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Abstract

Agent planning programs are finite-state programs, possibly
containing loops, whose atomic instructions consist of a guard,
a maintenance goal, and an achievement goal, which act as
precondition-invariance-postcondition assertions in program
specification. The execution of such programs requires gener-
ating plans that meet the goals specified in the atomic instruc-
tions, while respecting the program control flow. Recently,
De Giacomo et al. (2016) presented a technique, based on
iteratively solving classical planning problems with action
costs, for realizing planning programs in deterministic do-
mains. Such a technique works generally well for domains
with no or very few dead-end states. In this paper, we pro-
pose an enhancement of this technique to handle deterministic
domains that have potentially many dead-end states, and we
study the effectiveness of our technique through an experimen-
tal analysis.

Introduction

Agent planning programs are finite-state programs, possi-
bly containing loops, whose atomic instructions consist of a
guard, a maintenance goal, and an achievement goal, which
act as classical Computer Science precondition-invariance-
postcondition assertions (De Giacomo et al. 2016). In a
planning program, the dynamics of the world is described
with a planning domain and an initial state, as usually done
in planning. On top of such a domain, an agent planning pro-
gram is modeled as a transition system, typically including
loops, in which states represent choice points and transitions
specify possible courses of actions that the agent may decide
to follow. Such transitions constitute the high-level actions
available to the agent, and are characterized by: a guard,
which poses executability conditions in terms of the state
of the domain; a maintenance goal, which specifies invari-
ants that are guaranteed to hold for the course of actions
to execute; and an achievement goal, which specifies the
postcondition that the transition will achieve.

Intuitively, agent planning programs are meant to work as
follows: at any point in time, the domain and the program are
in some state, and the agent decides, autonomously, which
program transition, among those whose guards are satisfied
in the current state, to request. A synthesized plan for the

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20

transition goals is then executed, thus moving the domain and
the program to their next states, from which a new request
can be issued, a new plan executed again, and so on. Once
a plan is associated to each request, at each point in time,
we say that the agent planning program is “realized”. Note
that, although the agent planning program is a finite transition
system, because of loops, it generates an infinite computation
tree, and in principle we need to synthesize plans for each of
the infinitely many transitions of such a tree. Importantly, in
synthesizing the plan for a transition, we need to take into
account that the resulting state of the domain, not only must
satisfy the achievement goal, but must also allow for the
existence of plans for each possible next transition, and this
must hold again after such plans, and so on ad infinitum.

As discussed by De Giacomo et al. (2016), the work on
agent planning programs is related to generalized planning,
in the sense that the result of the planning program realiza-
tion can be seen as a form of generalized plan (e.g., (Bonet,
Palacios, and Gefftner 2009; De Giacomo et al. 2010;
Srivastava, Immerman, and Zilberstein 2011)). Planning pro-
grams can also be considered as a form of complex routines,
modelling desired domain evolutions and typically including
conditions and cycles, that an agent executes in the domain.
In planning, similar routines can be specified by temporally
extended goals (e.g., (Bacchus and Kabanza 2000; Baier,
Bacchus, and Mcllraith 2009; De Giacomo and Vardi 1999;
Gerevini et al. 2009; Kabanza and Thiébaux 2005)).

Gerevini, Patrizi, and Saetti (2011) and De Giacomo et
al. (2016) propose an approach for realizing a planning pro-
gram in deterministic domains. This approach is based on
exploiting classical planning, and the specific algorithm that
is developed and experimented works generally well for do-
mains with few or no dead-end states. A dead end is a search
state from which the goal cannot be reached. Many planning
domains, including available benchmarks from the planning
competitions, have many dead-ends to deal with during the
plan synthesis. When the domain includes no dead-end states,
the computation of a realization of the planning program can
be decomposed into the computation of a realization for every
individual program transition. Such a decomposed compu-
tation is viable because, in domains with no dead-end state,
the realization of a program transition incoming to a program
state v does not compromise the realizability of the program
transitions outgoing from v. On the contrary, when a do-



main contains dead-end states, the way by which a program
transition is realized can affect the realizability of the next
transitions.

