
Feasibility Study: Subgoal Graphs on State Lattices

Tansel Uras, Sven Koenig
Department of Computer Science
University of Southern California

Los Angeles, USA
{turas, skoenig}@usc.edu

Abstract

Search using subgoal graphs is a recent preprocessing-based
path-planning algorithm that can find shortest paths on 8-
neighbor grids several orders of magnitude faster than A*,
while requiring little preprocessing time and memory over-
head. In this paper, we first generalize the ideas behind sub-
goal graphs to a framework that can be specialized to dif-
ferent types of environments (represented as weighted di-
rected graphs) through the choice of a reachability relation.
Intuitively, a reachability relation identifies pairs of vertices
for which a shortest path can be found quickly. A subgoal
graph can then be constructed as an overlay graph that is
guaranteed to have edges only between vertices that satisfy
the reachability relation, which allows one to find shortest
paths on the original graph quickly. In the context of this
general framework, subgoal graphs on grids use freespace-
reachability (originally called h-reachability) as the reacha-
bility relation, which holds for pairs of vertices if and only if
their distance on the grid with blocked cells is equal to their
distance on the grid without blocked cells (freespace assump-
tion). We apply this framework to state lattices by using vari-
ants of freespace-reachability as the reachability relation. We
provide preliminary results on (x, y, θ)-state lattices, which
shows that subgoal graphs can be used to speed up path plan-
ning on state lattices as well, although the speed-up is not as
significant as it is on grids.

Introduction

Path planning is the problem of finding a sequence of way-
points that an agent can follow in a continuous environment
to its destination without colliding with obstacles. The path-
planning problem has many real-world applications in video
games, robotics, and GPS-based navigation. A typical ap-
proach to path planning is to discretize the environment into
a graph and use search algorithms to find shortest paths on
the graph. The choice of discretization depends mostly on
the environment and the application. For GPS-based naviga-
tion, one can represent the environment as a road network.
For video games characters in 2D environments, one can
represent the environment as a 2D grid of blocked and un-
blocked cells. For more complex agents with kinematic con-
straints (for instance, automobiles that need to parallel park),
one can capture their kinematically feasible motions with a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

state lattice, which represents the environment as a grid, but
also accounts for other (discretized) features of their states,
such as their orientations and velocities.

In recent years, there has been a surge of interest in
preprocessing-based path planning. In some applications of
path planning, the environment is static and known in ad-
vance, allowing one to analyze the environment (or its asso-
ciated graph) in a preprocesing phase and cache information
that can be used to speed up online path-planning queries.
The 9th DIMACS Implementation Challenge (Demetrescu,
Goldberg, and Johnson 2006) featured a competition on pre-
processing the USA road network. As a result, a lot of
new preprocessing-based path-planning algorithms were de-
signed, such as Contraction Hierarchies (Geisberger et al.
2008; Dibbelt, Strasser, and Wagner 2014), Transit Routing
(Bast, Funke, and Matijevic 2006; Arz, Luxen, and Sanders
2013), Highway Hierarchies (Sanders and Schultes 2005;
2006), Reach (Gutman 2004; Goldberg, Kaplan, and Wer-
neck 2006; 2009), and Hub-labeling (Lauther 2004; Hilger
et al. 2009; Bauer and Delling 2009; Abraham et al. 2011).
Most of these algorithms are applicable to any graph and
provide excellent experimental results on road networks,
speeding up shortest-path queries by several orders of mag-
nitude, while requiring only slightly more memory than the
road network alone. Most of these algorithms are heuristic
in nature, without good performance guarantees. Their suc-
cess on road networks has been attributed to road networks
having low highway dimensions (Abraham et al. 2010).
When some of these methods were applied to grids, the
achieved speed-up was less significant and their memory re-
quirements were higher, even if the grids were represented
as explicit graphs (Antsfeld et al. 2012; Storandt 2013;
Sturtevant 2012b).

Search using subgoal graphs (Uras, Koenig, and Hernán-
dez 2013) is a recent preprocessing-based path-planning al-
gorithm for grids. During the preprocessing phase, a subgoal
graph is constructed by placing subgoals at the convex cor-
ners of all blocked cells and connecting all pairs of subgoals
that are direct-h-reachable. The resulting graph is essentially
a sparse visibility graph that can be used to find shortest
paths by first connecting the given start and goal vertices
to all of their respective direct-h-reachable subgoals to form
a query subgoal graph, finding a shortest (high-level) path
on the query subgoal graph and then replacing the edges of

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

100

the high-level path with corresponding shortest paths on the
grid. Search using subgoal graphs can be several orders of
magnitude faster than an A* search on the grid since any ver-
tex that is not a subgoal (or the start or the goal) is ignored
during the search. Furthermore, by exploiting the structure
of grids, the procedures for connecting the start and goal
vertices to the subgoal graph and for refining a high-level
path to a low-level path can be implemented very efficiently.
A further preprocessed version of subgoal graphs (Uras and
Koenig 2014) have been an undominated entry in the Grid-
Based Path-Planning Competition (GPPC) with respect to
its runtime/memory trade-off.

Our first contribution in this paper is a generalization of
the ideas behind subgoal graphs to a framework that can be
specialized to different types of environments (represented
as weighted directed graphs) through the choice of a reacha-
bility relation. Intuitively, a reachability relation identifies
pairs of vertices for which a shortest path can be found
quickly. A subgoal graph can then be constructed as an over-
lay graph that is guaranteed to have edges only between ver-
tices that satisfy the reachability relation which allows one
to find shortest paths on the original graph quickly.

