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Abstract

We investigate GPU-based parallelization of Iterative-
Deepening A* (IDA*). We show that straightforward thread-
based parallelization techniques which were previously pro-
posed for massively parallel SIMD processors perform poorly
due to warp divergence and load imbalance. We propose
Block-Parallel IDA* (BPIDA*), which assigns the search of
a subtree to a block (a group of threads with access to fast
shared memory) rather than a thread. On the 15-puzzle, BP-
IDA* on a NVIDIA GRID K520 with 1536 CUDA cores
achieves a speedup of 4.98 compared to a highly optimized
sequential IDA* implementation on a Xeon E5-2670 core.

1 Introduction

Graphical Processing Units (GPUs) are many-core proces-
sors which are now widely used to accelerate many types of
computation. GPUs are attractive for combinatorial search
because of their massive parallelism. On the other hand, on
many domains, search algorithms such as A* tend to be
limited by RAM rather than runtime. A standard strategy
for addressing limited memory in sequential search is itera-
tive deepening (Korf 1985). We present a case study on the
GPU-parallelization of Iterative-Deepening A* (Korf 1985)
for the 15-puzzle using the Manhattan Distance heuristic.
We evaluate previous thread-based techniques for paralleliz-
ing IDA* on SIMD machines, and show that these do not
scale well due to poor load balance and warp divergence.
We then propose Block-Parallel IDA* (BPIDA*), which, in-
stead of assigning a subtree to a single thread, assigns a sub-
tree to a group of threads which share fast memory. BPIDA*
achieves a speedup of 4.98 compared to a state-of-the-art 15-
puzzle solver on a CPU, and a speedup of 659.5 compared
to a single-thread version of the code running on the GPU.

2 Background and Related Work

An NVIDIA CUDA architecture GPU consists of a set of
streaming multiprocessors (SMs) and a GPU main memory
(shared among all SMs). Each SM consists of shared mem-
ory, cache, registers, arithmetic units, and a warp scheduler.
Within each SM the cores operate in a SIMD manner. How-
ever, each SM executes independently, so threads in different
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SMs can run asynchronously. A thread is the smallest unit
of execution. A block is a group of threads which execute on
the same SM and share memory. A grid is a group of blocks
which execute the same function. Threads in a block are par-
titioned into warps. A warp executes in a SIMD manner (all
threads in the same warp share a program counter). Warp
divergence, an instance of SIMD divergence, occurs when
threads belonging to the same warp follow different execu-
tion paths, e.g., IF-THEN-ELSE branches. Shared memory
is shared by a block and is local within a SM, and access to
shared memory is much faster than access to the GPU global
memory which is shared by all SMs.

Rao et al (1987) parallelized each iteration of IDA* using
work-stealing on multiprocessors. Parallel-window IDA*
assigned each iteration of IDA* to its own processor (Pow-
ley and Korf 1989). Two SIMD parallel IDA* algorithms are
by Powley et al (1993) and Mahanti and Daniels (1993). For
each f -cost limited iteration of IDA*, they perform an initial
partition of the workload among the processors, and then pe-
riodically perform load balancing between IDA* iterations
and within each iteration. Hayakawa et al (2015) proposed
a GPU-based parallelization of IDA* for the 3x3x3 Rubik’s
cube which searches to a fixed depth l on the CPU, then
invokes a GPU kernel for the remaining subproblems. Their
domain-specific load balancing scheme relies on tuning l us-
ing knowledge of “God’s number” (optimal path length for
the most difficult cube instance) and is fragile – perturbing
l by 1 results in a 10x slowdown. Zhou and Zeng (2015)
proposed a GPU-parallel A* which partitions OPEN into
thousands of priority queues. The amount of global RAM
on the GPU (currently ≤ 24GB) poses a serious limitation
for GPU-based parallel A*. Edelkamp and Sulewski (2010)
investigated memory-efficient GPU search. Sulewski et al
(2011) proposed a hybrid planner which uses both the GPU
and CPU.

3 Experimental Settings and Baselines

We used the standard set of 100 15-puzzle instances by Korf
(1985). These instances are ordered in approximate order of
difficulty. All solvers used the Manhattan distance heuristic.
Reported runtimes include all overheads such as data trans-
fers between CPU and GPU memories (negligible). All ex-
periments were executed on a non-shared, dedicated AWS
EC2 g2.2xlarge instance. The CPU is an Intel Xeon E5-
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2670. The GPU is an NVIDIA GRID K520, with 4GiB
global RAM, 48KiB shared RAM/block, 1536 CUDA cores,
warp size 32, and 0.80GHz GPU clock rate.