In this paper, we propose an enhancement of the realization
techniques described in (Gerevini, Patrizi, and Saetti 2011;
De Giacomo et al. 2016) to effectively deal with dead-end
states. The proposed techniques are still based on the us-
age of classical planning. Specifically, first we define a
multiple planning problem with preferred and forbidden
end-states as a sequence of planning problems such that
the solution plan of each of these problems realizes a pro-
gram transition, does not end into a forbidden state, and
possibly ends into a preferred state. Then, we extend the
algorithm proposed in (Gerevini, Patrizi, and Saetti 2011;
De Giacomo et al. 2016) to solve multiple planning prob-
lems with preferred and forbidden end-states. This algorithm
uses a scheme for translating this special class of planning
problems into classical planning problems with action costs.
Finally, we evaluate the effectiveness of the proposed en-
hanced technique.

Agent Planning Programs

Agent Planning Programs (planning programs, or p-programs
for short) are high-level representations of the behavior of
agents acting in a domain (De Giacomo et al. 2016). Essen-
tially, they are transition systems, with states representing
decision points, and transitions, labelled by triples consisting
of a guard, a maintenance goal and an achievement goal over
the domain, representing atomic instructions of programs.
For instance, a very simple planning program for a traveller
routine is depicted in Figure 1, under which the agent (i.e.,
the traveller) continuously travels back and forth between
New York and London.

Informally, in order for a planning program to be exe-
cutable, each transition goal requires a plan to bring it about.
Moreover, those plans ought to be “synchronized” so that the
final world state generated by each plan is a suitable initial
state for the subsequent plans associated with the next goals.
When this is the case, the planning program is realized. In
general, however, computing a realization does not simply
amount to matching program transitions with appropriate
plans. In fact, as plans are executed, both the state of the
planning program and that of the underlying domain evolve
and, in general, the planning program may reach the same
state in different domain states, so that there is no guarantee
that a single plan would work in all such domain states. Thus,
a more sophisticated solution concept is required.

We deal with a specialization of the planning program
realization problem (De Giacomo et al. 2016) by assuming
a deterministic underlying planning domain. Formally, a
planning program for a deterministic planning domain D is
atuple P = (A, P,V,vg, ), where:

e A is a finite set of actions of D,

e P is afinite set of propositions of D;

V is the finite set of program states;

vg € V is the program initial state of P; and
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at(T,NY)

at(T,Lo)

Figure 1: A very simple example of (the transition graph
of) a planning program. Each edge is annotated with its
corresponding achievement goal. For simplicity, maintenance
goals and guards are omitted (they are “true” conditions).

¢ § CV x®(P)x P(P) x ®(P) x V is the transition
relation of P, where ®(P) stands for the set of all boolean
formulas built from the set of propositions P. A transition
(v, {(v,1, @), v") € § is used to denote that whenever the
guard ~ holds (in the domain), the agent planning program
P may legally move from state v to state v’ by “achieving
¢ while maintaining 1).”

A domain action is represented as a triple (Pre, Eff T,
Eff~) where Pre is a set of boolean formulas representing
the action preconditions, and Eff /= is a set of propositions
representing the action positive/negative effects. Like in
classical planning, under the closed world assumption, a D-
state is specified by a set of propositions, an action a = {Pre,
Eff*, Eff 7) is said to be executable in a domain state s if
s |= Pre, and the domain state s’ obtained by executing a in
state s is s\ Eff ~ U Eff T.

Notation Last(r(s)) refers to the final D-state obtained
upon executing plan 7 from s (written 7(s)). We say that
from s a plan 7 achieves a goal ¢, i.e., a propositional for-
mula over the propositions of D, if Last(w(s)) = ¢, where
satisfaction is defined as usual in propositional logic. Sim-
ilarly, we say that from s a plan 7 maintains a goal v, if
s =1 and s” [ 1, for every intermediate state s” generated
by executing 7 from s. Observe that maintaining a goal
requires the goal to remain true up to the second last state
generated by the plan, while the goal v is allowed to become
false in the last state (to make 1) remain true also in the last
state we may simply require it to be not only maintained but
also achieved).