Our second contribution in this paper is the application
of this framework to state lattices. State lattices, similar to
grids, systematically discretize the environment and can be
considered as extensions of grids that can model kinematic
constraints (Pivtoraiko and Kelly 2005; Likhachev and Fer-
guson 2009; Kushleyev and Likhachev 2009). Under the as-
sumption that the environment does not contain any obsta-
cles (freespace assumption), the shortest paths between any
two vertices on state lattices can be computed quickly by us-
ing precomputed freespace distances. By exploiting the reg-
ular structure of state lattices, we can efficiently precompute
and store freespace distances, which allows us to special-
ize the general framework of subgoal graphs to state lattices
by using variants of freespace-reachability as the reacha-
bility relation. We provide preliminary results on (x, y, θ)-
state lattices, which show that subgoal graphs can be used to
speed up path planning on state lattices as well, although the
speed-up is not as significant as on grids.

Preliminaries and Notation

Our generalized framework of subgoal graphs is applicable
to any weighted directed graph G = (V,E, c), where V is
the set of vertices, E is the set of edges, and c : E → (0,∞)
is a function that assigns a non-negative length to each edge.
We use dG(s, t) to denote the s-t-distance on G, or simply
d(s, t) if G can be inferred from the context. We say that
a vertex u covers an s-t-path π = (v0 = s, . . . , vn = t)
(where, for all i = 1, . . . , n, (vi−1, vi) ∈ E) if and only
if u = vi for some i ∈ {1, . . . , n − 1}. (This implies that
u �= s and u �= t if π has no loops.) We assume that any edge
(u, v) ∈ E is the unique shortest u-v-path. This is not a lim-
iting assumption when finding shortest paths since any edge
(u, v) that does not satisfy the assumption can be removed
from the graph without changing the length of any shortest
path.

Subgoal Graphs: General Framework

In this section, we formally introduce the generalized ver-
sion of subgoal graphs. The general framework of sub-
goal graphs can be specialized to different types of graphs
through the choice of a reachability relation, which is de-
fined as follows.
Definition 1. (R-Reachability) Given a graph G =
(V,E, c), a reachability relation on G is a relation R ⊆
V × V that satisfies:
1. ∀s ∈ V , (s, s) ∈ R,
2. ∀(s, t) ∈ E, (s, t) ∈ R (edge property),
3. ∀(s, t) ∈ R, d(s, t) < ∞.

We use “t is R-reachable from s” and “s and t are R-
reachable” (if R is symmetric) as synonyms for (s, t) ∈ R.

The vertices of a subgoal graph, called subgoals, form a
subset of V that satisfies the following property: For any
two vertices s and t in V such that d(s, t) < ∞, at least
one shortest s-t-path can be split into R-reachable segments
by subgoals. This property can be captured in the following
definition.
Definition 2. (Shortest Path Cover) Given a graph G =
(V,E, c) and a reachability relation R on G, a set of ver-
tices C ⊆ V is an R-Shortest-Path-Cover (R-SPC) of G
if and only if, for all s, t ∈ V such that d(s, t) < ∞ and
(s, t) �∈ R, there exists a u ∈ C that covers at least one
shortest s-t-path.
Lemma 1. Given an R-SPC C of G = (V,E, c), for all
s, t ∈ V such that d(s, t) < ∞, the vertices in C split at
least one shortest s-t-path into R-reachable segments.

Proof. Let Π be a sequence of pairs of vertices, initialized
to ((s, t)). Let P be the procedure that operates on Π and
performs the following operation until Π no longer contains
a pair (u, v) �∈ R: Pick a pair (u, v) �∈ R and replace it with
the pairs (u, p), (p, v) for some p ∈ C that covers a shortest
u-v-path. Such p must exist since C is an R-SPC of G.
P terminates because (1) |V | is finite, (2) edge lengths are

positive, and (3) p �= u and p �= v since p covers a shortest
u-v-path.

After P terminates, all pairs (u, v) in Π satisfy (u, v) ∈ R
(otherwise, P would not have terminated). As P operates
on Π, it maintains the invariant that the concatenation of all
shortest u-v-paths of all pairs (u, v) in Π is a shortest s-t-
path, since p covers a shortest u-v-path when P replaces a
pair (u, v) with the pairs (u, p) and (p, v).

Lemma 1 implies that, in order to find a shortest s-t-
path using subgoal graphs, it is sufficient to have edges in
the (query) subgoal graph corresponding to all R-reachable
segments in a shortest s-t-path. This can be guaranteed by
adding edges between all pairs of R-reachable subgoals in
the preprocessing phase and, in the query phase, connecting
s to every subgoal (and t) that is R-reachable from s and
connecting t to every subgoal from which t is R-reachable.
However, with this construction, the resulting (query) sub-
goal graph can have redundant edges. We now define the
concept of direct-R-reachability, which avoids redundant
edges.

101

Definition 3. (Direct-R-Reachability) Given a graph G =
(V,E, c), a reachability relation R on G, and a subset
C ⊆ V , a direct reachability relation on G is a relation
DC(R) ⊆ V × V that satisfies: (s, t) ∈ DC(R) if and only
if (1) (s, t) ∈ R and (2) there does not exist a u ∈ C that
covers a shortest s-t-path.

For simplicity, we use “direct-R-reachable” instead of
DC(R)-reachable if C can be inferred from the context.

Lemma 2. An R-SPC C of G is also a DC(R)-SPC of G.

Proof. Let s, t ∈ V with d(s, t) < ∞ and (s, t) �∈ DC(R).
We show that there exists a vertex u ∈ C that covers a short-
est s-t path in G. If (s, t) �∈ R, then u must exist since C
is an R-SPC of G (Definition 2). Otherwise, u must exist
because otherwise (s, t) ∈ DC(R) (Definition 3).

