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Abstract

Dynamic Potential Search (DPS) is a recently introduced
search algorithm that returns a bounded-suboptimal cost so-
lution. DPS orders nodes in the open-list based on their po-
tential which is a combination of both the g- and h-values of a
node. In this paper we study the behavior of DPS on weighted
graphs. In particular, we develop a new variant of DPS, called
DPSU which calculates the potential by counting one for each
edge regardless of its costs. We develop an eager version and
a restrained version of DPSU. We then compare all these al-
gorithms on a number of weighted graphs and study the pros
and cons of each of them.

1 Introduction and Overview

A* is a best-first search algorithm which orders nodes in
OPEN according to f(n) = g(n) + h(n). If h(n) is an ad-
missible heuristic (i.e., is always a lower bound on cost of the
remaining path to goal) then A* is guaranteed to find an op-
timal (lowest-cost) solution. However, in many cases, (e.g.,
video games, embedded systems or mobile apps) one must
settle for a suboptimal solution by trading time/memory for
solution quality. Two such non-optimal search settings are:
(1) Bounded cost search (Stern et al. 2014) (denoted here
as BCS). In BCS(C) we are given a constant C and the task
is to find a solution with cost ≤ C.
(2) Bounded suboptimal search (denoted here as BSS). In
BSS(B) we are given a bound B and the task is to find a
solution with cost ≤ B × Popt where Popt is the cost of the
optimal solution.

Potential Search (PS) (Stern et al. 2014) is an algorithm
specifically designed for BCS. PS is a best-first search that
chooses to expand the node n from OPEN with the largest
“potential”, which is defined as u(n) = C−g(n)

h(n) .1 In addi-
tion, for an admissible h, the algorithm prunes any node n
for which f(n) = g(n) + h(n) > C, as it will not lead
to a solution within the bound. Intuitively, given a node n,
C − g(n) is an upper bound on any path in the subtree be-
low node n that will still be within the bound C. Dividing
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1For cases where h(n) = 0, u(n) is defined to be +∞ if C ≥
g(n), causing such nodes to be expanded first, and −∞ if C <
g(n), ignoring such nodes.

this by the estimated cost to the goal, h(n), gives its poten-
tial, i.e., how likely there is a goal node within the bound in
the subtree rooted at n. Stern et al. (2014) showed that un-
der certain conditions PS expands in every iteration the node
that is most likely to be part of a solution that is within the
bound. PS will find a desired solution if one exists. PS was
shown to be very effective in finding BCS solutions.

Gilon, Felner and Stern (2016) showed that under some
conditions, one can migrate algorithms from BCS to BSS
and vice versa. In particular, they migrated PS to the BSS
setting and introduced a new BSS algorithm called dynamic
potential search (DPS). In PS the cost bound C remains con-
stant throughout the search. DPS dynamically modifies C
and sets C = fmin ×B, where fmin is the minimal f -value
in OPEN. Then, DPS expands the node in OPEN with the
largest potential with respect to the current C. Therefore,
DPS is guaranteed to find a solution within the desired sub-
optimality bound. Gilon et al. (2016) experimentally com-
pared DPS to other known algorithms that are designed for
BSS, namely to WA∗ (Pohl 1970) and to EES (Thayer and
Ruml 2011). They showed that (with some exceptions) in
unit-edge cost domains DPS significantly outperforms EES
and WA∗ by a factor of up to 180 in the number of nodes ex-
panded and in CPU time. But, DPS was much less effective
than EES on a number of domains with non-unit edge costs
such as the inverse 15 puzzle (see below).

In this paper we further investigate DPS under weighted
graphs. We introduce Dynamic Potential Search with Unit
Estimations (DPSU) which uses the potential formula but on
an abstract problem which uses the number of edges and not
their costs. We develop an eager version and a restrained ver-
sion of DPSU. We theoretically and experimentally compare
the two versions of DPSU to DPS and to EES on a number
of benchmark domains and study their pros and cons. Re-
stricted DPSU was found to provide the best performance
and is the most robust across all the domains we studied.

