}. To de-
fine the connectivity of the subgoal graph Uras, Koenig, and
Hernández (2012) introduce the following definitions.

Definition 1 (h8-reachability) Given a map (G,O), two
subgoals s1 and s2 are h8-reachable iff h8(s1, s2) is the cost
of an optimal path over N8 between s1 and s2.

We note that Uras, Koenig, and Hernández use the term “h-
reachable” since they only deal with one neighborhood (the
octile neighborhood). In this paper we slightly change the
terminology for accuracy.

Definition 2 (direct h8-reachability) Given a map (G,O)
and a set S of subgoals, two h8-reachable subgoals s1 and
s2 (s1, s2 ∈ S) are directly h8-reachable if no subgoal s3 ∈
S is traversed by any optimal path over N8 from s1 to s2.

For a map M = (G,O) a subgoal graph S = (S,E) is such
that S is the set of subgoals over M and E = {(s1, s2) |
s1 and s2 are directly h8-reachable}. The cost of each arc is
w(s1, s2) = h8(s1, s2).

A 2-level subgoal graph is built from a subgoal graph
(S,E,w) as follows. We identify a maximal subset S2 of
subgoals in S such that the cost of the optimal path between
any pair s1, s2 of subgoals in S \ S2 over the graph whose
only nodes are S \S2 is equal to the cost of the optimal path
from s1 to s2 over graph (S,E). The 2-level subgoal graph
is defined as the graph induced in (S,E) by S \ S2.

To find an optimal path over N8 from u to v over a map
(G,O) we (1) compute the 2-level subgoal graph S (2) com-
pute the subgoals that are directly h8-reachable from u and
from v (3) build a new graph Su,v containing the nodes and
arcs in S adding the arcs computed previously, with the ap-
propriate costs, and (4) run A* from u to v in Su,v. The
correctness of this is justified by the following result.

Theorem 1 Let P = (G,O,N ,ustart ,ugoal) and S the 2-
level graph extended with ustart and ugoal . There exists a
linear function that takes as input a shortest path over S and
returns an optimal solution for P .

140

An Iterative 2k Heuristic

Rivera, Hernández, and Baier (2017) describe a simple two-
step method for obtaining an admissible heuristic for the
N2k neighborhood. Specifically, to compute the distance
between (0, 0) and a first-quadrant position (x, y), in the
first step one has to find the two consecutive movements in
Qk−2, say u and v, such that u � (x, y) � v. For this
first step, they note that finding such u and v can be car-
ried out using a linear search over the movements in Qk−2,
which is exponential in k. Alternatively, they mention that a
binary search scheme, which is not described in detail, can
also be used. As a second step, they solve the system of two
equations for variables p and q yielded by:

pu+ qv = (x, y). (2)

The output distance between (0, 0) and (x, y) is p‖u‖ +
q‖v‖. In their experimental evaluation, they use functions
that do not use binary search. Indeed, for k = 5, they present
the function shown in Algorithm 1, which essentially carries
out a linear search over the movements in Q3.

Algorithm 1: A distance for the 32-connected neighbor-
hood.

1 function h32(x, y)
2 if x > y then swap x and y

3 if 3x < y then return (y − 3x) +
√
10x

4 else if 2x < y then return
√
10(y − 2x) +

√
5(3x− y)

5 else if 3x < 2y then return
√
5(2y − 3x) +

√
13(2x− y)

6 else return
√
13(y − x) +

√
2(3x− 2y)

There are disadvantages associated with using functions
such as that of Algorithm 1. Given that the heuristic func-
tion is computed many times during an A* search, we need
efficient implementations. But a linear-search scheme like
that of Algorithm 1 does not scale with k. Second, an ob-
vious way of transforming Algorithm 1 into a binary-search
scheme would be to re-order the if statements such that the
depth of the checks is lower (logarithmic in 2k). But such a
re-ordering would result in a piece of code whose size is still
exponential in k. Indeed, the size of such a function would
be similar to that of Algorithm 1. Third, we observe that
for every k we obtain a different heuristic function, which of
course requires a different implementation.

We propose an algorithm that addresses all three of the
disadvantages we discussed above. The key observation is
that to compute the heuristic it is not necessary to carry out a
two-step approach. Our function receives k as a parameter,
has constant size, and does not need to generate Qk−2 in
memory. At an abstract level, it can be viewed as carrying
out the binary search and solving the systems of equations
at the same time. The pseudocode is shown in Algorithm 2.