We now formally define a subgoal graph and an s-t-query
subgoal graph. In the definitions below, R→

s denotes the set
of vertices that are R-reachable from s, and R←

s denotes the
set of vertices from which s is R-reachable.

Definition 4. (Subgoal Graph) Given a graph G =
(V,E, c), and a reachability relation R on G, a graph
S = (VS , ES , cS) is a subgoal graph on G with respect
to R if and only if: (1) VS is an R-SPC on G and (2) for all
u, v ∈ VS with u �= v, there exists an edge (u, v) ∈ ES with
cS(u, v) = dG(u, v) if and only if v is direct-R-reachable
from u.

Definition 5. (s-t-Query Subgoal Graph) Given a subgoal
graph S = (VS , ES , cS) on G with respect to reachability
relation R and start and goal vertices s, t ∈ V , the s-t-query
subgoal graph Ss,t = (V ′

S , E
′
S , c

′
S) is defined as follows:

• V ′
S = VS ∪ {s, t}

• E′
S = ES ∪ E→

s ∪ E←
t , where:

– E→
s = {(s, u) : u ∈ (DVS

(R)→s ∩ V ′
S) \ {s}}

– E←
t = {(u, t) : u ∈ (DVS

(R)←t ∩ V ′
S) \ {t}}

• ∀(u, v) ∈ E′
S , c′S(u, v) = dG(u, v)

Theorem 1. Given a graph G = (V,E, c), a reachabil-
ity relation R on G, a subgoal graph S = (VS , ES , cS) on
G with respect to R, and start and goal vertices s, t ∈ V ,
the s-t-distance on the s-t-query subgoal graph Ss,t =
(V ′

S , E
′
S , c

′
S) is equal to the s-t distance on G.

Proof. According to Definition 5, c′S(u, v) = dG(u, v) for
any edge (u, v) ∈ E′

S . Therefore, dSs,t(s, t) ≥ dG(s, t).
Consequently, dSs,t

(s, t) = ∞ if dG(s, t) = ∞. We now
prove that dSs,t

(s, t) = dG(s, t) if dG(s, t) < ∞.
According to Definition 4, VS is an R-SPC on G. Accord-

ing to Lemma 2, VS is also a DVS
(R)-SPC on G. Then, by

Lemma 1, the vertices of VS split at least one shortest s-t-
path into DVS

(R)-reachable segments. According to Defi-
nitions 4 and 5, Ss,t contains edges between all DVS

(R)-
reachable pairs u, v �= u ∈ V ′

S , with length dG(u, v). There-
fore, dSs,t

(s, t) = dG(s, t).

Algorithm 1 outlines how subgoal graphs can be used for
finding shortest paths. There are three main phases, and the
performance of each phase is affected by the choice of R:

Algorithm 1 Finding shortest paths using subgoal graphs.

1: function FindPath(G, S, s, t)
2: Construct the s-t-query subgoal graph (by identifying

all subgoals that are R-reachable from s and all subgoals
from which t is R-reachable)

3: Π ← find a shortest s-t-path on the s-t-query subgoal
graph

4: π := ()
5: for all pairs (ui, ui+1) ∈ Π, in increasing order of i do
6: π := append(π, R-Reachable-Path(ui, ui+1))
7: return π

(1) Connect (Line 2): Being able to quickly identify the sub-
goals that are R-reachable from a given start vertex (and the
subgoals from which a given goal vertex is R-reachable) al-
lows for the efficient construction of query subgoal graphs.
(2) Search (Line 3): Since the set of subgoals is required to
be an R-SPC, the choice of R affects the size of the resulting
subgoal graph, which in turn affects the runtime for finding a
high-level path on a query subgoal graph. (3) Refine (Lines
4-6): Since the high-level path contains only R-reachable
segments (since, by definition, query subgoal graphs con-
tain edges only between R-reachable vertices), being able
to quickly find paths between vertices that are known to be
R-reachable allows for the efficient refinement of the high-
level path into a low-level path.

Subgoal Graphs on Grids and

Freespace-Reachability

In this section, we review previous work on subgoal graphs,
and introduce the concept of freespace-reachability.

Subgoal graphs on grids have been developed as an en-
try to the GPPC, which uses the following specification for
grids: An agent can move from the center of an unblocked
cell to the center of an unblocked neighboring cell in any car-
dinal (with cost 1) or diagonal direction (with cost

√
2) with

the following exception: Diagonal moves are only possible
if the neighboring cells in both associated cardinal directions
are unblocked. For instance, in Figure 1 (b), the agent cannot
move from D4 to E3 since D3 is blocked.

On grids, one can make the freespace assumption by as-
suming that the grid contains no blocked cells. Figure 1(a)
shows all shortest s-t-paths under the freespace assump-
tion (freespace-s-t-paths). Each path has the same number
of diagonal moves and the same number cardinal moves,
which can be computed in constant time from the relative
positions of s and t. We use fd(s, t) to denote the dis-
tance between two vertices under the freespace assumption
(freespace distance). We say that two vertices s and t are
freespace-reachable (previously called h-reachable) if and
only if fd(s, t) = d(s, t). Equivalently, two vertices s and
t are freespace-reachable if and only if at least one of the
shortest freespace-s-t-paths is unblocked. We say that s and
t are safe-freespace-reachable if and only if all shortest
freespace-s-t-paths are unblocked.

Subgoal graphs on grids use safe-freespace-reachability

102

A B C D E F G H I J K

2

3

4

5

6

1

s

t

(a) Freespace paths.

A B C D E F G H I J K

2

3

4

5

6

1

s

t

(b) Query subgoal graph.

A B C D E F G H I J K

2

3

4

5

6

1

s

t

(c) Subgoals splitting a shortest path
into safe-freespace-reachable segments.