Example 1 The traveller T wants to continuously travel from
New York (NY) to London (Lo) and from Lo to NY. The trav-
eller moves among these cities by airplane A, which has to
be periodically refueled. Assume that A can be refueled only
at the headquarter of its airline, say Paris (Pa); and A has a
fuel tank, which can be full (FL2), half full (FL1), or empty
(FLO). Moreover, assume that initially T and A are at Pa, and
the fuel level of Ais FL2. The domain actions are Board(x),
Debark(x), Refill(x), and Fly(x,y,z,w), which respectively rep-
resent that, at city x, the traveller can board to and debark
from A, the fuel level of A can be increased from the current
level x to FL2, and A can fly from city x to city y while the
fuel in its tank changes from level w to level z. A graphi-
cal representation of the traveller’s behavior is provided in
Figure 1, where the transition system represents a planning
program for traveller T.

When the planning program and the domain are in states v



and s (initially vy and sg), respectively, the agent is allowed
to choose any enabled (i.e., whose guard holds true in s)
planning program transition (v, {-y, 1, ¢),v’) in P. Note that
for the simple planning program depicted in Figure 1, in
practice, the agent does not choose any transition, since for
both vy and v; the number of outgoing program transition is
1. If the planning program had an additional program state,
say ve, and an additional program transition from vy to v,
then a transition selection would take place every time the
program state is vg.

Being declarative assertions, the chosen transitions are not
directly executable and actual realizations are required for
them. A realization, then, must provide a concrete plan 7
that brings about the achievement goal ¢ while guaranteeing
maintenance of v and, furthermore, be compatible with fur-
ther realizations for subsequent transitions of the planning
program. The latter requirement is central to the approach, as
the choice points in the planning program are resolved by de-
cisions made by the agent only at runtime. It should be noted
that only in special cases we can realize planning programs
by simply annotating transitions with plans. In general, the
annotation should be done on the (infinite) computation tree
generated by the planning program. Indeed, a transition in
the planning program may be pursued at different moments
in time (from different states of the domain), and so different
plans may be required.

The notion of planning program realization is based on
the following notion of simulation. A simulation relation is
arelation R C V x 2 such that (v,s) € R implies that,
for every transition (v, {7y, %, ¢),v’) in P such that s |= v,
there exists a plan 7 such that: 7 achieves ¢ and maintains
from s (in which case, plan 7 is said to realize the transition),
and (v', Last(m(s))) € R. Note that an adequate plan for a
transition, i.e., one that realizes the transition while preserv-
ing a simulation relation for the p-program, might not be the
shortest one that reaches the achievement goal while main-
taining the maintenance goal of the transition. Indeed, such a
plan may actually prevent future agent requests (p-program
transition choices) from being fulfillable.

Let 27 be the set of plans in the planning domain. A
realization of an agent planning program P in planning do-
main D from an initial D-state s, € 2% is a partial func-
tion Q : 2F x § — 27 such that, for some simulation re-
lation R, it is the case that: (v, so) € R; and for all pairs
(v,s) € Rand all transitions d = (v, {7y, 1, ), v’) in P such
that s |= v, a plan Q(s, d) is defined, realizes transition d,
and preserves R from (v, s) for d. Essentially, a realization
Q) is a function that, given a D-state s and a transition request
(v, {y,v, @),v") whose guard is satisfied in s, outputs a plan
« that achieves ¢ while maintaining ) from s and guarantees
that all potential future requests from v’ after 7’s execution
can also be fulfilled by plans prescribed by the realization
function €.

Example 2 (Example 1 cont.) Consider the p-program of
Figure 1. Can the traveller carry it out? If so, how? As
an example of positive answers, consider Table 1, which de-
scribes a possible realization for this p-program. The first
column represents the current state of the domain; the sec-
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State Transition Plan
so = { at(A,Pa), 71 = ( Board(Pa),
at(T,Pa), | (vo,v1) Fly(Pa,NY,FL2,FL1),
lev(FL2) } Debark(NY) )
7o = ( Board(NY),
s1 = { at(ANY), Fly(NY,Pa,FL1,FLO),
at(TNY), | (v1,vo) Refill(FLO)
lev(FL1) } Fly(Pa,Lo,FL2,FL1),
Debark(Lo) )
73 = ( Board(Lo),
sy ={at(ALo), | (vo,v1) Fly(Lo,Pa,FL1,FLO),
at(T,Lo), Refill(FLO)
lev(FL1) } Fly(Pa,NY,FL2,FL1),
Debark(NY) )