Each loop of the algorithm can be understood as playing
a “factorization round”. Each factorization round uses two
consecutive moves of a 2k neighborhood. To illustrate this,
imagine we want to compute the 2k distance to (10, 8) from
(0, 0). Initially, we start with the 4-connected neighborhood,
and because (10, 8) = 10(1, 0) + 8(0, 1), 10 is the factor
associated with the move l = (1, 0) while 8 is the factor

Algorithm 2: A general distance function for N2k

1 function distance(x, y, k)
2 l ← (1, 0)
3 r ← (0, 1)
4 while k > 2 do
5 if x > y then
6 r ← r+ l
7 x ← x− y

8 else
9 l ← r+ l

10 y ← y − x

11 k ← k − 1

12 return x‖r‖+ y‖l‖

associated with r = (0, 1). For the first factorization round
(i.e., the first iteration of the main loop) we want to express
(10, 8) in terms of the l+r = (1, 1), because we know such a
move appears in the next neighborhood. To do this, we take
the minimum between the two factors (in this case, 8) and
use it as the factor for (1, 1). To get the factorization right,
we observe that we still need to use move (1, 0), and that its
factor is 10−8 = 2. Thus at the end of the first factorization
round, we have expressed (10, 8) as 2(1, 0)+ 8(1, 1). In the
next round the move to introduce is (1, 0) + (1, 1) = (2, 1),
its factor is min{2, 8} = 2, and we still need to use move
(1, 1) with factor 8−2 = 6; thus, we have expressed (10, 8)
as 2(2, 1) + 6(1, 1). As we continue iterating, we find new
factorization of moves of N2k , for increasing k.

Theorem 2 Function distance(a, b, k) returns the cost of an
optimal sequence of moves on the N2k neighborhood that
reaches (a, b) from (0, 0).

Proof: Observe that with each iteration, we introduce a
movement of the next neighborhood, thus at end of the n-
th iteration l and r are always consecutive movements of
Qn; this follows from the definition of {Q}j . Second, ob-
serve that (a, b) = xl + yr is an invariant of the loop. Fi-
nally, observe l � (a, b) � r follows from the expression of
factorization and the the fact that x and y are non-negative.
Using the optimality theorem of Rivera, Hernández, and
Baier (2017), we conclude the returned value is the distance
between (0, 0) and (a, b) on N2k . �
We denote cost of an optimal path between two cells u and
v over an obstacle-free grid with the N2k as h2k(u,v).

Iterative h2k in Practice We evaluated the performance
of iterative h2k versus the original h2k , for k = 5, 6, 7. We
found that our iterative version requires between 65% and
75% of the time required by original h2k .

Subgoal Graphs with the 2k Neighborhood

It is straightforward to extend the notion of subgoal graph
for N2k . First we do not need to change the defintion for
subgoal. Second, we define h2k - and direct h2k - reachabil-
ity by replacing h8 and N8, respectively, by h2k and N2k , on
Definitions 1 and 2. To define 2-level 2k subgoal graphs, we

141

0.0005%
0.0010%

0.0100%

0.1000%

1.0000%

Su
b2

-Th
*

Su
b2

-A
*(3

)

Su
b2

-A
*(4

)

Su
b2

-A
*(5

)

Su
b2

-A
*(6

)

Su
b2

-A
*(7

)

Su
b2

-A
*(8

)

Su
b2

-A
*(9

)

S
ub

op
tim

al
ity

 (
lo

g
sc

al
e)

Algorithm

Game Maps

Original path
Smoothed path

0.0003%

0.0010%

0.0100%

0.1000%

Su
b2

-Th
*

Su
b2

-A
*(3

)

Su
b2

-A
*(4

)

Su
b2

-A
*(5

)

Su
b2

-A
*(6

)

Su
b2

-A
*(7

)

Su
b2

-A
*(8

)

Su
b2

-A
*(9

)

S
ub

op
tim

al
ity

 (
lo

g
sc

al
e)

Algorithm

Room Maps

Original path
Smoothed path

Figure 2: Suboptimality Percentage Ratio (log-scale on the
Y axis).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

3 4 5 6 7 8 9

R
un

tim
e

R
at

io
 (

S
ub

2-
T

h*
/S

ub
2-

A
*(

k)
)

k value

Game Maps

Original path lSngth
mo eethSd path lSngth

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

3 4 5 6 7 8 9

R
un

tim
e

R
at

io
 (

S
ub

2-
T

h*
/S

ub
2-

A
*(

k)
)

k value

Room Maps

Original path lSngth
mo eethSd path lSngth

Figure 3: Runtime Ratio.

simply use h2k instead of h8 in the method described earlier.
Finally, an analogous version of Theorem 1 is straightfor-
ward to prove for h2k , allowing us to use A* over the sub-
goal graph to compute optimal paths on the original map.