Figure 1: Subgoal graphs on grids.

as the reachability relation, which has the following advan-
tages: (1) The subgoals can be identified quickly by plac-
ing them at the convex corners of all obstacles since the
set of all convex corners of obstacles are a (safe-)freespace-
reachability-SPC (Uras, Koenig, and Hernández 2013). Fig-
ure 1(b) shows a subgoal graph and Figure 1(c) shows sub-
goals splitting a shortest path into safe-freespace-reachable
segments. (2) A high-level path found on the subgoal graph
can quickly be refined into a low-level path on the grid since,
given two vertices that are known to be safe-freespace-
reachable, a shortest path between them can be computed
by simply determining the number of cardinal and diago-
nal moves to get from one vertex to the other and executing
them in any order. (3) Subgoals that are direct-freespace-
reachable from any given vertex can be identified quickly by
using clearance values (Uras, Koenig, and Hernández 2013).
This operation can be used to identify the edges of a subgoal
graph as well as connect any given start and goal vertices to
the subgoal graph. (4) The freespace distance between two
vertices can be computed in constant time as the Octile dis-
tance, allowing one to avoid storing edge costs, which can
significantly reduce the memory requirement of storing the
subgoal graph.

State Lattices

State lattices can be used to model agents with kinematic
constraints. Vertices of a state lattice are defined by dis-
cretizing the environment into a grid, as well as discretiz-
ing other features of the agent, such as its orientation and
velocity. Each vertex u = (xu, yu, pu) in a state lattice rep-
resents the agent’s location, where a reference point on the
agent coincides with the center of the grid cell (xu, yu), as
well as the agent’s pose pu, which combines the remaining
discretized features of the agent.

The edges of a state lattice are defined by a precomputed
set of motion primitives that discretize the kinematically fea-
sible motions of the agent. Each motion primitive m is de-
fined by a tuple (psm, pem, xm, ym, lm, Cm), where psm is the
start pose of m, pem is the end pose of m, xm and ym are the
relative coordinates of the start and end cells of m, lm is the
length of m, and Cm is a set of cells, relative to the start cell,
that need to be unblocked in order to apply m. For any two
vertices s = (xs, ys, ps) and e = (xe, ye, pe) in the state lat-
tice, m induces an edge (s, e) with length lm if and only if:

(1) ps = psm, pe = pem, (2) xs +xm = xe, ys + ym = ye, and
(3) for all (x, y) ∈ Cm, the cell (xs+x, ys+y) is unblocked.

Figure 2(a) shows an (x, y, θ)-state lattice (where θ de-
notes the orientation of the agent) with four possible poses
for the agent (facing North, East, South, and West). For each
pose, the agent has three available motions: A straight mo-
tion that moves the agent one cell in the direction that it is
facing without changing its pose, and two motions that fol-
low quarter circles with radii of five cells, that change the
agent’s pose either clockwise or counterclockwise. We use
this set of motion primitives as a running example through-
out the paper as well as in our experiments.

Freespace-Reachability on State Lattices

Similar to grids, one can make the freespace assumption on
state lattices by assuming that the underlying grid contains
no blocked cells (and ignoring the boundaries of the envi-
ronment), which allows us to define freespace-reachability
on state lattices as follows: A vertex t is freespace-reachable
from a vertex s if and only if the s-t-distance on the state
lattice is equal to the freespace-s-t-distance. However, dif-
ferent from grids, it is not clear how to efficiently calculate
freespace distances on state lattices since they can be defined
with respect to an arbitrary set of motion primitives.

We therefore use precomputed freespace distances to im-
plement freespace-reachability on state lattices. Let s =
(xs, ys, ps) and t = (xt, yt, pt) be two vertices of the
state lattice. Ignoring the boundaries of the environment,
the freespace distance from s to t is equal to the freespace
distance from the vertex s′ = (0, 0, ps) to the vertex t′ =
(xt − xs, yt − ys, pt). Therefore, if we know the freespace
distances from a vertex (0, 0, p) to all other vertices, we
can easily determine the freespace distance from any ver-
tex (x, y, p) to any other vertex, for any value of x, y, and p.
We exploit this translation invariance of freespace distances
on state lattices to store the freespace distances between all
pairs of vertices in a (finite) state lattice using memory that
is only linear in the size of the underlying grid representa-
tion (and quadratic in the number of possible poses, as we
discuss below).

Given a grid with X rows and Y columns and a set of mo-
tion primitives defined for an agent with P possible poses,
we compute and store freespace distances between all pairs
of vertices as follows: For each possible pose p, we run Di-

103

2.5 π

1

2.5 π

(a) A set of three motion primitives for an
agent with four possible orientations.

(b) A shortest freespace
path.

(c) A shortest path. (d) A freespace-
reachability-SPC.

Figure 2: State lattices.

jkstra’s algorithm from (X ,Y, p) on a freespace state lattice,
where the underlying grid has dimensions 2X × 2Y and no
blocked cells, and store the distances to all other vertices.
This way, we store 4XYP2 distances since this freespace
state lattice has 2X × 2Y × P vertices and we store dis-
tances from (X ,Y, p) to all other vertices. The freespace
distance from any vertex s = (xs, ys, ps) to any other ver-
tex t = (xt, yt, pt) on the original state lattice can then be
determined by retrieving the stored distance from (X ,Y, ps)
to (X + xt − xs,Y + yt − ys, pt).