Table 1: An example of realization function for the traveller’s
planning program.

ond one contains the requested program transition, and the
third one represents the plan to be executed from the current
domain state in order to realize the requested transition. For
simplicity, the second column includes only the source and
target state of a program transition, while the corresponding
achievement goals are specified in Figure 1. (For the sake of
simplicity, maintenance goals and guards are assumed to be
true.) Lastly, the third column reports the corresponding plan.
Note that, with the realization function in Table 1, transition
(vo,v1) is pursued by the traveller from two different domain
states so and So, and hence the realization function provides,
for this transition, two different plans (7, and T3).

Planning-based Algorithm

We address the problem of effectively constructing p-program
realizations for deterministic domains by exploiting plan gen-
eration techniques for multiple planning problems with pre-
ferred end-states (shortly, PESs) and tabu end-states (TESs).
Informally, a multiple planning problem is a sequence of
planning problems such that the solution plan of each of
these problems realizes a program transition. In accordance
with the terminology used in (De Giacomo et al. 2016), a
PES is a desired end state for a plan realizing a planning
program transition, while a TES is a forbidden plan end state.
As will be described, multiple planning problems with PESs
and TESs are automatically generated by the proposed iter-
ative algorithm for realizing agent planning programs, and
their definition is important to efficiently compute a correct
realization of the p-program.

Definition 1 A multiple planning problem with PESs and
TESs over a planning horizon of n p-program transitions
is a tuple (A, P, so, {1'}, {¢'}, {95}, {S%}) such that 1 <
i < n, where A is a set of actions, P is a set of propositions,
so is the initial state, 1" € ®(P) is a maintenance goal,
@' € ®(P) is an achievement goal, St C 2% is a set of
PESs, and, finally, S% C 2P js a set of TESs.

A multiple plan of length k, 7 = (my,...,7k), is a se-
quence of k plans 7y, ..., 7. A solution of a multiple plan-
ning problem with PESs and TESs is defined as follows.

Definition 2 Given a multiple planning problem with PESs
and TESs over a planning horizon of n transitions, 11 =



(A, P, so, {0}, {&'}, {SL}, {S5}) with 1 < i < n, we say
that a multiple plan ™ = (1, ..., 7) for some k < nis a
solution of 11 iff the following conditions hold for j = 1...k.

1. Last(mj(sj—1)) = sj = ¢/;

2. s ¢S50

3. m; maintains s

4. k = n or sy is a preferred state in Slkg.

Condition (4) means that the execution of multiplan 7
achieves all the n achievement goals {¢* | 1 < i < n},
or it achieves the k achievement goals {¢’ | 1 < i < k} and
ends into a preferred end-state.

Figure 2 shows the pseudo-code of RealizePlanProg™,
our algorithm for building p-program realizations, which
enhances the basic one presented in (De Giacomo et al. 2016).
Starting from an open configuration (called open pair in
the algorithm) (s, v), where s is a domain state and v is a
p-program state (initially s = sp and v = vyg), for each
transition d outgoing from v such that the guard of d holds in
s, RealizePlanProg™ non-deterministically selects a program
transition path (dy, . .., dy) formed by at most n transitions
(k < n) such that d = d;, constructs a multiple planning
problem with PESs and TESs from such a path, and invokes
procedure Plan to compute, for some j < k, a solution
multiplan (mq, ..., 7;) of the constructed problem such that
every plan 7; realizes transition d;. For each generated pair
(s,v) and transition d = (v, (7y,%,®),v’) such that s =
~, function (s, d) associates with s plan 7;. Then, the
algorithm progresses the states of D and P (according to
m1(s) and d, respectively), possibly generating a new open
pair (s’,v') to process similarly.