First, we evaluated 3 baseline IDA* solvers:
Solver B: The efficient, Manhattan-Distance heuristic
based 15-puzzle IDA* solver implemented in C++ by
Burns et al. (2012). We used the current version at
https://github.com/eaburns/ssearch.
Solver C: Our own implementation of IDA* in C (code at
http://github.com/socs2017-48/anon48), This is the basis for
G1 and all of our GPU-based code.
Solver G1: A direct port of Solver C to CUDA. The imple-
mentation is optimized so that all data structures are in the
fast, shared memory (the memory which is local to a SM).
This baseline configuration uses only 1 GPU block/thread,
i.e., only 1 core is used, all other GPU cores are idle.

The total time to solve all 100 problem instances was 620
seconds for Solver B (Burns et al. 2012) and 475 seconds
for our Solver C. Solver C was consistently 25% faster on
every instance. Thus, Solver C is appropriate as a baseline
for our GPU-based 15-puzzle solvers.

Next, we compare Solver C (1 CPU thread) to G1 (1
GPU thread). G1 required 62957 seconds to solve all 100
instances, 131 times slower than Solver C. This implies that
on the GPU we used with 1536 cores, a perfectly efficient
implementation of parallel IDA* might be able to achieve a
speedup of up to 1536/131 = 11.725 compared to Solver C.

4 Thread-Based Parallel IDA*

Most of the previous work on parallel IDA* parallelizes
each iteration of IDA* using a thread-based parallel scheme
(Rao, Kumar, and Ramesh 1987; Powley, Ferguson, and
Korf 1993; Mahanti and Daniels 1993; Hayakawa, Ishida,
and Murao 2015).

We evaluated 3 thread-parallel IDA* configurations.
Since these are relatively straightforward and not novel, we
sketch the implementations below. Details are in the ex-
tended version (Horie and Fukunaga 2017).

PSimple (baseline) In this baseline configuration, for
each f -bounded iteration of IDA*, PSimple performs A*
search from the start state until as many unique states as the
# of threads are in OPEN. Then, each root is assigned to a
thread. No load balancing is performed. The subtree sizes
under each root state can vary significantly, so some threads
may finish their subproblem much faster than other threads.
Each f -bounded iteration must wait for all threads to com-
plete, so PSimple has very poor load balance. Therefore,
load balancing mechanisms which redistribute the work
among processors are necessary.

PStaticLB (static load balancing) This configuration
adds static load balancing to PSimple. After each f -bounded
iteration, PStaticLB implements a static load balancing
mechanism somewhat similar to that of (Powley, Ferguson,
and Korf 1993). In IDA*, the i-th iteration repeats all of the
work done in iteration i − 1. Thus, the # of states visited
under each root state in the iteration i − 1 can be used to
estimate the # of states which will be visited in the current

iteration i, and root nodes are redistributed based on these
estimates (details in (Horie and Fukunaga 2017)).

PFullLB (thread-parallel with dynamic load balancing)
This configuration adds dynamic load balancing (DLB) to
PStaticLB, which moves work to idle threads from threads
with remaining work during an iteration. On a GPU, work
can be transferred between two threads within a single block
relatively cheaply using the shared memory within a block,
while transferring work between two threads in different
blocks is expensive because it requires access to the global
memory. When dynamic load balancing is triggered, idle
threads steal work from threads with remaining work within
a block. We experimented with various DLB strategies in-
cluding variants of policies investigated by (Powley and
Korf 1989; Mahanti and Daniels 1993), and used a policy
we found for triggering DLB based on the policy by Pow-
ley and Korf. See (Horie and Fukunaga 2017) for additional
details.

4.1 Evaluation of Thread-Parallel IDA*

PSimple on 1536 cores required a total of 3378 seconds
to solve all 100 problems, a speedup of only 18.6 com-
pared to G1 (1 core on the GPU). This is mostly due to
extremely poor load balance. We define load balance as
maxload/averageload , where averageload is the average
number of nodes expanded among all threads, and maxload
is the number of states expanded by the thread which per-
formed the most work. The load balance for PSimple on the
100 problems was: mean 96.46, min 14, max 680, stddev
113.19. This is extremely unbalanced (maxload is almost
100x averageload).

Static load balancing significantly improved load balance
(PStaticLB: mean 9.96, min 3, max 56, stddev 8.96), and dy-
namic load balancing further improved load balance (PFul-
lLB: mean 6.14 min 3 max 19 stddev 3.38). This resulted in
speedups of 58.9 and 70.8 compared to G1 (Table 1). How-
ever, the 70.8 speedup vs G1 achieved by PFullLB is only a
parallel efficiency of 70.8/1536 = 4.6%, which is extremely
poor. We experimented extensively but could not achieve
significantly better results with thread-parallel IDA*.

