
An Analysis and Enhancement of the Gap Heuristic for the Pancake Puzzle

Richard Valenzano
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

rvalenzano@cs.toronto.edu

Danniel Sihui Yang
Department of Computer Science

University of Toronto
Toronto, Ontario, Canada

dannielyang1996@gmail.com

Abstract

The pancake puzzle is a standard benchmark domain used
to test search algorithms, and the gap heuristic is the state-
of-the-art heuristic function most often used in such tests.
In this work, we analyze the accuracy of this heuristic and
identify ways to enhance it. We begin by showing that in the
worst-case, the amount that the gap heuristic underestimates
the optimal cost of a pancake puzzle state can be linear in the
number of pancakes in the stack. However, empirical analysis
suggests that it is extremely rare that the gap heuristic under-
estimates the optimal cost by more than two. We then iden-
tify several simple methods that can be used to generate large
sets of problems on which the gap heuristic underestimates
the optimal cost by a larger amount than it typically does on
random permutations. In doing so, we provide new pancake
puzzle test sets that can be used to evaluate how search algo-
rithms behave when the heuristic is inaccurate.
We also formally characterize states according to the size
of the heuristic plateaus around them. This characterization
allows us to efficiently compute a two-step lookahead of
the gap heuristic on any state, which we can use alongside
a state’s dual to further improve heuristic accuracy. These
enhancements substantially improve the performance of an
IDA∗-based pancake problem solver on both the existing
benchmarks and the new ones proposed in this paper.

1 Introduction

The pancake puzzle (Gates and Papadimitriou 1979) is a
classic combinatorial problem that is related to a number of
applications, including routing in a parallel computer (Qiu,
Meijer, and Akl 1991) and the calculation of genome simi-
larity (Hayes 2007). In this problem, a chef must sort a stack
of pancakes in increasing size from top to bottom, given a
spatula that can be used to flip some portion of the top of
the stack, using as few flips as possible. The pancake puz-
zle has been extensively studied by the algorithms commu-
nity (Gates and Papadimitriou 1979; Heydari and Sudbor-
ough 1997; Chitturi et al. 2009; Fischer and Ginzinger 2005;
Bulteau, Fertin, and Rusu 2015), and has become a stan-
dard benchmark for comparing and analyzing search al-
gorithms (Bouzy 2015; Lippi, Ernandes, and Felner 2016;
Zahavi et al. 2008). This is due in part to the problem’s sim-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plicity, and that it has a higher branching factor than other
standard domains like the sliding tile puzzle.

The heuristic function most often used in such work is the
gap heuristic (Helmert 2010), which is generally viewed as
being very accurate. In this paper, we analyze this heuristic
in an effort to increase our understanding of its properties
and thereby better equip researchers who are using the pan-
cake puzzle to evaluate a search algorithm. Our empirical
analysis shows that the gap heuristic is accurate on a very
high percentage of states, and rarely underestimates the op-
timal cost of a randomly generated state by more than two.
However, the gap heuristic can be much more inaccurate,
which we show by using existing results on the diameter of
the pancake puzzle to prove that the worst-case heuristic er-
ror of any state with N pancakes grows linearly with N .
We then define several methods for generating large sets of
states with a higher average heuristic error than random per-
mutations. In doing so, we have provided new benchmarks
that can be used to evaluate search algorithms on problems
with a high branching factor on which the heuristic is not
almost always providing nearly perfect estimates.

We have also formally studied the local search topology of
the gap heuristic. In particular, we classify states according
to their distance from the nearest state with a lower heuristic
value and show that there are no heuristic local minima. We
then identify that the topology of the gap heuristic allows us
to efficiently compute the value of a one or two step looka-
head from every state, and thereby improve the admissible
heuristic estimates being used by the search. This efficient
lookahead can be combined with methods for exploiting a
state’s dual, and the resulting enhancements are shown to
substantially decrease search time when used on both the
existing and new benchmark problems.

2 Background

In this section, we provide background on the pancake prob-
lem and define the notation used in the rest of the paper.

Sequences and Permutations. We represent a sequence
σ of k elements from some set as σ = 〈e1, ..., ek〉. We use
σ[i] to refer to the i-th element of σ (i.e. σ[i] = ei). No-
tice that the first element in the permutation is at location
1, which is the convention in the pancake puzzle literature.
If σ′ = 〈g1, ..., gk′〉 is a second sequence, then σ ◦ σ′ de-

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

109

notes the concatenation of these sequences. This means that
σ ◦ σ′ = 〈e1, ..., ek, g1, ..., gk′〉.

A permutation π of size N is a sequence of the natural
numbers from 1 to N , such that each element in the sequence
is unique. The dual or inverse of a permutation π, is defined
as the permutation πD where for every 1 ≤ i, j ≤ N , if
π[i] = j then πD[j] = i. For example, 〈3, 1, 2〉 is the dual
of 〈2, 3, 1〉. Intuitively, π[i] refers to the natural number at
location i of π, and πD[j] refers to the location of j in π.

The Pancake Puzzle. An N -pancake puzzle state is a
stack of N different sized pancakes, which is represented by
a permutation of size N . The natural number i in this per-
mutation refers to the i-th smallest pancake, and the order of
the numbers in the permutation corresponds to the order of
the pancakes in the stack from top to bottom. For example,
〈2, 1, 4, 3〉 represents a 4-pancake state in which the second
smallest pancake is at the top of the stack.

In any N -pancake state π, there are N − 1 applicable
actions or moves, given by M2, M3, ..., MN , and we use
Mi(π) to denote the permutation that is the result of ap-
plying action Mi to π. Each action Mi reverses the order
of the first i values in the stack. Formally, this means that
Mi(π)[j] = π[i−j+1] for every j ≤ i, and Mi(π)[j] = π[j]
for every j > i. For example, M3(〈2, 1, 4, 3〉) = 〈4, 1, 2, 3〉.
Definition 1. Given N -pancake state πinit, the N -pancake
puzzle task is to find the shortest or optimal sequence of
actions that transforms πinit into state πgoal = 〈1, 2, ..., N〉.

The N -pancake puzzle task has been shown to be NP-hard
(Bulteau, Fertin, and Rusu 2015). For any N , the diameter
of the N -pancake puzzle — defined as the longest optimal
solution to any N -pancake state — is known to be at least
� 15
14 ·N� (Heydari and Sudborough 1997) and no more than

� 18
11 ·N� (Chitturi et al. 2009). A 2-approximation algorithm

has also been given by Fischer and Ginzinger (2005).