If the algorithm generates an open pair (s, v) such that
for some transition outgoing from v no realizing plan can
be computed from s, backtracking is required, i.e., the plans
generating (s, v) need to be removed from 2. The algorithm
terminates when no more open pairs are left, or it is the case
that no realization can be found, i.e., for at least a transition
d = (vo, (7,9, ®),v) outgoing from the initial P-state vy,
and such that  holds in the initial domain state sg, there
exists no plan 7 constructed from s such that = maintains v,
Last(n(s0)) |E ¢ and Last(m(so)) is in the set of D-states
from which a transition outgoing from v can be realized.

The main difference with the algorithm presented in (De
Giacomo et al. 2016) is that such an algorithm realizes each
single program transition d = (v, {v,9,®),v’) indepen-
dently from other program transitions, while the algorithm
in Figure 2 realizes d considering a transition path start-
ing with transition d. Note that, although the pseudocode
in Figure 2 computes from some D-state s a multiplan 7
realizing a transition path, in this version of the algorithm
only the first part 71 of m, which realizes the first transition
d = (v, {y,v,¢),v") of the path, is used to define 2. The
reason why the rest of the plan is discarded is that, while m;
is generated by guaranteeing that the next k — 1 transitions on
the considered path can be realized from (Last(m(s)),v’),
the successive sub-plans in 7 are guaranteed to be part of
a valid realization of the p-program with a shorter horizon

23

Algorithm: RealizePlanProg™ (P, so,n)

Input: a p-program P = (A, P, V, vy, d), an initial state sq,
a planning horizon n;

Output: a realization of P from sy (Function €2), or
failure.
1. Vs,d-Q(s,d) + noPlan;
2. States(vg) < {so}; Yu # vy - States(v) < 0;
3. Vo - Tabu(v) + 0;
4. Open < {(s0,v0)};
5. while Open is not empty do
6.  extract an open pair (s,v) € Open;
7.  foreach P transition d = (v, {y, 9, ¢),v’) € § do
8. if Q(s,d) = noPlan and s |~ -y then
9. w+— v
10. k+1;
11. while k. < n do
12. add ¢ to ¥
13. add ¢ to @
14. add States(w) to Sp
15. add Tabu(w) to St
16. if there exists a P transition outgoing from w
17. then select d = (w, (v, ¥, ¢), w');
18. else break;
19. w — w';
20. k+—k+1;
21. <7T17...,7Tj>|jgk%P|an<A,P,S,\I’,<I),SP,ST);
22. if Plan fails then break;
23. else
24. O(s,d) + m1;
25. if Last(m1(s)) & States(v') then
26. add (Last(m1(s)),v’) to Open;
27. add Last(my(s)) to States(v');
28. add (s, d) to Source(Last(m(s)),v');
29. if Plan fails then

30.  if (s,v) = (so,vp) then return failure;
31. else

32. add s to Tabu(v);

33. remove s from States(v);

34. foreach (s”,d") € Source(s,v) do

35. Q(s",d") + noPlan;

36. Open = Frontier(§2, T, so, Vo );

37. return ).

Figure 2: Algorithm for realizing a planning program P from
state sg over a horizon of n p-program transitions.

of program transitions, and hence it is more likely that they
compromise the existence of a simulation relation w.r.t. ;.

Example 3 (Example 2 cont.) Consider the planning pro-
gram in Figure 1, and assume planning horizon n = 2.
In the first iteration of loop 7-28, the path selected by
the algorithm is formed by the p-program transition d;
from vy to vy and the transition ds from vy to vy. The
multiplan computed by Plan to solve the multiple plan-



ning problem constructed from such a path is {7y, ms)
with 7 = (Board(Pa), Fly(Pa,NY,FL2,FL1), Debark(NY))
and 7y = (Board(NY), Fly(NY,Lo,FL1,FL0), Debark(Lo)). If
the algorithm progressed the states of D and ‘P according to
m1 and dy and to w5 and ds, the new open pair (s’ vy) would
be ({at(A,Lo), at(T,Lo), lev(FLO)},vo). Then, in the next iter-
ation of loop 7-28, backtracking would be required for the
open pair (s’ ,vg), since from s’ the airplane cannot be used
to move the traveller anymore, as its fuel is over, the airplane
is at Lo, and the fuel can be recharged only at Pa. On the
contrary, the first part w1 of the computed plan can be part
of a valid p-program realization, as indicated in Table 1.