2 Focal Search

A large number of BSS algorithms have been proposed over
the years (see a nice survey by Thayer and Ruml, 2011).
Most of these algorithms can be viewed as implementations
of a general search framework that is sometimes called Focal
Search (Pearl and Kim 1982; Ebendt and Drechsler 2009;
Valenzano et al. 2013). Focal Search is a type of best-first
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Algorithm 1: Focal Search: main procedure
1 focal-search(start state S)
2 OPEN ← {S};
3 FOCAL ← {S};
4 while FOCAL �= ∅ do
5 best← ChooseNode(FOCAL)
6 Remove best from FOCAL and OPEN
7 if best is a goal then return best;
8 if fmin increased then FixFocal() ;
9 for n ∈ neighbors(best) do

10 Add n to OPEN
11 if f(n) ≤ B × fmin then add n to FOCAL ;
12 end

13 end

14 end

search that maintains two sets of nodes. Similar to any best-
first search, it maintains OPEN which includes all nodes that
were generated but not expanded. In addition, Focal Search
maintains a list of nodes FOCAL ⊆ OPEN defined as:

FOCAL = {n ∈ OPEN | f(n) ≤ B × fmin}
As a special case of best-first search, a Focal Search algo-

rithm chooses in every expansion cycle a single node from
OPEN and expands it, but it is constrained to only choose a
node that is also in FOCAL. As the search progresses, fmin

may increase. When this occurs, the range B × fmin also
grows and more nodes from OPEN are added to FOCAL.
This allows a broader range of nodes to be considered for ex-
pansion in subsequent expansion cycles. Once a goal node is
chosen for expansion, the search halts. When h is admissible
any Focal Search is a BSS algorithm. This is because fmin

is a lower bound on Popt and when a goal node t is expanded
it must be in FOCAL, and thus f(t) = g(t) ≤ B × fmin ≤
B × Popt. Algorithm 1 presents the main structure of Focal
Search. Focal Search algorithms differ in which node from
FOCAL they choose to expand (line 5).

Perhaps the simplest form of Focal Search is to choose
the node in FOCAL with the smallest h-value. This algo-
rithm is often referred to as A∗ε (Ebendt and Drechsler 2009)
although the original A∗ε (Pearl and Kim 1982) is more gen-
eral. In its basic form, Focal Search keeps FOCAL as a sep-
arate list, and whenever fmin increases, the relevant nodes
from OPEN are identified and are added to FOCAL. This is
done by FixFocal (line 8 in Algorithm 1) which incurs
some computation overhead. However, in some cases it is
possible to implement Focal Search without maintaining a
separate list of nodes for FOCAL. For example, some de-
cision rules for choosing which node to expand from OPEN
guarantee that the node n chosen for expansion is in FOCAL,
i.e., that f(n) ≤ B × fmin (Valenzano et al. 2013).

3 DPS

DPS (Gilon, Felner, and Stern 2016) is a Focal Search BSS
algorithm. Inherited from PS, DPS chooses the node n with
the highest “potential”, but now the potential relates to the
likelihood of finding a goal below n with cost ≤ B × fmin.
In other words, given the current FOCAL, we use the same

ChooseNode() as PS but set C = B × fmin. Formally,
DPS chooses to expand a node n that maximizes:

ud(n) = B×fmin−g(n)
h(n)

Gilon et al. (2016) showed that both Weighted A∗ (Pohl
1970; 1973) as well as DPS are focal searches in the sense
that the nodes they choose to expand from OPEN according
to their priority function is always in FOCAL. Thus, DPS and
WA* need not store a separate FOCAL list. In their experi-
ments Gilon et al. (2016) observed that DPS is usually very
strong in unit edge cost domains but it was weak in some
weighted edge-cost domains. For example, DPS was strong
for the heavy 15-puzzle, where moving tile #X costs X , but
it was very weak on the inverse 15-puzzle, in which moving
tile #X costs 1/X . This paper was sparked by our motiva-
tion to fix DPS to also work well for the inverse 15-puzzle.
For this, we introduce the following variant of DPS.