State-Space Search, Heuristics, and IDA∗. From the
perspective of state-space search, the pancake puzzle task
involves finding the lowest cost solution from state πinit to
state πgoal in a unit-cost state-space with N ! states. The
state-space is also undirected since applying the same flip
twice in a row merely undoes the effect of the original flip.

A state π′ is said to be a neighbour of state π if there
exists an action Mi such that Mi(π) = π′. We also use
h∗(π) to denote the cost of the optimal solution path start-
ing at π. A node n is given by a state, denoted by n.state,
and a sequence of flips, called a path, that leads to π from
πinit. The cost of this path is referred to by g(n). Node n′
is called a child of node n if there is an action Mi such that
n′.state = Mi(n.state) and the path to n′ is given by the
path to n with the addition of action Mi.

A heuristic function h is a function from the set of states
to the set of non-negative real numbers. A heuristic function
h is admissible if for every state π, h(π) ≤ h∗(π). In an
undirected unit-cost state-space, h is consistent if for every
pair of neighbouring states π and π′, |h(π)− h(π′)| ≤ 1. If
admissible h, we also define the absolute heuristic error or
AHE of h on state π as h∗(π)− h(π).

IDA∗ (Korf 1985) is an algorithm which iteratively per-
forms a sequence of threshold-limited depth-first searches.
Given heuristic h, the initial threshold is set as h(πinit). Dur-
ing each iteration, node n is pruned if its f -cost, defined as
f(n) = g(n) + h(n.state), is larger than the current thresh-
old. The threshold for iteration i + 1 is set as the minimum
f -cost of all nodes pruned during iteration i. IDA∗ is guar-
anteed to return optimal solutions if h is admissible.

The Gap Heuristic. We define the gap heuristic (Helmert
2010), which we denote by hG, using the extended permu-
tation πe of π. Permutation πe is defined as π ◦〈N+1〉. The
value N+1 can be thought of as the plate below the pancake
stack, though we often refer to it as the N + 1-st pancake.
Moreover, due to the one-to-one correspondence between π
and πe we often refer to π[N + 1], the “N + 1-st pancake”
of π, or “location N + 1” in π.

For any j where 1 ≤ j ≤ N , an adjacency is said to occur
in πe between locations j and j + 1, or between pancakes
πe[j] and πe[j+1], if |πe[j]−πe[j+1]| = 1. A gap is said
to occur between those locations (or those pancakes) if an
adjacency does not occur. The value of hG(π) is then given
by the count of the number of gaps in πe:

hG(π) = |{j | 1 ≤ j ≤ N, |πe[j]− πe[j + 1]| > 1}|
Since any action can only add or remove at most one gap and
there are no gaps in πgoal, hG is admissible and consistent.

If action Mi removes a gap when applied to state π (i.e.
hG(Mi(π)) = hG(π)−1), then Mi is called a gap decreas-
ing move in π. Similarly, Mi is a gap increasing move if it
introduces a gap, while if it replaces one gap with another or
one adjacency with another, Mi is a gap neutral move.

We note that action Mi will move π[1] on top of π[i+ 1],
and so determining if Mi is a gap decreasing, increasing, or
neutral move merely involves checking if |π[1]−π[i+1]| =
1, and if there is a gap between pancakes π[i] and π[i + 1].
This allows for a constant time computation of the difference
between hG(Mi(π)) and hG(π). Given π and hG(π), we
can therefore efficiently calculate hG(Mi(π)) without gen-
erating Mi(π). This incremental computation of hG, which
we use in our experiments, is a well-known optimization that
has previously shown to be important in the sliding tile puz-
zle (Korf 1985; Burns et al. 2012).

Observe that there are always at most two gap decreasing
moves in any state. This is because Mi can only resolve a
gap (if one exists) between locations i and i + 1 if π[1] is
adjacent to π[i+1] in πgoal, and this is only true if π[i+1] =
π[1] + 1 or π[i + 1] = π[1] − 1. However, in many states
there are no gap decreasing moves. These states are said to
be locked. In such states, we can show the following:
Lemma 2.1. There is at least one gap neutral action in any
non-goal state that is locked.

This holds because we can always replace one gap or ad-
jacency with another in such states. A complete proof can be
found in a technical report (Valenzano and Yang 2017).

3 The Accuracy of the Gap Heuristic

In this section, we demonstrate that while the gap heuristic is
very accurate on random permutations, it can be much more

110

AHE of hG

N 0 1 2 3

16 369 581 49 1
20 335 621 44 0
24 332 642 26 0
28 338 647 15 0
40 340 650 10 0
50 386 609 5 0
60 363 636 1 0

(a) AHE of hG on 1, 000 ran-
dom permutations per N .

Heuristic Function
AHE hG LD LDD 2LD 2LDD

0 205, 330, 493 216, 267, 458 224, 031, 821 221, 584, 129 231, 096, 110
1 246, 800, 263 241, 319, 635 237, 261, 313 238, 902, 035 233, 210, 974
2 26, 213, 570 21, 050, 960 17, 482, 806 18, 289, 424 14, 566, 568
3 648, 977 360, 630 224, 202 224, 908 127, 456
4 8, 216 2, 906 1, 457 1, 103 491
5 80 10 0 0 0

(b) AHE of different heuristics over all 12-pancake states.

Table 1: The number of states with different AHE values on random permutations and the 12-pancake puzzle.

inaccurate. We also formally and experimentally investigate
the worst-case AHE of hG for any pancake problem size N .

3.1 Accuracy on Random Permutations

We begin by analyzing the accuracy of hG on random per-
mutations, since this is the standard method for construct-
ing pancake puzzle test sets. We generated and solved 1, 000
random permutation for seven values of N ranging from 16
to 60. For each tested N , Table 1a shows a count of the num-
ber of the 1, 000 states with each AHE. No permutation had
an AHE of more than 3. For all tested N , hG was perfect
for between 33% and 39% of the problems, and off by no
more than one for between 95% and 99.9% of the problems.
The standard deviation of the AHE also decreases as N in-
creases, from 0.57 when N = 16 to 0.48 when N = 60.