The specification of the function {2 under construction
implicitly defines the set of open pairs, also called the
realization frontier, which in the algorithm is denoted as
Open. This set is obtained by considering all possible plan-
ning program executions, starting from (s, vg), using {2 to
realize the transitions, and putting in the set all those pairs
(s,v) such that for some transition d from v, the guard of
d holds in s and Q)(s, d) is currently undefined. Essentially,
this corresponds to a straightforward visit of the p-program
graph from vy and sp using the current (partially defined)
Q. The frontier of this visit is the set of pairs (s, v), of
domain and p-program state, such that there is a transition
d outgoing from v whose guard holds in s, but for which
there is no plan achieving and mainteining the corresponding
goal, i.e., {2(s,d) is undefined. Such a frontier is denoted
by Frontier (), T, so, v9) and defines the open pairs for the
current 2 stored in Open.

Algorithm RealizePlanProg™ maintains three auxiliary
functions States : V — 25, Tabu : V — 25 and Source :
S x V — 29%9 Intuitively, States(v) records all domain
states reached when P is in v, for some P execution, ac-
cording to the current ); Tabu(v) indicates the states of D
that are forbidden when v is reached; and Source associates
each open pair (s’,v") with those pairs (s,d) such that d
is a program transition from v to v’ and, for 7 = (s, d),
Last(w(s)) = s'. Essentially, function Source says how an
open pair was generated by the current definition of 2.

Initially (lines 1-4), Function 2 is completely undefined
(through the special value noPlan), States(v) = () for every
v # vy, States(vo) = {so}, Tabu(v) = ( for every v, and
Open = (sg,vg). At each iteration of the external loop (lines
5-36), an arbitrary open pair (s, v) is extracted from Open
and processed by:

(i) computing, for each transition d = (v, (y,v, ¢),v') such
that s =« and Q(s,d) = noPlan (i.e., d has not been
processed for s yet), a plan 7 that maintains 1, achieves
¢ from s with an acceptable end state, i.e., Last(m(s)) &
Tabu(v'), and guarantees that the next k£ — 1 transitions
can be realized from (Last(w(s)),v") (lines 7-21);

(ii) appropriately updating €2, Open, and the auxiliary func-
tions (lines 22-36).
When Open becomes empty, the external loop terminates
and the algorithm returns €2 (line 37).
Task (i) is accomplished by non-deterministically selecting
a path of n transitions (lines 16-17), constructing from such a
path a set W of maintenance goals, a set ¢ of achieving goals,
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a set Sp of sets of preferred states, and a set St of sets of
tabu states (lines 11-15), and executing function Plan that
computes a multiplan for the multiple planning problem with
PESs and TESs (4, P, s, U, ®, Sp, St) (line 21).

Intuitively, multiple planning problems are used to improve
the chance that there exists a simulation relation from the
pair obtained by progressing the states of D and P according
to first part of the computed multiplan, domain states in
States(v') are used as preferred end states to minimize the
number of generated open pairs, while the domain states in
Tabu(v') are used as tabu end states to prevent next iterations
from generating unrealizable open pairs. Details about how
to achieve this behavior in Plan are given in the next section.

In our implementation of step 17 of RealizePlanProg™, we
select the transition d according to a longest transition path
from w that starts with d among the transitions outgoing from
w that are not in the transition path constructed so far by loop
11-20. The rationale of this criterion is the following. If two
longest transition paths starting from w, p; and po, are such
that p; is longer than po, then we heuristically estimate that
realizing p; makes the (sub)plan constructed for realizing the
first transition in p; more “robust” (dead-lock wise) than the
(sub)plan for the first transition in p». The construction of
a longest transition path starting from w and formed by (at
most) n transitions is not trivial because the underlying graph
may contain cycles. Our algorithm for deriving such a path
constrains the computed path to iterate at most once in a cycle
(this is the reason why among the transitions outgoing from
w we exclude those that are already present in the path under
construction). Moreover, in order to deal with cycles, we
identify the strongly connected components (SCC) and force
the computed path to cross only once every edge connecting
vertices in the same SCC. Formally, we select the transition
according to the highest value of function h : V' +— N defined
as follows.