4 DPS with Unit Estimations

DPS with Unit Estimations (DPSU) is a new variant of DPS.
DPSU is motivated by the fact that it is usually easier to
search when using unit costs than when using weighted
costs (Wilt and Ruml 2011; 2014; Thayer, Benton, and
Helmert 2012). Given a weighted graph, we define a unit
edge cost function as an abstract cost function that only
counts the number of edges. We thus use the following
terms. gu(n) is a function that counts the number of edges
from the start state to n. This is often referred to as the depth
of n. Similarly, hu(n) is an admissible (lower bound) esti-
mation on the number of edges from n to the nearest goal.2
Clearly, fu(n) = gu(n)+hu(n) is a lower bound estimation
on OPTu(n) which is the path with the smallest number of
edges from the start to the (closest) goal via node n. DPSU
uses the same potential formula as DPS but in its internal
terms it uses gu, hu, and fu

min, instead of g, h, and fmin.
Formally, DPSU chooses to expand the node from OPEN
that has the maximal unit potential defined as:

udu(n) =
B×fu

min−gu(n)
hu(n)

Let G be a weighted graph and let Gu be an abstrac-
tion of G where all edges are of unit weights. On Gu, DPS
and DPSU are equivalent. Running DPSU on G simulates
the execution of DPS on Gu but with the following impor-
tant difference. Once the first goal is chosen for expansion
DPS running on Gu can halt and the solution returned is
proven to be within the bound B. The reason is that DPS
is a special case of Focal Search. By contrast DPSU run-
ning on G has no such guarantee to be within the bound
B in terms of cost. This is because DPSU is not a Focal
Search and may choose to expand nodes that are larger than
B × fmin. To remedy this, every time DPSU chooses a
goal node for expansion, it performs a goal cost test to see
whether g(goal) ≤ B × fmin. If g(goal) > B × fmin

then DPSU continues to further expand nodes (according to
udu(·)) until a valid goal node is found. Thus, DPSU on G

2Sometimes hu(n) was called distance-to-go as opposed to the
regular h-function which was called cost-to-go (Thayer and Ruml
2011). Due to ambiguity of these terms we chose not to use them.
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Figure 1: DPS vs. DPSU

will expand at least as many nodes as DPS on Gu but it may
possibly expand more nodes if the first goal reached is not
under the bound with respect to the new real weighted cost.

We demonstrate the difference between DPS and DPSU
through the example given in Figure 1 while assuming that
B = 2. Heuristics inside nodes are in the format of h/hu.
After the start state is expanded, nodes G, X and W are
generated. We note that at this point fmin = f(X) = 4
while fu

min = fu(G) = 1. First, let’s consider DPS.
ud(G) = −∞, ud(X) = B×fmin−g(X)

h(X) = 8−1
3 = 2.333

while ud(W ) = 8−1
4 = 1.75. So, X is expanded and Y is

generated with ud(Y ) = 8−2
2 = 3. Next, Y is expanded and

then Z is generated and expanded with ud(Z) = 8−3
1 = 5.

Next G is generated, this time with ud(G) = +∞. So,
G is immediately expanded and the search halts. Nodes,
S,X, Y, Z and G were expanded, a total of 5 nodes. Next,
let’s consider DPSU. Here, G is generated with udu(G) =
+∞. So, G is expanded and we have a solution which is
within the bound in terms of number of edges. But, since
B × fmin = 8 and the real cost of the path is 10, the solu-
tion is not within the bound in terms of the real edge costs
(this demonstrates that DPSU is not a Focal Search). Thus,
DPSU continues its search. Now, fu

min = fu(W ) = 2.
Therefore, udu(X) =

B×fu
min−gu(X)
hu(X) = 4−1

3 = 1 while
udu(W ) = 4−1

1 = 3. So, W is expanded and G is generated
again with udu(G) = +∞ but this time with a solution of
cost 5. G is immediately expanded and the search halts be-
cause the solution is smaller than B × fmin = 8. So, DPSU
expanded 4 nodes, S,G,W and G and outperformed DPS.

4.1 Restricted DPSU

Restricted DPSU (RDPSU) is a version of DPSU that main-
tains FOCAL. RDPSU chooses the node with the best udu
but only within FOCAL. Unlike DPSU, RDPSU is not al-
lowed to expand nodes outside FOCAL. So, like any Focal
Search, RDPSU can halt as soon as the first node is chosen
for expansion. In the example above, G was first expanded
with udu = ∞. So, DPSU chose to expand it only to real-
ize that it is not within the bound. By contrast, RDPSU will
not choose to expand G at this point as it is outside FOCAL
and will save one node expansion. In total RDPSU expands
only 3 nodes: S, W and then G after which it halts. The
disadvantages of RDPSU is that it must maintain FOCAL in
addition to OPEN. Similarly, RDPSU cannot choose to ex-
pand nodes outside FOCAL even if they may lead to a valid
solution faster.