While we never encountered a random permutation with
an AHE of hG over 3, an exhaustive search of the 12-
pancake puzzle shows that the AHE of hG can be higher.
This can be seen in column two of Table 1b, which shows
the number of states with each AHE value encountered. The
table shows that the AHE can get as high as 5 in the 12-
pancake puzzle. However, states with an AHE of 3 or more
are exceedingly rare, consisting of only 0.13% of states.

3.2 Bounds on the Worst-Case AHE of hG

Let us now consider just how inaccurate the gap heuristic
can get, by providing bounds on the worst-case AHE.

Theorem 3.1. The maximum AHE over all N -pancake
states is no smaller than � 1

14 ·N� and no larger than � 9
11 ·N�.

Proof. For the lower bound, recall that Heydari and Sudbor-
ough (1997) identified a family of states, where the state of
size N has an optimal cost of at least � 15

14 ·N�. Since these
states have N gaps, they guarantee the existence of a state
with an AHE of at least � 15

14 ·N� −N = � 1
14 ·N�.

For the upper bound, let π be the N -pancake state with
maximum AHE. By Chitturi et al.’s bound (2009) on the di-
ameter of the the N -pancake puzzle, h∗(π) ≤ � 18

11 · N�.
Since Fischer and Ginzinger’s 2-approximation algorithm
(2005)always finds a solution in at most 2 · hG(π) moves,
h∗(π) ≤ 2 ·hG(π). As such, if hG(π) = j, then the AHE of
π is at most min(2 · j, � 18

11 ·N�)− j. This expression hits its

maximum at the largest value of j for which 2 ·j ≤ � 18
11 ·N�,

at which point the expression has a value of � 9
11 ·N�.

While Theorem 3.1 guarantees that the worst-case AHE
of hG grows linearly with N , there is still a discrepancy be-
tween the upper and lower bounds provided. To better un-
derstand the actual worst-case AHE, we performed an ex-
haustive search on all states for N ≤ 12. These experiments
showed that the worst-case AHE is exactly �N

2 �−1 for every
N ≤ 12. For larger values of N , we use a particular state,
denoted by FG2

N , to provide lower bounds on the worst-case
AHE. For an even N , FG2

N = 〈2, 1, 4, 3, ..., N,N − 1〉. We
have solved this problem, which has N/2 gaps, up to size 28.
For every N ≤ 18, h∗(FG2

N) = N − 1 and so the worst-
case AHE of hG for any N where 13 ≤ N ≤ 19 is at least
�N

2 � − 1.1 For 20 ≤ N ≥ 28, this pattern does not hold, as
h∗(FG2

N) < N−1 in this range. However, our experiments
with FG2

N does show that the worse-case AHE of hG is at
least 8 for 20 ≤ N ≤ 23 and at least 9 for 24 ≤ N ≤ 28.

We note that FG2
N is based on a burnt pancake state often

denoted by −IN . This puzzle is a variant of the standard
pancake puzzle, in which each pancake p has an orienta-
tion of either +p or −p, and a pancake’s orientation changes
when it is flipped (Gates and Papadimitriou 1979). The burnt
pancake state −IN , which is given by 〈−1,−2, ...,−N〉,
was conjectured to have the longest optimal solution cost of
any N burnt pancake state (Cohen and Blum 1995), though
this has been shown to be false (Heydari and Sudborough
1997). FG2

2N can be constructed from −IN by replacing
each −i entry in −IN with two entries 〈2i + 1, 2i〉. How-
ever, the optimal cost for FG2

2N can be lower than for −IN .

4 Generating Harder Pancake Problems

We now identify three methods for generating states on
which hG usually has a higher AHE than it does on random
permutations. In doing so, we provide ways of constructing
large problem sets that are difficult when using hG.

1For odd-valued N , this follows since for any π, π ◦ 〈N + 1〉
has the same optimal cost and number of gaps as π.

111

4.1 Problem Generation Methods

We had two main objectives when developing new state gen-
eration methods. First, we wanted these methods to generate
states for which hG has a higher average AHE than typically
seen with random permutations. Secondly, we wanted these
methods to easily allow for the generation of large test sets
of any size. While Gates and Papadimitriou (1979), Heydari
and Sudborough (1997), and Rockicki (2004) have all man-
ually constructed problems that are considered “hard,” to-
gether they represent only a handful of states for any given
N . In contrast, our methods can be used to generate large
test sets of states with higher AHE values, and are thus
more conducive to studies regarding how an algorithm’s be-
haviour scales with problem size, large-scale and system-
atic experimentation, or investigations that require separate
training and test data. These methods are described below.

Self-Inverses. A permutation π is said to be a self-inverse
permutation if for all i, π[i] = πD[i]. This is equivalent to
requiring that for all i and j, if π[i] = j then π[j] = i.
Notice that this condition allows for an integer to be mapped
to itself (i.e. π[i] = i). For example, π = 〈1, 4, 3, 2〉 is a
self-inverse state since 1 and 3 are mapped to themselves,
π[2] = 4, and π[4] = 2.

As shown below, self-inverse states typically have a
higher AHE of hG than random permutations. To generate a
self-inverse state π of size N , we use the following iterative
procedure. We begin with set S = {1, ..., N}. On each it-
eration, there are two possibilities. With probability 0.5, we
randomly select and remove two distinct elements e1 and e2
from S, and set π[e1] = e2 and π[e2] = e1. Otherwise, we
randomly select and remove a single element e from S and
set π[e] = e. This process then continues until S is empty.

Short Cycles. A subset of elements {e1, ..., ek} is in a k-
cycle in permutation π with order 〈e(1), ..., e(k)〉 if for any j
in 1 ≤ j ≤ k − 1, π[e(j)] = e(j+1), and π[e(k)] = e(1). A
well-known fact from group theory is that any permutation
can be expressed as a set of disjoint cycles. For example,
〈6, 3, 5, 2, 4, 1〉 consists of a 2-cycle with order 〈1, 6〉 and a
4-cycle with order 〈2, 3, 5, 4〉.

Our second state generation method focuses on problems
with cycles that satisfy two specific conditions that were
found to lead to problems with high AHE. Specifically, each
cycle has a size of 4 or less, and each cycle consists of a set
of consecutive integers, though these integers do not neces-
sarily appear consecutively in the cycle order. For example,
state 〈2, 4, 1, 3, 5, 7, 8, 6〉 satisfies these conditions, since the
cycles in this state are 〈1, 2, 4, 3〉, 〈5〉, and 〈6, 7, 8〉.