h'(v)

h(v) { W(SCC(v)

where G is the directed graph obtained by contracting the
strongly connected components of the p-program transition
graph into meta-vertices, SCC(v) is the strongly connected
component including v in G, and A’ : V + N is defined as:

if v is a vertex of G
otherwise

—~

v)+ max h'(w) otherwise
we out(v)

W) = { c(v) if there is no outgoing edge from v in G
=9 c

where out(v) = {w | (v,w)isan edge of G}; ¢ : V +— Nis
a function such that ¢(v) = n(v) if v has no outgoing edge
in G, and ¢(v) = n(v) 4+ 1 otherwise; finally, n : V +— Nis
a function such that n(v) = 0 if v is a simple vertex of G,
and n(v) is equal to the number of edges of the p-program
transition graph contracted in v if v is a meta-vertex of G.
For task (ii), assume that (s, v) is an open pair, and d is
a program transition from program state v to program state
v’, whose guard holds in s. If a multiplan 7 = (7, ..., 7;)
from some j; < k realizing d from s is found, then the
algorithm updates €2(s, d), States(v’) and Source(s’,v') as
follows: function 2 is updated by setting (s, d) to my; if



s' = Last(m(s)) is not already in States(v'), the set of open
pairs is extended with (s, v'); state s’ is added to States(v');
and (s, d) is added to Source(s’,v") (lines 24-28).

If, for some program transition d outgoing from v such
that its guard holds in s, procedure Plan is unable to find a
plan achieving/maintaining the goals of d from s and guaran-
teeing that the next possible k£ — 1 transitions can be realized,
then open pair (s, v) cannot be realized. In the special case
s = sg and v = vy, no realization of P can be built, and
hence RealizePlanProg™ terminates returning failure (lines
29-30). Otherwise (s#sy or v£uvg), backtracking is per-
formed on Q (lines 31-36): s is added to Tabu(v); s is
removed from States(v), as clearly no longer preferred; for
all pairs (s”,v") € Source(s,v), Q(s”,d") is set undefined
(Q(s”,d") becomes noPlan), as the corresponding plans
need to be recomputed in order to avoid generating the con-
figuration (s, v); and, finally, Frontier(Q, 7, so, vo) defines
the new set of open pairs (Open).

Like in the basic version of the algorithm,
RealizePlanProg™ is parametric with respect to the
specific planning procedure used to implement Plan, thus
allowing us to generate different version of our algorithm
based on different planning approaches and heuristics.

Compilation Scheme to Classical Planning

In this section, we propose a scheme to transform a multiple
planning problem IT with PESs and TESs into a problem IT’
with action costs. With such a scheme, if a planner finds a
solution plan of IT" with the lowest cost, such a plan can be
easily transformed into a solution multiplan of II ending in
one of the PESs of II.

Definition 3 A planning problem with action costs is a tuple
(A, P, sq, ¢, c), where sg is the initial state, ¢ € ®(P) is an
achievement goal; and c : A — R is an action cost function.

A multiple planning problem with PESs and TESs
over a planning horizon of n transitions, II =
(A, P,so, {t'}, {¢'}, {SL}, {S%}) such that 1 < i < n,
can be translated into a planning problem with action costs
' = (A’, P!, 50, ¢', ) such that: !

e PP=PUP:-UPr;
° A/:{Al | 1 Sign}UACUAPUAT;
e ¢ = completed(n) A check-pref
_J 1 ifo=Ignore-pref,
* c(o) = { 0 otherwise;
where

e Po = {started(i), completed(i), check-mode(i) |
1 <i<n}U{check-pref};

e Pr = {not-tabu(s,i)|s € S5 1<i<n}

'For the sake of simplicity, in the compilation we use actions
with negative preconditions. They can be easily translated into
actions with only positive preconditions (?), although ruling out
them can make the specification of the world state considerably
larger.
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o A, = {(Pre U{started(i)} U ', Efft, Eff~) | (Pre,
Efft Eff~) € A} with 1 < i < n;