Figure 2: Versions of the weighted 15-puzzle

5 Experimental Results

The aim of this section is to study which algorithm should
be used under what circumstances. We generated a number
of weighted variants for known search benchmarks. We then
experimented with DPSU, RDPSU and with state-of-the-art
BSS algorithms DPS and Explicit estimation search (Thayer
and Ruml 2011) (EES). EES is a BSS algorithm that uses
both h and hu (hu was called d in the EES paper). In addi-
tion, EES also uses two other inadmissible estimates ĥ and d̂
which are supposed to be more accurate than h and hu since
they are not restricted to be admissible. EES is harder to im-
plement than the DPS variants as it requires three OPEN lists
and additional two inadmissable estimates. We did not com-
pare with WA∗ (Pohl 1970) because it is usually weaker than
EES and DPS (Gilon, Felner, and Stern 2016).

5.1 The 15-Puzzle

In the standard form of the 15-puzzle, each move costs 1.
In the heavy 15-puzzle (Thayer and Ruml 2011) (labeled
HEAVY) moving tile #X costs X . These weights are shown
in Figure 2(c). By contrast, in the inverse 15-puzzle (labeled
INVERSE) moving tile #X costs 1

X as shown in Figure 2(a).
We can look at those versions as a powering factor of x (de-
noted α), which gives a flexible variant of weights from unit
cost (α = 0), HEAVY (α = 1) or INVERSE (α = −1). We
also use this α parameter on the other domains seen below.
Additionally we introduce a third version which we call the
heavy, diagonal-decreasing 15-puzzle (HEAVY-DD). Simi-
lar to HEAVY, moving tile #X costs X . However, tiles in
the goal state are distributed diagonally in such a way that
large tiles are placed close to the top left corner and small
tiles are placed far from it, as shown in Figure 2(b).

The Manhattan Distance heuristic (MD) for the 15-puzzle
only counts moves of individual tiles but does not count in-
ternal conflicts between tiles. Naturally, these conflicts occur
more for tiles with goal location that is close to the posi-
tion of the blank in the goal state (top left position) as these
tiles must perform the last moves in any solution. Weighted
Manhattan Distance (WMD) generalizes MD by multiplying
the MD of each tile by its weight. We note that for HEAVY,
tiles that are close to the top left position have relatively low
weights. Therefore the fact that MD misses many of their in-
ternal conflicts is not hurting WMD too much and WMD for
HEAVY is relatively strong. By contrast, in INVERSE such
tiles have relatively large weights. Therefore, missing their
conflicts has a stronger effect on the accuracy of WMD and
it is relatively weak for INVERSE. In HEAVY-DD tiles close
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Figure 3: Success rate over the weighted 15 puzzle versions. Heavy (left), Heavy-DD (middle) and Inverse (right).
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Figure 4: Success rate of the other domains.

to the top left position also have relatively large weights but
the weights are decreasing linearly and not according to 1/x.
Thus, the effect on WMD is less severe than in INVERSE and
WMD for HEAVY-DD is moderately inaccurate.3

As a result, DPS (and any other algorithm) that uses
WMD will be relatively effective for HEAVY, less effective
for HEAVY-DD and relatively weak for INVERSE. Never-
theless, as DPS degrades it will be more beneficial to use
DPSU and RDPSU. In such cases, solving the problem on
the abstract unit edge cost domain (thus using MD which is
relatively more accurate than WMD) and migrating the so-
lution back to the original problem is better than using the
inaccurate heuristic of WMD.

We experimented on 100 random instances (Korf 1985)
and varied the sub-optimality bound B. Each algorithm was
halted when either a solution was found that is within the
sub-optimality bound (success) or after 5,000,000 nodes
were expanded without finding a solution under the bound
(failure). The plots in Figure 3 show the success rate, i.e.,
the % of instances solved successfully for the three domains.