To generate a permutation π of size N of this kind, we
begin by uniformly selecting the size of the first cycle from
1, 2, 3, or 4. If k is the value generated, this means that 1,
2, ..., k will appear in π as part of some k-cycle. If k =
1, then we set π[1] = 1. Otherwise, we generate a random
ordering 〈e1, ..., ek〉 of 1 to k. We then set π[e1] = e2, ...,
π[ek−1] = π[ek], and π[k] = e1, thus assigning the first
cycle. The remaining cycles are set analogously.

Bootstrapping. Our final problem generation method in-
volves concatenating together smaller problems that are

known to have a high AHE. For example, consider two
“hard” N -pancake puzzle states π and π′, where π 	= π′,
and let (π +N) denote the sequence given by incrementing
each entry of π by N (i.e. (〈3, 1, 2〉 + 3) = 〈6, 4, 5〉). Then
four potentially difficult pancake problems of size 2N are
π◦(π+N ′), (π+N ′)◦π, (π+N)◦π′, and π′◦(π+N). More
generally, given a set S of N -pancake states and a set S′ of
N ′ pancake states, we can generate states of size N +N ′ by
sampling a state from each of S and S′, and using one of the
four possible combinations of these two states.2 We call this
method bootstrapping from seed sets S and S′.

Below, we experiment with test sets for the 16, 20, 24,
and 28-pancake puzzles, each containing 1, 000 states. For
the initial seed sets, we used exhaustive search to find the 50
8-pancake states with the highest AHE values, breaking ties
in favour of higher optimal cost. We did the same to get a
set of 50 12-pancake problems. We denote these sets as S8

and S12, respectively. To construct the 16-pancake test set,
S8 was used for both seed sets. For the 20-pancake set, S8

and S12 were used. We then built set S16 consisting of 50 of
the 1, 000 16-pancake states generated using bootstrapping,
using the same selection criteria as was used for S8 and S12.
The 24-pancake set was built using S16 and S8 as seed sets,
while S12 and S16 were used for the 28-pancake test set.

We note that the 24-pancake test set could have also been
constructed using two copies of S12 as the seed sets. The de-
cision to do otherwise was made arbitrarily, and was not re-
visited because the generated problems were already found
to have a high AHE for hG. This highlights a weakness of
the bootstrapping approach: many decisions need to be made
for any N and it can be difficult to make them consistently
for different values of N , as is desirable when testing how
techniques scale with N . However, it is still simple to build
large sets using this method, and as we will see, they will
contain the hardest problems of all those considered.

4.2 Difficulty of New Benchmarks

We evaluated the new problem generation methods by build-
ing 16 test sets, one for each combination of four pan-
cake sizes — 16, 20, 24, and 28 — and four problem gen-
eration methods, including the use of randomly generated
permutations. Each test set contains 1, 000 problems. The
benchmarks used and the state generators can be found at
http://bit.ly/2pGEEt0. Table 2 shows the average,
median, maximum, and standard deviation of the AHE of
hG over the states in these sets. The table shows that the new
generation methods lead to higher AHE values than is seen
with random permutations, and that on these new test sets,
the average, median, and maximum AHE generally increase
with N . Self-inverse states have the lowest average AHE of
the new methods, while bootstrapping has the highest.

To evaluate how the increased AHE impacts runtime, we
ran IDA∗ using hG on all 16 test sets. The average num-
ber of node generations for each combination of N and state
generation method is shown in Figure 1. Notice that the ver-
tical axis is in log-scale. The figure shows that the new gen-

2If the two sampled states are the same, then there are only two
possible unique combinations.

112

Problem Generation Method
Random Self-Inverse Short Cycles Bootstrapping

N Av Med Max SD Av Med Max SD Av Med Max SD Av Med Max SD

16 0.68 1 3 0.57 1.59 2 5 0.79 2.12 2 5 1.06 3.69 4 6 0.85
20 0.72 1 2 0.54 1.71 2 4 0.79 2.69 3 6 1.16 4.99 5 7 0.87
24 0.69 1 2 0.51 1.79 2 5 0.78 3.21 3 7 1.21 5.59 6 8 0.83
28 0.68 1 2 0.50 1.87 2 5 0.80 3.63 4 7 1.18 6.61 7 9 0.86

Table 2: AHE of hG on 16 different test sets. The table shows the average (Av), median (Med), maximum (Max), and standard
deviation (SD) over the 1, 000 problems generated for each generation method and problem size (N) considered.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 16 20 24 28

A
v

er
ag

e
N

o
d

e
G

en
er

at
io

n
s

Pancake Size (N)

Random
Self-Inverse

Short Cycles
Bootstrapping

Figure 1: IDA∗ scaling behaviour on different benchmarks.

eration methods yield substantially harder problems for an
IDA∗ guided by hG than just randomly generating permuta-
tions. This is not due to an increase in average optimal cost,
as the opposite is true. For example, the average optimal cost
for random permutations when N = 28 is 26.8, while it
is 24.2, 21.1, and 21.4 for the self-inverse, short cycle, and
bootstrapped states, respectively.

These results show that the new generation methods can
be used to construct pancake puzzle test tests on which the
gap heuristic is less accurate than on randomly generated
permutations. As such, these methods provide an alternative
way to test how algorithms are affected by heuristic accuracy
in a domain with a high branching factor like the pancake
puzzle, other than purposefully degrading the heuristic as
has been done in other work (Holte et al. 2016).

5 Topology of the Gap Heuristic

In this section, we extend the work of Fischer and Ginzinger
(2005) by classifying pancake states according to the size
of the plateaus around them. To simplify this analysis, we
assume that in all states, there is gap between locations N
and N + 1. Doing so removes the postfix of a state if it is
already sorted, since this portion of the state will have no im-
pact on the number of gaps or the optimal solution cost. For
example, where π = 〈2, 1, 4, 3〉 and π′ = 〈2, 1, 4, 3, 5, 6, 7〉,
clearly hG(π) = hG(π′) and h∗(π) = h∗(π′).

We begin with some additional notation. Following Hoff-
mann (2005), a plateau for h is a connected set of one or
more states that all have the same heuristic value. An exit
from a plateau with heuristic value � is a state π such that

h(π) = � and there is some neighbour π′ of π such that
h(π′) < h(π). The exit distance of h from a state π is the
minimum number of actions needed to reach an exit. Notice
that this means that any exit has an exit distance of 0.