5 Block Parallelization

The likely causes for the poor (4.6%) efficiency of PFullLB
are: (1) SMs become idle due to poor load balance even af-
ter our load balancing efforts, (2) threads stall for warp di-
vergence, and (3) load balancing overhead. All of these can
be attributed to the thread-based parallelization scheme in
PFullLB and PStaticLB, in which each processor/thread ex-
ecutes an independent subproblem during a single f -bound
iteration. This scheme, based on parallel IDA* variants orig-
inally designed for SIMD machines (Powley, Ferguson, and
Korf 1993; Mahanti and Daniels 1993), was appropriate
for those SIMD architectures where all communications be-
tween processors were very expensive – paying the price
of SIMD divergence overhead was preferable to incurring
communication costs. On the other hand, in NVIDIA GPUs,
threads in the same block (which execute on the same SM)
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can access fast shared memory on the SM with relatively
low overhead. We exploit this in a block-parallel approach.

Rocki and Suda (2009) proposed a GPU-based parallel
minimax gametree search algorithm for 8x8 Othello (with-
out any αβ pruning) which works as follows. Within each
block a node n is selected for expansion. If n is a leaf, it is
evaluated using a parallel evaluation function (32 threads, 1
thread per 2 positions in the 8x8 board). Otherwise a parallel
successor generator function is called (1 thread/position) to
generate successors of n, which are added to the node queue.
This approach greatly reduced warp divergence, since all
threads in the warp are synchronized to perform the fetch-
evaluate-expand cycle. Because there is no αβ pruning, their
search trees have uniform depth (i.e., fixed-depth DFS), and
also, the # of possible moves on the othello board (64) con-
veniently matched a multiple of the CUDA warp size (32).

We now propose a generalization of this approach for
IDA*, which we call Block-Parallel IDA*, shown in Alg. 1.
In contrast to the parallel minimax of (Rocki and Suda
2009), BPIDA* handles variable-depth subtrees (due to the
heuristic, IDA* tree depths are irregular) and does not de-
pend on a fixed number of applicable operators (e.g., 64).

openList is a stack which is shared among all threads
in the same block, which supports two key parallel opera-
tions: parallelPop and atomicPut. parallelPop
extracts (#threads in a block/#operators) nodes from
openList. atomicPut inserts nodes in t into the shared
openList concurrently. This is implemented as a lineariz-
able (Herlihy and Wing 1990) operation.

The BPDFS function is similar to a standard, se-
quential f -limited depth-first search, but in each iter-
ation of the repeat-until loop in lines 4-16 (Alg. 1),
a warp performs the fetch-evaluate-expand cycle on
(#threads in a block/#operators) nodes. The number of
threads per block is set to the warp size (32). This allows the
following: (1) When a warp is scheduled for execution, all
cores in the SM are active. (2) Since all threads in the block
(=warp) share a program counter, explicit synchronizations
become unnecessary.

BPIDA* applies a slightly modified version of the static
load balancing used by PStaticLB (Sec. 4). While PStaticLB
uses the number of expanded nodes to estimate the work in
the next iteration, BPIDA* uses the number of repetitions
executed in lines 4-16. BPIDA* does not use dynamic load
balancing.

6 Evaluation of BPIDA*

Runtimes Figure 1a compares the relative runtime of BP-
IDA* vs. PFullLB. BPIDA* required a total of 95 seconds to
solve all 100 problems, a speedup of 9.39 compared to PFul-
lLB. Table 1 summarizes the total runtimes and speedups for
all algorithms in this paper.

Other metrics There are 3 suspected culprits for the poor
performance of thread-based parallel IDA*: (1) dynamic
load overhead, (2) idle SMs (bad load balance), and (3)
thread stalls for warp divergence. BPIDA* doesn’t perform
dynamic load balancing, so (1) is irrelevant. For factors
(2) and (3), there are related metrics, sm efficiency and

Algorithm 1 BlockParallel IDA*
1: function BPDFS(root, goals, limitf )
2: openList ← root
3: fnext = ∞
4: repeat
5: s ← PARALLELPOP(openList)
6: if s ∈ goals then
7: return s and its parents as a shortest path
8: a ← (threadID mod #actions)th action
9: if a is applicable on s then

10: t ← successor(a, s)
11: fnew ← g(s) + cost(a) + h(t)
12: if fnew <= limitf then
13: ATOMICPUT(openList, t)
14: else
15: fnext ← min(fnext, fnew)

16: until openList is empty
17: return fnext � no plan is found
18:
19: function BPIDA*(start, goals)
20: roots ← CREATEROOTSET(start, goals)
21: limitf ← DECIDEFIRSTLIMIT(roots)
22: repeat
23: parallelForByBlocks root ∈ roots do
24: limitf , stat ← BPDFS(root, goals, limitf )
25: end parallelForByBlocks
26: until shortest path is found