The results show different trends depending on the accu-
racy of the heuristic. In HEAVY, WMD is relatively accu-
rate. DPS is therefore very effective and there is no need to
exploit the abstract unit edge-cost solution nor its estimation
hu. Therefore, DPSU and RDPSU are weaker than DPS in
HEAVY. In HEAVY-DD, WMD is moderately accurate and
this weakens DPS. None of the algorithms excel in this do-
main as the heuristic is not strong enough to make DPS the
winner (only h) and is not weak enough to make DPSU and
RDPSU the winners (only hu). Finally, in INVERSE WMD
is weak. Therefore, DPS suffers greatly, and EES suffers but
less because it also uses hu. In INVERSE, it is beneficial to
get the help of the abstract unit edge cost solution. Conse-

3We analyzed the accuracy of WMD in each of our 15-puzzle
variants by measuring the heuristic error on a large sample of states.
Our study confirms that WMD is relatively strong for HEAVY mod-
erate for HEAVY-DD and relatively weak for INVERSE.

quently, DPSU and RDPSU are the best algorithms here as
they exclusively use hu which is far more accurate (in the
abstract domain) than WMD (in the original domain).

A clear trend in all three versions of the puzzle is that
DPSU and RDPSU are very effective in high sub-optimality
bounds – they are the best algorithm in all domains for
B ≥ 1.5 – and are relatively less strong for low values of B.
This is reasonable, because finding valid solutions is more
difficult as B decreases, and udu(·) provides no cost-aware
guidance, as it completely ignores action cost (considering
only hu and gu). However, as B grows, finding solutions un-
der the bound is easier and thus ignoring the costs can focus
the search towards finding solutions faster.

5.2 Other domains

Our next domain is the K-pancake puzzle. The task is to sort
a vector of numbers V [K] where there are K − 1 operators,
where operator i reverses a prefix of size i+1. As a heuristic,
we used the GAP heuristic (Helmert 2010) which adds 1 for
every two adjacent numbers that are not consecutive (hence
a gap). We created a heavy variant of this puzzle where the
cost of the operator that flips a prefix (V [1] . . . V [i + 1]) is
the maximum among the two elements on the extreme sides
of the prefix, i.e., max(V [1], V [i + 1]). 4 Additionally we
created a fine-tuned version with a parameter α, where we
take max(V [1]α, V [i + 1]α). To get the unit cost version
one needs to set α = 0. We used a version with α = −1 on
101 pancakes. Results are provided in Figure 4 (left). The
GAP heuristic is relatively weak for 101 pancakes. There-
fore, DPS and EES are relatively weak and are outperformed
by RDPSU and DPSU.

Finally we experimented on the Vacuum Cleaner intro-
duced by Thayer and Ruml (2011) and is inspired by a state-
space presented in Russell and Norvig’s (1995) textbook. A
vacuum cleaner is working in a grid (200×200) with obsta-
cles (35% of the cells) and there are a number of dirt spots.
The cleaner should find a tour that cleans all dirty spots.
When carrying dirt, the cleaner becomes heavier and there-
fore every dirty spot that was cleaned adds 1 to the cost of
moving the cleaner. The heuristic used is the minimum span-
ning tree. We also fine tuned this domain taking the cost to
be #dirtsα where α is a parameter. On this domain we used
α = 0.5. The results are shown in Figure 4 (right). Here the
heuristic is relatively strong and this favors EES and DPS.

4The motivation is that the spatula should be big enough to hold
the larger side of the flipped set of pancakes, or else it will topple.
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6 Conclusions and Future Work

Our results show that no algorithm dominates in all circum-
stances. Relatively weak heuristics hurt DPS especially for
large values of B. In such cases, RDPSU and DPSU are a
better choice. But when the heuristic is strong there is no
reason to move to the unit cost abstraction. Looking at all
three domains we can clearly see that RDPSU tends to out-
perform DPSU especially for low values of B. In lower B
values it is more important to be within FOCAL and RDPSU
is restrictive in this sense.

In the future we intend to study whether this trend can
be observed for other BSS algorithms (e.g., weighed A*) as
well as for other settings (e.g. BCS) and for other domains.
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