Consecutive locations i, i + 1, ..., i + j in a permutation
π forms a strip of size j + 1 if there are no gaps between
the pancakes in those locations, and that sequence of loca-
tions is maximal (i.e. on either side of the strip there is a gap
or the end of the permutation). A strip of size 2 or more is
descending if π[i] > π[i+ 1] > ... > π[i+ j], and ascend-
ing otherwise. Two strips from i to i + j and i′ to i′ + j′
where i ≤ i + j < i′ ≤ i′ + j′ are in order if the pan-
cakes in the strip from i to j are smaller than the pancakes
in the strip from i′ to j′. The rightmost strip is the one end-
ing at location N . For example, 〈1, 2, 3, 5, 4〉 has two strips:
an ascending strip of size 3 from locations 1 to 3, and a de-
scending strip of size 2 from location 4 to 5. The latter strip
is the rightmost and the two strips are in order.

We now define the following family of states:

Definition 2. π is a Fischer-Ginzinger (FG) state if and
only if π has at least two strips, and all strips in π are de-
scending, have a size of at least two, and are in order.

For example, 〈3, 2, 1, 5, 4〉 is an FG state, while 〈1, 2, 4, 3〉
and 〈2, 1, 3, 5, 4〉 are not FG states since they have an as-
cending strip and strip of size 1, respectively. The FG2

N
states in Section 3.2 states are also FG states in which all
strips have size 2. Notice that all FG states are locked.

We can now characterize states according to their exit dis-
tance. First, notice that for any state in which there is a gap
decreasing move, the exit distance is 0. For locked states,
consider the following corollary of Lemma 5 from Fischer
and Ginzinger (2005):

Corollary 5.1. The exit distance of hG for any locked state
that is not an FG state is 1.

Fischer and Ginzinger proved this by providing appropri-
ate sequences of actions that could decrease the number of
gaps for all possible cases of non-FG locked states. How-
ever, their result does not characterize the exit distance of
FG states. To do so, we define an easy FG state as an FG
state with exactly 2 strips such that the rightmost strip has
a size of 2. The remaining FG states are called hard FG
states. We can now show the following:

Theorem 5.2. The exit distance of hG is 1 for any easy FG
state and 2 for any hard FG state.

113

Proof Sketch. The proof of this statement can be found in
its entirety in a technical report (Valenzano and Yang 2017).
The following is a sketch of this proof.

If π is an easy FG state, it has the following form 〈N −
2, ..., 1, N,N − 1〉. As such, π has two gaps, one of which
can be removed by applying MN−1 and then MN to reach
state π′ = 〈N − 1, N − 2, ..., 1, N〉.

If π is a hard FG state π, let � ≥ 2 be the size of the
rightmost strip. Then we can easily verify that the follow-
ing action sequence removes a gap: MN , M�, and then MN .
Thus, the exit distance is no more than 2. We show that the
exit distance is greater than 1 by contradiction. If it is 1, then
there exists a move Mi such that Mi(π) is not locked. Since
π is an FG state, π is locked, and so Mi is either gap increas-
ing or gap neutral. If it is gap increasing, the consistency of
hG guarantees that the exit distance is at least 2. Otherwise,
Mi(π) can be shown to be locked in all cases, which is done
in the technical report. This contradiction ensures that the
exit distance of π cannot be 1. �

The results above show that the exit distance of any pan-
cake state is at most 2. In fact, for any locked state, the ac-
tions that lead to the nearest exit consist solely of gap neutral
moves. This means that the gap heuristic does not have any
heuristic local minima, and every state π can be solved sub-
optimally along a path that does not include a gap increasing
move. Such a solution can also be shown to be found by Fis-
cher and Ginzinger’s two-approximation algorithm (2005).

However, there are states that cannot be solved optimally
without using a gap increasing moves, which we verified ex-
perimentally using an IDA∗ instance that pruned such moves
and occasionally was found to return suboptimal solutions.

6 Enhancing the Gap Heuristic

In this section, we use the local topology analysis from Sec-
tion 5 to develop several enhancements for the gap heuristic.

6.1 Heuristic Lookahead

We begin by defining a d-step heuristic lookahead of
heuristic h on state π. Let us first assume that no goal state
can be reached from π along a path of no more than d ac-
tions. In that case, the optimal path from π to a goal state
must pass through one of the descendants of π at depth d.
In a unit-cost domain, this means that the minimum value of
d+h(π′) seen over all descendants at depth d from π will be
an admissible estimate of the cost to reach the goal from π.
We refer to this value as the d-step lookahead estimate for
π. In the case that the goal state can be reached from π in
fewer than d steps, then the lookahead must return the cost
of the shortest such path to ensure admissibility.

While the estimates provided by a d-step lookahead on
hG should be at least as accurate as hG alone, a naive im-
plementation of this technique would require the generation
of O((N − 1)d) states at depth d. However, we will show
that due to the topology of the gap heuristic, we can effi-
ciently compute the lookahead of hG for depths of one and
two. Note, we use LG

1 (π) and LG
2 (π) to denote the estimates

returned by a 1 and 2-step lookahead of hG on state π.

6.2 Lock Detection

Let us now consider the estimates returned by a 1-step
lookahead of hG on non-goal state π. Assume that Mi is
the action that leads to the neighbour of π with the low-
est heuristic value. By definition, this means that LG

1 (π) =
hG(Mi(π)) + 1. If Mi is a gap decreasing move, this value
will be hG(Mi(π)) + 1 = hG(π) − 1 + 1 = hG(π). If Mi

is not a gap decreasing move, then π must be locked. Since
there is always a gap neutral move applicable in any non-
goal locked state by Lemma 2.1, LG

1 (π) = hG(Mi(π)) +
1 = hG(π) + 1 in this case. Therefore, the value of LG

1 (π)
will be hG(π) + 1 if π is locked and hG(π) otherwise.

As such, we can determine the value of LG
1 (π) with a lin-

ear scan of π in search of the locations of pancakes π[1] + 1
and π[1]−1. If there is a gap above either of these pancakes,
then there is a gap decreasing move in π and the value of
LG
1 (π) is hG(π). Otherwise, LG

1 (π) = hG(π) + 1. We refer
to this calculation of LG

1 as lock detection or LD.