IPC(instructions per cycle), which can be measured by the
CUDA profiler, nvprof. sm efficiency is the average % of
time at least one warp is active on a SM. High sm efficiency
shows how busy the SMs are, and high IPC indicates there
are few NOPs due to warp divergence. The (mean, min, max,
stddev) sm efficiency over 100 instances was (65.22, 31.8,
82.7, 7.94) for PFullLB, and (94.29, 32.3, 99.9, 9.76) for BP-
IDA*, and for IPC, the results were (0.30, 0.13, 0.39, 0.048)
for PFullLB and (0.97, 0.60, 1.06, 0.059) for BPIDA*. For
both metrics, the results of BPIDA* were better than PFul-
lLB, and close to the ideal values (100% sm efficiency and
IPC=1.0).

6.1 Comparison with Sequential Solver C

We now compare BPIDA* with the CPU-based, sequential
Solver C (Sec. 3). Fig. 1b compares the relative runtimes of

configuration total runtime speedup
(seconds) vs. G1

CPU-based sequential algorithms (1 CPU thread)
Solver B (Burns et al. 2012) 620 n/a
Solver C 475 n/a

GPU-based sequential algorithm (1 thread)
G1 62957 1

GPU-based parallel algorithms (1536 threads)
PSimple 3378 18.6
PStaticLB 1069 58.9
PFullLB 892 70.8
BPIDA* 95 659.5

Table 1: Total Runtimes for 100 15-Puzzle Instances
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(a) Relative runtimes: PFullLB vs. BPIDA*
(finding 1 optimal solution)

(b) Relative runtimes: Solver C vs. BPIDA*
(finding 1 optimal solution)

(c) Relative runtimes: Solver C vs. BPIDA*
(finding all optimal solutions)

Figure 1: BP-IDA* Evaluation

Solver C (1 CPU core) and BPIDA* (1536 GPU cores). The
y-axis shows Runtime(SolverC)/Runtime(BPIDA*) for each
instance. Comparing the total time to solve all 100 instances,
BPIDA* was 4.98 times faster.

Runtime comparisons between parallel vs. sequential
IDA* can be obfuscated by the fact that they do not nec-
essarily expand the same set of nodes in the final iteration,
although they expand the same set of nodes in non-final iter-
ations (the same issue exists with comparisons among par-
allel IDA* variants, but from Fig. 1a and Table 1, it is clear
that BPIDA* significantly outperforms the other parallel al-
gorithms, so above, we simply reported the time to find a
single solution, as is standard practice in previous works).

To eliminate differences in search efficiency (node expan-
sion order) from the comparison, the next experiment com-
pares the time required to find all optimal-cost solutions of
every problem, i.e., the search does not terminate until all
nodes with f ≤ OptimalCost have been expanded. This
eliminates node ordering effects, allowing comparison of
the wall-clock time required to perform the same amount
of search. Fig. 1c compares the relative runtimes of Solver
C (1 CPU core) and BPIDA* (1536 GPU cores). The y-axis
shows Runtime(SolverC)/Runtime(BPIDA*) to find all op-
timal solutions for each instance. Comparing the total time
to find all optimal solutions for all 100 instances, BPIDA*
was 6.78 times faster.

7 Conclusions and Future Work

We proposed Block-Parallel IDA*, which assigns subtrees
to GPU blocks (groups of threads with fast shared memory).
Compared to thread-parallel approaches, this greatly reduces
warp divergence and improves load balance. BPIDA* also
does not require explicit dynamic load balancing, making
it relatively simple to implement. On 1536 cores, BPIDA*
achieves a speedup of 659.5 vs. a 1-thread GPU baseline,
i.e., 42% parallel efficiency. Compared to a highly optimized
single-CPU IDA*, BPIDA* achieves a 6.78x speedup when
comparing the time to find all optimal solutions.

The successful parallelization of BPIDA* on the 15-
puzzle with Manhattan distance (MD) heuristic exploits the
following factors: (1) compact states, (2) the MD heuris-
tic requires little memory, and (3) standard IDA* doesn’t

perform duplicate state detection. Thus, all work could be
performed in the SM local+shared memories, without using
global memory. In many domains, data structures represent-
ing each state are larger and the IDA* state stacks will not
fit in local memory. Also, some powerful memory-intensive
heuristics, e.g,. PDBs (Korf and Felner 2002), will require at
least the use of global memory. Finally, standard approaches
for reducing duplicate state expansion, e.g., transposition
tables (Reinefeld and Marsland 1994) requires significant
memory. Thus, future work will focus on methods which use
GPU global memory effectively so that domains with larger
states, memory-intensive heuristics, and memory-intensive
duplicate pruning techniques can be used.
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