From a computational perspective, we compute 2-level
h2k subgoal graphs using the same algorithms proposed
by Uras, Koenig, and Hernández (2012). In practice, an
h2k subgoal graph may have more connections than an
h8 subgoal graph because pairs of subgoals that used to
be h8-reachable (hence h2k -reachable) but not directly h8-
reachable now indeed could also be directly h2k -reachable,
since N2k allows more paths between cells.

Empirical Evaluation

We implemented our algorithm, Sub2-A*(k), on top of
Uras and Koenig’s Sub2 implementation (2015b). In addi-
tion to building subgoals, our planner implements the post-
processing smoothing method described by Botea, Müller,
and Schaeffer (2004), a simple linear-time algorithm that re-
places consecutive moves by a longer move if the two end-
points are line-of-sight. We compare to ANYA, an optimal
any-angle planner, and to Sub2-Theta* (Uras and Koenig
2015b). Sub2-Theta* can be regarded as the best existing
any-angle planner that uses the subgoal graph technique for
preprocessing. In their evaluation, this algorithm shows a
good performance and balance between suboptimality and
runtime. Sub2-Theta* builds a subgoal graph and searches
over it using Theta*.

We use three sets of game maps in our comparison,
namely, maps from the game Baldurs Gate II of size 512 ×
512, maps from the game Dragon Age: Origins of Size rang-

0%0.0005%0.0010%
0.0020%

0.0040%

0.0060%

0.0080%

0.0100%

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

S
ub

op
tim

al
ity

Runtime (ms)

Game Maps

ANYA

Sub2-A*(5)

Sub2-A*(6)

Sub2-A*(7)
Sub2-A*(8)
Sub2-A*(9)

Sub2-A*(9)

0%
0.0003%
0.0005%

0.0010%

0.0015%

0.0020%

0.0025%

0.0030%

0.0035%

0.0040%

0.0045%

 0 1 2 3 4 5 6 7 8

S
ub

op
tim

al
ity

Runtime (ms)

Room Maps

ANYA

Sub2-A*(5)

Sub2-A*(6)

Sub2-A*(7)
Sub2-A*(8)
Sub2-A*(9)

Sub2-A*(9)

Figure 4: Sub2-A*(k) vs. ANYA

ing from 22× 28 to 1260× 1104, and maps from the game
StarCraft ranging from 384 × 384 to 1024 × 1024. Ad-
ditionally, we use random maps of size 512 × 512, where
the percentage of blocked cells varies from 10 percent to
40 percent, and room maps of size 512 × 512 where the
size of the room vary from 8 × 8 to 64 × 64. We evaluated
all the instances provided in Nathan Stutervant’s repository
(Sturtevant 2012). The experiments on a 2.20GHz Intel(R)
Xeon(R) CPU machine with 128GB of RAM.

As a measure of solution quality, we use the suboptimality
percentage, defined as 100 times the difference between the
cost of the solution found and the cost of the optimal any-
angle solution divided by the cost of the optimal any-angle
solution. As a measure of efficiency, we use runtime. For
space, we only show plots for the Game and Room Maps,
and omit Random Maps. Those plots, however, look similar
to the other two benchmarks.

Comparing Sub2-Theta* with Sub2-A*(k)

Figure 2 shows the suboptimality percentage obtained by
Sub2-Theta* and that obtained by Sub2-A*(k), for different
values for k. A number n larger than 1 means that Sub2-
A*(k) is n times less suboptimal than Sub2-Theta*. When
k > 5, Sub2-A*(k) can be orders of magnitude less sub-
optimal than Sub2-Theta* when smoothing is applied. Fig-
ure 3 shows the ratio between the runtime obtained by Sub2-
Theta* and the runtime obtained by Sub2-A*(k). Sub2
A*(k) is faster than Sub2-Theta* for all values of k we used.
Note that when the value of k increases the runtime of Sub2-
A*(k) increases too. The main reason is that the branching
factor of the subgoal graphs increases with k. For instance,
in room maps the average branching factor increases from
5.3 (k = 3) to 9.3 (k = 9), and in Baldurs Gate II it in-
creases from 9.3 (k = 3) to 19.8 (k = 9).