LD as Early Checking. We note that LD is not entirely
new, as it can be viewed as a slight variant of an often
used IDA∗ enhancement that we call early checking. This
domain-specific enhancement for IDA∗ is applicable when
using heuristics like hG, for which we can incrementally cal-
culate the heuristic value of a child state Mi(π) given π and
hG(π), without actually generating Mi(π), . In such cases,
we can “check” if the f -cost of a node n is higher than the
current IDA∗ threshold, and thereby prune n “early” without
generating it if its f(n) does exceed the threshold. This pre-
generation pruning is especially important in the pancake
puzzle, where generating Mi(π) is O(N).

When using hG, we refer to this method as gap early
checking. Gap early checking will actually generate the ex-
act same set of nodes as LD, since neither will generate any
neighbours of a locked state π if f(π) is equal to the current
threshold. The main difference between gap early checking
and LD is that LD aggressively checks each move to see
if one is gap decreasing, while gap early checking does so
“lazily.” However, we can also construct an incremental ver-
sion of LD that allows us to compute LG

1 (Mi(π)) without
generating Mi(π), and thus perform LD early checking. The
same will be true of the other enhancements discussed be-
low, though we omit the details for the sake of clarity.

LD is also related to the EPEIDA∗ algorithm (Goldenberg
et al. 2014). Using hG with this IDA∗ variant essentially in-
volves using the incremental hG computation to define an
operator selection function (OSF), which directly returns
the children of a node that satisfy the current IDA∗ thresh-
old. Both an IDA∗ using heuristic LD and an EPEIDA∗ us-
ing hG would examine the same set of nodes, and merely
differ in their formulation. That is, the increased pruning
seen with the LD formulation is the result of an improved
heuristic, while the equivalent pruning in EPEIDA∗ is the
result of using the OSF to perform partial node expansion.

6.3 Two-Level Lock Detection

We now show that due to the topology of the pancake puz-
zle, we can also compute the estimate returned by a 2-step
lookahead of hG for any state π in linear time and without

114

TwoLevelLockCheck(permutation π):
1: locked ← TRUE, move index i ← 2
2: while (locked == TRUE) and i ≤ N do
3: if |π[i+ 1]− π[1]| == 1 and

|π[i+ 1]− π[i]| �= 1 then
4: locked ← LevelTwo(π, i, π[i])
5: i ← i+ 1
6: return locked

LevelTwo(π, move index i, pancake p):
7: locked ← TRUE, location � ← 1
8: while (locked == TRUE) and � ≤ N do
9: if |π[�]− p| == 1 then

10: if (i > � and |π[�]− π[�+ 1]| �= 1) or
(i < � and |π[�]− π[�− 1]| �= 1) then

11: return FALSE
12: � ← �+ 1
13: return locked

Algorithm 1: Linear time check if all gap decreasing moves
in π lead to locked states.

generating any neighbours of π. We do so by considering
different cases for π. If hG(π) = 1, it is easy to show that
there is a gap decreasing action in π and h∗(π) = 1. There-
fore, LG

2 (π) = 1. As such, we now assume hG(π) > 1.
Without loss of generality we also assume that there is a gap
between locations N and N + 1 of π, as in Section 5.

Let us start with the case that π is locked. If π is a hard
FG state, then the minimum heuristic value of any state at
depth 2 from π is hG(π) by Theorem 5.2. As such, LG

2 (π) =
hG(π) + 2. Otherwise, π is an easy FG state or an non-FG
locked state. In these cases, Corollary 5.1 and 5.2 guarantee
that LG

2 (π) = hG(π) + 1.
Now recall that we showed that locks could be detected

with a linear time scan in the previous section. FG detection
and classification can also clearly be done during this scan,
simply by keeping track of the size, number, and orientation
of the encountered strips. As such, we can detect a lock and
compute LG

2 (π) in time linear in N whenever π is locked.
Let us now show that we can also compute LG

2 (π) ef-
ficiently when π is not locked. If π is not locked and either
gap decreasing move leads to another state that is not locked,
then there is a state at depth 2 with a heuristic value of
hG(π)− 2. As such, LG

2 (π) = hG(π). If all gap decreasing
moves in π lead to locked states, then LG

2 (π) = hG(π) + 1.
This holds because if Mi is a gap decreasing move and
Mi(π) is locked, then there is a gap neutral move in Mi(π)
by Lemma 2.1, and so some neighbour of Mi(π) must also
have a heuristic value of hG(Mi(π)) = hG(π)− 1.

Computing LG
2 (π) when π is not locked, thus merely re-

quires us to identify if there is a gap decreasing move in π
that does not lead to a locked state. Algorithm 1 provides a
linear time method for this purpose. The algorithm begins
with a call to TwoLevelLockCheck, which scans π in search
of index i such that Mi is a gap decreasing move in π. When
such a move is found in line 3, a second function, LevelTwo,
is called to check if Mi leads to a locked state. Of note, Lev-
elTwo does this in linear time and without generating Mi(π).

The parameters given to LevelTwo are π, the index i of

the gap decreasing move Mi currently being checked, and
the pancake p that would be on top of the stack in Mi(π).
LevelTwo scans π looking for the pancakes that should be
adjacent to p. When such a pancake π[�] is found in line 9,
the function checks if there is a gap beside π[�] in Mi(π) that
can be removed. There are two possible cases to consider.3
If i > �, then π[�+1] would be on top of π[�] in Mi(π). The
algorithm therefore checks if there is a gap between π[�] and
π[� + 1] (line 10). If i < �, then π[� − 1] will be on top
of π[�] in Mi(π), so the function checks for a gap between
those locations. If a gap is found, then there is a descendant
of π at depth 2 with a heuristic value hG(π) − 2 and so
LG
2 (π) = hG(π) (line 11). Otherwise, we have to check the

other possible gap decreasing actions.
Because there are at most two gap decreasing moves in

π, the linear scan of LevelTwo is only done at most twice.
As such, LG

2 (π) can be computed in time linear in N if π is
not locked. Since the same is true for locked states as shown
above, LG

2 (π) can always be computed without generating
the O(N2) nodes needed to naively do the lookahead.

We call the computation of LG
2 (π) by detecting and clas-

sifying locked states and using TwoLevelLockCheck for un-
locked states, as two-level lock detection or 2LD. Note that
in our implementation, the detection and classification of
locked states is done concurrently with the top-level scan
in TwoLevelLockCheck.