However, the memory requirements can still be pro-
hibitive. For instance, a state lattice with 16 possible poses
and a 512 × 512 grid requires around 1GB of memory
to store all freespace distances (we use 4 bytes for each
distance in our implementation). We therefore introduce
bounded-freespace-reachability: A vertex t is bounded-
freespace-reachable from a vertex s if and only if d(s, t) =
fd(s, t) ≤ b for a given bound b. This allows us to store the
freespace distances only up to the given bound, which re-
quires only a constant amount of memory for a given bound
b and a given set of motion primitives.

(Bounded-)safe-freespace-reachability can be imple-
mented on state lattices in a similar way: For a pair of
vertices (s, t), we store (in addition to the freespace-s-t-
distance) the number of predecessors of t that cover a short-
est freespace-s-t-path (we use 1 byte to store this informa-
tion in our implementation). We discuss in the next sec-
tion how these values, together with the freespace distances,
can be used to implement efficient methods for constructing
query subgoal graphs and refining high-level paths on query
subgoal graphs into low-level paths on state lattices.

Subgoal Graphs on State Lattices

As discussed in the previous section, there are four vari-
ants of freespace-reachability that we can use to construct
subgoal graphs on state lattices (regular, safe, and bounded
variants for both). Rather than committing to a reachabil-
ity relation, we experiment with all four variants. In the fol-
lowing subsections, we discuss three key methods for con-
structing and searching subgoal graphs and how these meth-
ods can be implemented for different variants of freespace-
reachability. We focus on regular freespace-reachability,
but also comment on how they can be extended to safe-

s

G

R-Reachable
Area

Direct-R-Reachable
Area

Fringe
Vertices

Figure 3: Illustration of the (direct-)R-reachable area around
a vertex.

freespace-reachability. The extensions to the bounded ver-
sions are straightforward.

Identifying Subgoals

On grids, the set of convex corners of obstacles is a
freespace-reachability-SPC, allowing one to quickly con-
struct a subgoal graph. On state lattices, however, this sub-
goal placement strategy does not work. Consider the two
paths shown in Figures 2(b) and 2(c) for an agent that moves
according to the motion primitives shown in Figure 2(a).
The path shown in Figure 2(b) is a freespace path, whereas
the path shown in Figure 2(c) is not, even though the rel-
ative locations and poses of the start and goal vertices in
both figures are the same. This example demonstrates that,
even if the underlying grid has no blocked cells (and there-
fore has no convex corners), the set of subgoals cannot be
empty since a subgoal is necessary to cover a shortest path
between the start and goal vertices in Figure 2(c) (accord-
ing to Definition 2). Figure 2(d) shows subgoals that satisfy
the requirements of a freespace-reachability-SPC (lines ex-
tend from the center of a cell in the direction that the agent is
facing). This example also demonstrates that walls (different
from the boundaries of the environment) can also introduce
subgoals, which might explain why subgoal graphs on state
lattices are not as effective as they are on grids, as we later
observe in the experimental results.

Remember that the set of subgoals has to be a freespace-
reachability-SPC and thus contain vertices that cover at least

104

one shortest path between any pair of vertices that are not
freespace-reachable. We construct such a set of subgoals C
incrementally, by iterating over all vertices s and adding ver-
tices to C that cover at least one shortest s-t-path for any t
with d(s, t) < ∞ and (s, t) �∈ R. As illustrated in Figure 3,
the set of all freespace-reachable vertices from s form an
area around s. Any shortest s-t-path that leaves this area has
to contain a vertex that is freespace-reachable from s, imme-
diately followed by a vertex that is not freespace-reachable
from s. It is sufficient to cover at least one shortest path
to any of these vertices (the ones that are not freespace-
reachable from s) in order to cover at least one shortest
path to all vertices that are not freespace-reachable from s.
However, there might already be subgoals in C (shown as
blue dots) that cover shortest paths to some of these ver-
tices. We call the remaining vertices the fringe vertices, for-
mally defined as follows: A vertex t is a fringe vertex of s
(with respect to the current elements of C) if and only if (a)
(s, t) �∈ R (where R is freespace-reachability), (b) no short-
est s-t-path is covered by a vertex u ∈ C, and (c) there exists
a shortest s-t-path π = (v0, . . . , vn) with (s, vn−1) ∈ R.

To decide which vertices to add to C to cover shortest
paths originating at vertex s, we first run a modified ver-
sion of Dijkstra ’s algorithm from s to identify the set of
fringe vertices. We then greedily add vertices to C that cover
shortest paths to fringe vertices. We omit the specifics of our
vertex selection strategy (both due to space restrictions and
because it is still work in progress). We basically assign a
score to every vertex u that covers a shortest path from s to a
fringe vertex, pick the vertex that maximizes this score, add
it to C, update the set of fringe vertices, and repeat this pro-
cedure until the set of fringe vertices is empty. The score of
a vertex u is based on the number of fringe vertices that can
be eliminated when adding it to C as well as its distances
to these fringe vertices. We have observed that the succes-
sors of s get the highest scores if we only use the number of
fringe vertices eliminated.

Identifying Direct-Freespace-Reachable Subgoals
from a Given Vertex

In this section, we describe how to connect given start and
goal vertices to the subgoal graph to create a query subgoal
graph. Algorithm 2 identifies a superset of direct-freespace-
reachable subgoals from a given start vertex s. A modified
version of Algorithm 2 can be used to connect the goal to
the subgoal graph in a similar way.