Comparing ANYA with Sub2-A*(k)

Figure 4 shows suboptimality percentage versus runtime for
ANYA and Sub2-A*(k) for some values of k. We use blue
circles for smoothed paths and red squares for non-smoothed
paths. We did not include Sub2-Theta* and other (small)
values of k since they were off the chart (substantially worse
than the other algorithms shown). We observe that Sub2-
A*(k) can be orders of magnitude faster than ANYA; on the
other side Sub2-A*(k) can obtain a suboptimality very close
to 0 percent.

142

We compared to other any-angle algorithms that appear in
Uras and Koenig’s paper (2015a) with Sub2-A*(k). Sub2-
A*(k) has superior performance regarding suboptimality
and runtime than all other algorithms. We do not include
the results for lack of space.

Summary

We presented Sub2-A*(k), an almost-any-angle planner that
computes almost optimal any-angle paths for grid pathfind-
ing. Our planner is obtained by applying the recently devel-
oped 2k neighborhoods on top of subgoal graph preprocess-
ing. In addition, we presented a novel general algorithm,
linear in k, for computing the h2k heuristic. This algorithm
is used both during preprocessing and during search.

In our experimental evaluation, we show that our planner
substantially outperforms existing any-angle planners based
on the subgoal graph approach. Moreover, it outperforms
the optimal ANYA planner in terms of runtime by an order
of magnitude, while being only 0.0005% suboptimal.

Acknowledgements

We acknowledge support from Fondecyt via grants number
1150328 and number 1161526.

References

Botea, A.; Müller, M.; and Schaeffer, J. 2004. Using compo-
nent abstraction for automatic generation of macro-actions.
In Zilberstein, S.; Koehler, J.; and Koenig, S., eds., Pro-
ceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS), 181–190. AAAI.
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. Journal of Ar-
tificial Intelligence Research 39:533–579.
Harabor, D. D.; Grastien, A.; Öz, D.; and Aksakalli, V. 2016.
Optimal Any-Angle Pathfinding In Practice. Journal of Ar-
tificial Intelligence Research 56:89–118.
Rivera, N.; Hernández, C.; and Baier, J. A. 2017. Grid
Pathfinding on the 2k Neighborhoods. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI),
891–897.
Sturtevant, N. R.; Traish, J. M.; Tulip, J. R.; Uras, T.;
Koenig, S.; Strasser, B.; Botea, A.; Harabor, D.; and Rabin,
S. 2015. The grid-based path planning competition: 2014
entries and results. In Lelis, L., and Stern, R., eds., Proceed-
ings of the 8th Symposium on Combinatorial Search (SoCS),
241. AAAI Press.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Uras, T., and Koenig, S. 2015a. An empirical comparison of
any-angle path-planning algorithms. In Lelis, L., and Stern,
R., eds., Proceedings of the 8th Symposium on Combinato-
rial Search (SoCS), 206–211. AAAI Press. Code available
at: http://idm-lab.org/anyangle.
Uras, T., and Koenig, S. 2015b. Speeding-up any-angle
path-planning on grids. In Brafman, R. I.; Domshlak, C.;

Haslum, P.; and Zilberstein, S., eds., Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS), 234–238. Jerusalem, Israel: AAAI
Press.
Uras, T.; Koenig, S.; and Hernández, C. 2012. Subgoal
graphs for eight-neighbor gridworlds. In Borrajo, D.; Felner,
A.; Korf, R. E.; Likhachev, M.; López, C. L.; Ruml, W.; and
Sturtevant, N. R., eds., Proceedings of the 5th Symposium
on Combinatorial Search (SoCS). AAAI Press.
Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal
graphs for optimal pathfinding in eight-neighbor grids. In
Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S.,
eds., Proceedings of the Twenty-Third International Confer-
ence on Automated Planning and Scheduling, ICAPS 2013,
Rome, Italy, June 10-14, 2013. AAAI.

143