6.4 Using the Dual State

We now consider two ways for improving performance
when using LD or 2LD that exploit a state’s dual. While
maintaining the dual state during the search will mean that
applying each action takes twice as long, the improvements
in heuristic accuracy will overcome this extra cost.

Zahavi et al. (2008) showed that for any state π, h∗(π) =
h∗(πD). If h is an admissible heuristic, this means that
max(h(π), h(πD)) is an admissible — and potentially more
accurate — heuristic estimate for π. Unfortunately, this tech-
nique does not improve hG, since hG(π) = hG(πD) for any
π, because inverting a state preserves adjacencies. In partic-
ular, if there is an adjacency between pancakes p1 and p2
which are in locations j and j + 1 of π, then |p1 − p2| = 1.
As such, there is an adjacency between pancakes j and j+1
in πD since they are in consecutive locations p1 and p2.

However, a lookahead of hG can return a different value
for π and πD. For example, π = 〈2, 3, 1, 5, 4〉 has a gap de-
creasing move M2, while πD = 〈3, 1, 2, 5, 4〉 is locked. As
such, we can further improve heuristic accuracy by taking
the maximum of either LD or 2LD over π and πD. We refer
to the resulting techniques as LDD and 2LDD.

The dual of a state π can also be used to check if π is
locked in constant time. To see this, recall that a gap de-
creasing move in π must resolve a gap above either π[1] + 1
or π[1]− 1. Moreover, the location of π[1] + 1 in π is given
immediately by πD[π[1] + 1]. Finding and checking for the
first gap decreasing move can now be done by checking for a
gap between locations πD[π[1]+1] and πD[π[1]+1]−1. If
π[1] > 1, finding and checking for a gap above π[1]− 1 can

3� �= i since otherwise p = π[�], which contradicts line 9.

115

then done similarly. Since the dual of πD is π, we can also
use an analogous approach to check if πD is locked. Thus,
LDD can be performed in constant time.

The above process can also be extended to perform the
TwoLevelLockCheck component of 2LDD on both π and πD

in constant time. This leaves FG detection and classification
as the only linear time component of 2LDD.

6.5 Accuracy of the Enhanced Heuristics

Let us now consider how these enhancements impact heuris-
tic accuracy on all 12! states in the 12-pancake puzzle. Ta-
ble 1b show counts of the number of states with each pos-
sible AHE value when using the standard hG heuristic, and
then when adding these enhancements. The table shows that
LD, LDD, 2LD, and 2LDD improved the heuristic values
of 6.1%, 10.3%, 9.2%, and 14.1%, respectively, of all states
on which hG was not already perfect. The enhancements are
particularly effective when hG is more inaccurate. For ex-
ample, on states for which hG has an AHE of 3 or higher,
heuristics LD, LDD, 2LD, and 2LDD improved the heuristic
values of 45.5%, 66.7%, 66.7%, and 81.7%, respectively.

7 Evaluation of the Heuristic Enhancements

In this section, we experiment with the hG enhancements
on the 16 test sets defined in Section 4.2 which range over
four different values for N and the four different problem
generation methods. All experiments were performed using
an IDA∗ enhanced by early checking (see Section 6.2) on a
machine with a Intel Xeon W3550 3.07GHz processor and
8 MB of cache. The C++ code for these experiments can be
found at http://bit.ly/2pGEEt0.

We begin by considering the performance of IDA∗ on the
24-pancake puzzle. The average number of nodes generated
and the runtime in seconds on each 24-pancake puzzle test
set is shown in Table 3. For each metric, the relative im-
provement made when using each enhancement over using
just hG is shown in parentheses. For example, the bottom-
right entry of the table shows that using 2LDD improved
runtime by a factor of 5.4 over hG.

The table shows that the enhancements substantially de-
crease the number of nodes generated, even on random per-
mutations where hG is already quite accurate. The relative
improvement increases as the average AHE of hG increases,
with the largest improvement seen on the bootstrapped
states. However, runtime does not improve as much as node
generations. For example, on the bootstrapped states, 2LDD

generates 9.8 times fewer nodes while runtime decreases by
a factor of 5.4. This occurs because the enhancements in-
crease the per-node time needed to compute heuristic values.

Table 3 also shows that LDD and 2LD lead to similar
gains. However, the improvements seen when using looka-
head and a state’s dual appear to be quite complementary,
given how much further improvement is seen with 2LDD.

The impact on both node generations and time seen when
using the heuristic enhancements appears to remain rela-
tively constant as N increases. One exception is with states
with short cycles, on which the impact of 2LDD increases
with N . This is seen in Figure 2, which shows the average

 1

 1.5

 2

 2.5

 3

 3.5

 4

 16 20 24 28

F
ac

to
r

o
f

R
u

n
ti

m
e

Im
p

ro
v

em
en

t
O

v
er

 t
h

e
G

ap
 H

eu
ri

st
ic

Pancake Size (N)

LD
LD

D

2LD
2LD

D

Figure 2: Runtime improvement when using hG enhance-
ments over hG alone on problems with short cycles.

runtime improvement over hG when using each enhance-
ment over different values of N . In contrast, the improve-
ment generally stays similar on the states generated from
bootstrapping. For example, these problems take an average
of 12.85 minutes each to solve when using IDA∗ with hG

and early checking when N = 28. 2LDD generated 11.6
times fewer nodesthan hG, and the runtime improved by a
factor of 4.5. These values are similar to the improvements
shown in Table 3 that were seen when using 2LDD on the
24-pancake states generated with bootstrapping.

8 Related Work

Bouzy (2015) evaluated Monte Carlo search methods for
suboptimally solving standard and burnt pancake problems.
One enhancement considered was a depth-limited search on
just the gap decreasing moves, which was used to detect if
applying a given action in a given state would lead to only
locked states within some horizon. While this technique is
related to a d-step heuristic lookahead, it was not used to
improve admissible heuristic estimates as we do.

A depth-first lookahead was used by Stern et al. (2010) to
improve memory efficiency in an A∗ search. This lookahead
examined and pruned states according to f -cost instead of
by depth. It was also a domain-independent technique and
thus had to generate all relevant descendant states.

Felner et al. (2010) also considered a 1-step lookahead in
the pancake puzzle as part of a bi-directional search. How-
ever, their lookahead required the generation of all children
and was done in the context of a pattern database heuristic.