A straightforward way of identifying exactly the set of
freespace-reachable subgoals from a given start vertex s
would be to run a variant of Dijkstra’s algorithm from s that
ignores any vertex u that is not freespace-reachable from s
(which can be determined by checking if g(u) �= fd(s, u)).
This algorithm can be further modified to identify exactly
the set of direct-freespace-reachable subgoals from s by
maintaining covered(u) values for every generated vertex
u, which specify whether the search has found a shortest s-
u-path that is covered by a subgoal. At the end of the search,
the set of all expanded subgoals u with covered(u) = false
is the set of direct-freespace-reachable subgoals from s. The
search can be terminated when all vertices in OPEN have

Algorithm 2 Identifying Direct-Freespace-Reachable Sub-
goals

1: function IdentifyDFRSubgoals(G, C, s)
2: for all u ∈ V do
3: g(u) := ∞, covered(u) := false
4: g(s) := 0
5: OPEN := {s} // Implemented as a FIFO-queue for BFS
6: CLOSED := {}
7: D := {} // direct-freespace-reachable subgoals
8:
9: Invariant: ∀u ∈ OPEN, u is freespace-reachable from s

10: while OPEN contains a vertex u with ¬ covered(u) do
11: u := any vertex in OPEN
12: Move u from OPEN to CLOSED
13: if u ∈ C \ {s} ∧ ¬ covered(u) then
14: D := D ∪ {u}
15: for all successors v of u such that v �∈ CLOSED do
16: if g(u) + c(u, v) = fd(s, v) then
17: g(v) := fd(s, v)
18: if covered(u) ∨ u ∈ C \ {s} then
19: covered(v) := true
20: if v �∈ OPEN then
21: Add v to OPEN
22: return D

covered(u) = true since all new vertices v generated after-
wards also have covered(v) = true and thus are not direct-
freespace-reachable from s.

We only need to determine a superset of all subgoals
that are direct-freespace-reachable from s. Algorithm 2 uses
all techniques discussed above, but also changes the search
method from Dijkstra’s algorithm to breadth-first search to
avoid having to maintain a priority queue. The expansion
order of Dijkstra’s algorithm guarantees that g(u) = d(s, u)
when a vertex u is expanded. However, since we are only in-
terested in expanding vertices u that are freespace-reachable
from s (that is, for which d(s, u) = fd(s, u)), we can ensure
that all vertices u placed in OPEN have g(u) = d(s, u) =
fd(s, u) (Line 16), which allows us to expand the vertices
in any order while ensuring that g(u) = d(s, u) when u is
expanded.

The expansion order of Dijkstra’s algorithm also guar-
antees that any vertex v that covers a shortest s-u-path
is expanded before u, which in turn guarantees that the
covered(u) values are propagated correctly. By using
breadth-first search instead of Dijkstra’s algorithm, Algo-
rithm 2 no longer has this guarantee and can fail to label
some vertices as covered, therefore returning a superset of
the direct-freespace-reachable subgoals from s.

A possible modification of Algorithm 2 is to avoid using
covered(u) values, terminate the search only when OPEN
is empty, and not expand any subgoals (since their children
are not direct-freespace-reachable). However, in our experi-
ments, we have observed that maintaining covered(u) val-
ues to terminate the search early is significantly more effi-
cient.

105

(a) State lattice has 68,208
vertices and 135,310 edges.

Subgoal Graph Prep. Memory Avg. Query Time (ms) Speed
Vertices Edges Time (s) (MB) Connect Search Refine up

FR-25 16,304 63,642 2.14 0.58 0.027 2.256 0.093 2.45
FR-50 8,461 75,477 8.02 0.98 0.117 1.204 0.081 4.15
FR-75 8,377 75,188 9.39 1.74 0.137 1.189 0.083 4.14

FR-100 8,378 75,609 9.26 2.80 0.150 1.242 0.087 3.94
FR-inf 8,427 74,796 9.89 19.61 0.138 1.164 0.084 4.20

SFR-25 16,645 64,478 2.08 0.62 0.013 2.235 0.092 2.49
SFR-50 11,054 72,196 5.25 1.15 0.032 1.583 0.093 3.41
SFR-75 10,986 71,996 5.96 2.09 0.030 1.436 0.086 3.75

SFR-100 10,916 73,257 5.58 3.43 0.031 1.370 0.079 3.94
SFR-inf 10,944 72,689 6.27 24.44 0.030 1.387 0.088 3.87

(b) Preprocessing time, memory consumption, and query time.

Figure 4: Results on den005d.

We can also modify Algorithm 2 to identify direct-safe-
freespace-reachable subgoals from s by keeping track of the
number of direct-safe-freespace-reachable predecessors for
every generated vertex and only adding a vertex to OPEN
if (1) it is not a subgoal and (2) both its distance from s
and its number of direct-safe-freespace-reachable predeces-
sors match their respective values in the freespace. This vari-
ant does not need to maintain covered(u) values, terminates
when OPEN is empty, and guarantees to never expand a
vertex u that is not direct-safe-freespace-reachable from s
(proof omitted).

Finding Freespace-Reachable Paths

In this section, we describe how to find a shortest path from a
vertex s to a vertex t that is known to be freespace-reachable
from s. The efficiency of this operation determines the time
needed for refining a high-level path on a query subgoal
graph into a low-level path on the state lattice.

Our proposed algorithm (pseudocode omitted) is a depth-
first search that only generates a successor v of an expanded
vertex u if fd(s, u) + c(u, v) + fd(v, t) = fd(s, t). This rule
effectively prunes any vertex u with fd(s, u) + fd(u, t) �=
fd(s, t) (which is justified since then u cannot cover a short-
est freespace-s-t-path) and guarantees that any expanded
vertex u satisfies g(u) = fd(s, u) (similar to Algorithm 2).
The expansion order of depth-first search also allows the
search to find a path quickly. This algorithm can also be used
unchanged to find shortest paths between safe-freespace-
reachable vertices. Since safe-freespace-reachability guar-
antees that all shortest freespace-s-t-paths are unblocked on
the state lattice, the depth-first search is guaranteed to find a
shortest path without backtracking.

Experimental Results

We provide preliminary results on our application of subgoal
graphs to state lattices, on three different maps (Figures 4,
5, and 6) from Nathan Sturtevant’s benchmarks (Sturte-
vant 2012a). For each map, we first construct a state lat-
tice using the motion primitives shown in Figure 2(a)
and then construct subgoal graphs with respect to ei-
ther bounded-freespace-reachability (FR) or bounded-safe-
freespace-reachability (SFR) with bounds of 25, 50, 75, 100,
and infinity (that is, (safe-)freespace-reachability with no

bound). The subgoal graphs are named by combining the
reachability relation and the bound. For instance, FR-25 de-
notes a subgoal graph constructed with respect to bounded-
freespace reachability with bound 25. For each map, we gen-
erate 1,000 random instances by selecting random start and
goal states. We use Dijkstra’s algorithm (implemented with
a binary heap as priority queue) for searching both query
subgoal graphs and state lattices. The experiments were run
on a PC with a 2.6GHz Intel i7-4720HQ CPU and 16GB of
RAM.

For each map and each subgoal graph constructed for the
map, we report the number of vertices and edges of the
subgoal graph, the memory required to store the subgoal
graph (including memory required to store freespace dis-
tances and, for SFR, the number of direct-safe-freespace-
reachable predecessors), preprocessing time, query time (di-
vided into the time for connecting the start and goal vertices
to the subgoal graph, searching the query subgoal graph, and
refining the high-level path on the query subgoal graph into
a low-level path on the state lattice), and speed-up achieved
over running Dijkstra’s algorithm on the state lattice.

The results show that search with subgoal graphs can
speed up path planning on state lattices by roughly ∼2-4
times. This speed up is not as impressive as the speed up
gained by using subgoal graphs on grids (where it can be, for
example, ∼25 times on game maps), which can be attributed
to the sizes of the subgoal graphs relative to the size of the
state lattice. For instance, ∼12.2% of all vertices of den005d
are subgoals (in the best case, using FR-75). ∼19.3% of all
vertices are subgoals for 64room-000 (in the best case, us-
ing FR-100), and the subgoal graph has ∼4.5 times as many
edges as the state lattice. This can be explained by our previ-
ous observation that even the walls of a room can introduce
subgoals.

The query time is dominated by the time to search the
query subgoal graph, whereas the connect and refine times
are relatively small in comparison. This suggests that speed-
ing up searches on subgoal graphs by a given factor (such
as by using A* searches with a good heuristic or other tech-
niques which we outline as part of our future work) could
improve the overall query time by almost the same factor.

In general, SFR subgoal graphs have more subgoals
than FR subgoal graphs (for the same bound), and using

106

(a) State lattice has 914,512
vertices and 1,633,280

edges.

Subgoal Graph Prep. Memory Avg. Query Time (ms) Speed
Vertices Edges Time (s) (MB) Connect Search Refine up

FR-25 231,965 857,801 23.44 6.07 0.017 58.085 0.105 3.27
FR-50 178,605 978,677 119.07 6.38 0.043 53.932 0.110 3.52
FR-75 177,665 982,573 193.73 7.14 0.043 55.766 0.109 3.41

FR-100 177,868 983,003 246.44 8.20 0.043 55.948 0.108 3.40
FR-inf 178,319 983,459 433.41 69.67 0.045 59.470 0.106 3.20

SFR-25 279,275 864,472 21.78 6.68 0.009 84.345 0.111 2.26
SFR-50 269,600 874,475 56.06 7.17 0.010 78.105 0.106 2.44
SFR-75 269,984 874,592 65.10 8.12 0.009 76.770 0.101 2.48

SFR-100 270,012 875,360 68.39 9.45 0.010 77.995 0.100 2.44
SFR-inf 270,346 874,413 69.91 86.27 0.010 88.000 0.109 2.16

(b) Preprocessing time, memory consumption, and query time.

Figure 5: Results on random512-10-0.

(a) State lattice has 984,512
vertices and 2,640,088

edges.

Subgoal Graph Prep. Memory Avg. Query Time (ms) Speed
Vertices Edges Time (s) (MB) Connect Search Refine up

FR-25 496,856 3,361,203 153.75 18.65 0.022 134.086 0.144 1.62
FR-50 286,161 8,603,245 1692.02 36.69 0.599 98.866 0.140 2.18
FR-75 213,856 11,937,807 4998.03 49.34 2.590 94.418 0.192 2.24

FR-100 190,218 11,337,573 5009.79 47.84 2.921 77.960 0.209 2.68
FR-inf 190,371 11,355,569 5235.48 109.37 3.624 90.567 0.234 2.30

SFR-25 497,154 3,385,113 140.03 18.79 0.013 134.548 0.136 1.61
SFR-50 300,484 8,785,303 1593.41 37.70 0.071 112.922 0.126 1.92
SFR-75 225,687 13,785,215 4538.78 56.86 0.702 109.575 0.141 1.97

SFR-100 215,867 14,039,801 4540.00 59.05 0.770 97.855 0.142 2.20
SFR-inf 215,926 14,039,151 4459.24 135.87 0.779 102.561 0.138 2.10

(b) Preprocessing time, memory consumption, and query time.

Figure 6: Results on 64room-000.

higher bounds results in fewer subgoals. This can be ex-
plained as follows: Safe-freespace-reachability is a stronger
reachability relation than freespace-reachability, in the sense
that any pair of vertices that are safe-freespace-reachable
are also freespace-reachable (but not vice versa). In the
same sense, bounded-safe-freespace-reachability becomes
stronger as the bound gets smaller. A stronger reachability
relation implies that there are more pairs of vertices that do
not satisfy the reachability relation, which requires the intro-
duction of more subgoals in order to cover the shortest paths
between them.