Several works have analyzed the accuracy and local
search topology of different panning heuristics. Examples
include the local search topology analysis of the delete re-
laxation heuristic by Hoffmann (2005), and a comparison of
admissible heuristics by Helmert and Mattmüller (2008).

9 Conclusion and Future Work

In this work, we have shown that the gap heuristic is gen-
erally very accurate on a large percentage of problems, and
thus rarely underestimates the optimal cost of any state by
more than two. However, it is more inaccurate on certain
problems and we have shown that this worst-case inaccu-
racy grows with the puzzle size. We then identified methods

116

Problem Generation Method
Random Self-Inverse Short Cycles Bootstrapping

Heuristic Nodes Time Nodes Time Nodes Time Nodes Time

hG 2, 323(1.0) 0.0009(1.0) 57, 361(1.0) 0.021(1.0) 2, 361, 650(1.0) 0.84(1.0) 42, 037, 553(1.0) 28.0(1.0)
LD 1, 756(1.3) 0.0008(1.1) 39, 610(1.4) 0.017(1.2) 1, 339, 064(1.8) 0.60(1.4) 18, 894, 828(2.2) 15.4(1.8)
LDD 1, 278(1.8) 0.0006(1.5) 28, 539(2.0) 0.013(1.6) 847, 500(2.8) 0.39(2.2) 10, 069, 646(4.2) 8.3(3.4)
2LD 1, 381(1.7) 0.0007(1.3) 28, 289(2.0) 0.015(1.4) 824, 297(2.9) 0.45(1.9) 9, 347, 059(4.5) 9.4(3.0)
2LDD 898(2.6) 0.0005(1.8) 18, 293(3.1) 0.011(1.9) 434, 467(5.4) 0.27(3.1) 4, 308, 345(9.8) 5.2(5.4)

Table 3: Performance of the enhancements on different 24-pancake benchmarks. Values shown are the average over 1, 000 test
problems. Time is in seconds. The factor of that each enhancement improves over hG for each metric is shown in parentheses.

for easily generating large sets of problems that can be used
to test how search algorithms behave on those pancake prob-
lems with more heuristic error.

We also analyzed the local search topology of the gap
heuristic, and classified all states in terms of the size of
the plateaus around them. This classification was then used
as the basis of several gap heuristic enhancements that ef-
ficiently calculate a heuristic lookahead and also exploit a
state’s dual in order to improve heuristic accuracy. These en-
hancements were also shown to lead to substantial speedups.

In recent work, it has been shown that the use of bi-
directional search and partial node expansions can outper-
form IDA∗ on the pancake puzzle (Lippi, Ernandes, and Fel-
ner 2016). Given that our enhancements strictly improve on
the gap heuristic and that the relative impact of the extra per-
node cost of using the enhancements should decrease in that
setting, we would expect to see similar trends. However, we
leave such an investigation as future work.

Acknowledgements

We thank Sheila McIlraith and the Knowledge Representa-
tion group at the University of Toronto for their support on
this work. We also thank the anonymous reviewers for their
comments, particularly in connecting the work with existing
research and helping to make Lemma 2.1 properly precise.

References
Bouzy, B. 2015. An Experimental Investigation on the Pancake
Problem. In Proceedings of the Fourth Workshop on Computer
Games(CGW) and the Fourth Workshop on General Intelligence
in Game-Playing Agents, (GIGA), 30–43.
Bulteau, L.; Fertin, G.; and Rusu, I. 2015. Pancake Flipping is
hard. Journal of Computer and System Sciences 81(8):1556–1574.
Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing Fast Heuristic Search Code. In Proceedings of the
Fifth Annual Symposium on Combinatorial Search.
Chitturi, B.; Fahle, W.; Meng, Z.; Morales, L.; Shields, C.; Sud-
borough, I. H.; and Voit, W. 2009. An (18/11)n upper bound
for sorting by prefix reversals. Theoretical Computer Science
410(36):3372–3390.
Cohen, D. S., and Blum, M. 1995. On the Problem of Sorting
Burnt Pancakes. Discrete Applied Mathematics 61(2):105–120.
Felner, A.; Moldenhauer, C.; Sturtevant, N. R.; and Schaeffer, J.
2010. Single-Frontier Bidirectional Search. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, 59–64.

Fischer, J., and Ginzinger, S. W. 2005. A 2-Approximation Algo-
rithm for Sorting by Prefix Reversals. In Proceedings of the 13th
Annual European Symposium (ESA), 415–425.
Gates, W., and Papadimitriou, C. 1979. Bounds for sorting by
prefix reversal. Discrete Math 27:47–57.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant,
N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced Partial
Expansion A*. Journal of Artificial Intelligence Research 50:141–
187.
Hayes, B. 2007. Sorting out the genome. American Scientist
95:386–391.
Helmert, M., and Mattmüller, R. 2008. Accuracy of admissible
heuristic functions in selected planning domains. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence,,
938–943.
Helmert, M. 2010. Landmark Heuristics for the Pancake Problem.
In Proceedings of the Third Annual Symposium on Combinatorial
Search.
Heydari, M. H., and Sudborough, I. H. 1997. On the Diameter of
the Pancake Network. Journal of Algorithms 25(1):67–94.
Hoffmann, J. 2005. Where ‘Ignoring Delete Lists’ Works: Local
Search Topology in Planning Benchmarks. Journal of Artificial
Intelligence Research 24:685–758.
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R. 2016.
Bidirectional search that is guaranteed to meet in the middle. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, 3411–3417.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence 27(1):97–109.
Lippi, M.; Ernandes, M.; and Felner, A. 2016. Optimally solv-
ing permutation sorting problems with efficient partial expansion
bidirectional heuristic search. AI Communications 29(4):513–536.
Qiu, K.; Meijer, H.; and Akl, S. G. 1991. Parallel Routing and
Sorting of the Pancake Network. In Proceedings of the Interna-
tional Conference on Computing and Information, 360–371.
Rockicki, T. 2004. Tom’s Pancake Entry.
http://tomas.rokicki.com/pancake/.
Stern, R.; Kulberis, T.; Felner, A.; and Holte, R. 2010. Using
Lookaheads with Optimal Best-First Search. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence.
Valenzano, R. A., and Yang, D. 2017. A Formal Characterization
of the Local Search Topology of the Gap Heuristic. CoRR.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008. Du-
ality in permutation state spaces and the dual search algorithm.
Artificial Intelligence 172(4-5):514–540.

117