Conclusions and Future Work

We have introduced a general framework for subgoal graphs
that can be specialized through the choice of different reach-
ability relations, and applied this framework to state lattices
by using variants of freespace-reachability as the reachabil-
ity relation.

Although our preliminary experimental results demon-
strate a small speed-up, we think that it is possible to achieve
larger speed-ups through better subgoal graph construction
strategies, which we consider as future work. For example,
we plan to investigate a less greedy construction strategy that
performs multiple freespace-reachable area explorations at
the same time and identifies subgoals in a more informed
way. We also plan to investigate a different construction
strategy through vertex contractions, that initializes the sub-
goal graph to the original graph and then removes subgoals

while maintaining the invariant that the set of subgoals is a
freespace-reachability-SPC.

Subgoal graphs could also be used as a base graph for
more involved preprocessing strategies. We plan to investi-
gate constructing contraction hierarchies on subgoal graphs
(as opposed to N -level subgoal graphs, which is the sub-
goal graph entry in GPPC), where we allow the addition of
extra edges only between freespace-reachable subgoals to
avoid having to store edge lengths and refinement informa-
tion. Finally, given that only a small percentage of vertices
of the original graph become subgoals (especially on grids),
it might be possible to develop a memory-friendly version
of hub-labeling that only stores labels for the subgoals.1

Acknowledgments

The research at USC was supported by NSF under grant
numbers 1409987 and 1319966. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations,
agencies or the U.S. government.

References

Abraham, I.; Fiat, A.; Goldberg, A. V.; and Werneck, R. F.
2010. Highway dimension, shortest paths, and provably ef-

1We thank Ben Strasser for his suggestion, as well as helpful
discussions over the years.

107

ficient algorithms. In Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms, 782–793.
Abraham, I.; Delling, D.; Goldberg, A. V.; and Werneck,
R. F. 2011. A hub-based labeling algorithm for shortest
paths in road networks. In Proceedings of the International
Symposium on Experimental Algorithms, 230–241.
Antsfeld, L.; Harabor, D. D.; Kilby, P.; and Walsh, T. 2012.
Transit routing on video game maps. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2–7.
Arz, J.; Luxen, D.; and Sanders, P. 2013. Transit node rout-
ing reconsidered. In Proceedings of the International Sym-
posium on Experimental Algorithms, 55–66.
Bast, H.; Funke, S.; and Matijevic, D. 2006. Transit ultrafast
shortest-path queries with linear-time preprocessing. In 9th
DIMACS Implementation Challenge – Shortest Paths.
Bauer, R., and Delling, D. 2009. Sharc: Fast and robust uni-
directional routing. Journal of Experimental Algorithmics
14:4.
Demetrescu, C.; Goldberg, A.; and Johnson, D. 2006. 9th
dimacs implementation challenge–shortest paths.
Dibbelt, J.; Strasser, B.; and Wagner, D. 2014. Customizable
contraction hierarchies. In Proceedings of the International
Symposium on Experimental Algorithms, 271–282.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierar-
chical routing in road networks. In Proceedings of the Inter-
national Workshop on Experimental Algorithms, 319–333.
Goldberg, A. V.; Kaplan, H.; and Werneck, R. F. 2006.
Reach for a*: Efficient point-to-point shortest path algo-
rithms. In Proceedings of the Workshop on Algorithm En-
gineering and Experiments, 129–143.
Goldberg, A. V.; Kaplan, H.; and Werneck, R. F. 2009.
Reach for a*: Shortest path algorithms with preprocessing.
The Shortest Path Problem: Ninth DIMACS Implementation
Challenge 74:93–139.
Gutman, R. J. 2004. Reach-based routing: A new approach
to shortest path algorithms optimized for road networks. In
Proceedings of the Workshop on Algorithm Engineering and
Experiments and the Workshop on Analytic Algorithmics
and Combinatorics, 100–111.
Hilger, M.; Köhler, E.; Möhring, R. H.; and Schilling, H.
2009. Fast point-to-point shortest path computations with
arc-flags. The Shortest Path Problem: Ninth DIMACS Im-
plementation Challenge 74:41–72.
Kushleyev, A., and Likhachev, M. 2009. Time-bounded lat-
tice for efficient planning in dynamic environments. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, 1662–1668.
Lauther, U. 2004. An extremely fast, exact algorithm
for finding shortest paths in static networks with geograph-
ical background. Geoinformation und Mobilität-von der
Forschung zur praktischen Anwendung 22:219–230.
Likhachev, M., and Ferguson, D. 2009. Planning long dy-
namically feasible maneuvers for autonomous vehicles. The
International Journal of Robotics Research 28(8):933–945.

Pivtoraiko, M., and Kelly, A. 2005. Generating near min-
imal spanning control sets for constrained motion planning
in discrete state spaces. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
3231–3237.
Sanders, P., and Schultes, D. 2005. Highway hierarchies
hasten exact shortest path queries. In Proceedings of the
European Symposium on Algorithms, 568–579.
Sanders, P., and Schultes, D. 2006. Engineering highway
hierarchies. In Proceedings of the European Symposium on
Algorithms, 804–816.
Storandt, S. 2013. Contraction hierarchies on grid graphs.
In Proceedings of the German Conference on Artificial In-
telligence, 236–247.
Sturtevant, N. 2012a. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Sturtevant, N. 2012b. Grid-based path-planning competi-
tion.
Uras, T., and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Proceedings of the AAAI Conference
on Artificial Intelligence, 878–884.
Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal
graphs for optimal pathfinding in eight-neighbor grids. In
Proceedings of the International Conference on Automated
Planning and Scheduling.

108