o Ac = {start(i),end(i) | 1 <i < n} where
start(1) = ({—started(1),y'}, {started(1)},0);
start(i) = ({—started(i), completed(i — 1), ¥'} U
{not-tabu(s,i — 1) | s € Si'}, {started(i)},
{check-mode(i — 1)}) with 1 < i < m;
end(7) = {{started(i), ~completed(i), ¢'},
{completed(i), check-mode(i)}, {started(i)})
withl <7 <mn;

e Ap = Ignore-pref U {Sat-pref(s,j) | 1 < j <
n, § € Sf;}, where Ignore-pref is the action
({check-mode(n), completed(n)} U {not-tabu(s,n) |
s € SZ}, {check-pref}, ), and Sat-pref(s,i) is
({check-mode(i), completed(i)} U {p | p € SL} U
{-p | p € SL} U {not-tabu(s,i) | s € Sk},
{check-pref, completed(n)},0) with 1 < i < n;

e Ar = {a | a € Act-tabu(s,i) A s € Sh A1 <
i < n}, where Act-tabu(s,i) is the set of actions de-
fined as follows: Act-tabu(s,i) = {{{completed(i),
check-mode(i), p}, {not-tabu(s,i)},0) | p € PA
p € s} U {({completed(i), check-mode(i), p},
{not-tabu(s,i)}, @) | p € PAp ¢ s}.

Theorem 1 Let T = (A, P,so, {1/}, {¢'}, {Si}, (S},
with 1 < ¢ < n, be a solvable multiple planning problem
with PESs and TESs over a planning horizon of n transi-
tion, and 11" a planning problem with action costs derived
from 11 by the translating scheme defined above. Then, (1)
there exists a valid plan 7' for II'; and (2) for every plan
«’ solving I1', the plan obtained by removing the actions in
Ac U A1 U Ap from 7' and preconditions started (i) and
Y? from every action in ' is a valid multiplan for TL

Proof. (Claim 1) Let 7 = (my, ..., 7)) be a valid multiplan
for 11, and sy, the finale state of . If K < n and s;, € S’;,, we
show that a valid plan 7’ for IT’ is formed by the following
sequence of actions. Fori = 1to k,

1. start(i),

2. asequence of actions 7, obtained by replacing each action
in 7r; with its corresponding action in A;,

3. end(7),

4. a sequence of actions formed by one action in
Act-tabu(s, ) for each TES s € S%.,

plus
5. Sat-pref(sg, k).

If k = n and s, € S, a valid plan 7’ is formed by actions
(1-4) plus action Ignore-pref.

As for the executability of 7/, consider that actions in A¢,
Ap and A7 do not add or delete any proposition in P, and
that the difference between the actions in 7; and 7 does not
concern additive or delete effects of P.

For 1 < j < k, start(yj) is executable because all its
preconditions are satisfied. Specifically, let s;_ be the state
when action start(j) is executed. Then,



e precondition —started(j) €
start(j) is executed at most once;

sj—1 because in 7’

e 1; holds in s;_; because in 7 plan 7; maintains 7 from
the beginning;

e {not-tabu(s,j — 1) | s € S5 '} Cs; 1 with1 < j <
k, because in 7’ for each TES s € S%fl an action in
Act-tabu(s,j — 1) is executed before start(j).

Similarly, end(j) is executable because it is in 7" at most
once, in 7’ start(y) is executed before end(j), and, since 7
is valid, plan 773 achieves its precondition ¢/. Every action a
in 7} is executable because its corresponding action in 7; is

executable, 7; maintains 1/, and precondition started(y)
of a holds as in 7" action start(j) is executed before a.

For1 < j < k and s € S, at least one action in
Act-tabu(s, j) is executable because it is after end (), and
v(s0, (1, ..., 7;)) & S since 7 is a valid multiplan.

Sat-pref(sk, k) is executable because it is after action
end(k), sy € S%, and for each TES s € Sk it is after action
Act-tabu(s, k). Similarly, if 7’ contains Ignore-pref, such
an action is executable because it is after action end(n) and
actions {Act-tabu(s,n) | s € S}

Thereby, all the actions in 7’ are executable. More-
over, 7’ achives ¢’ because it contains either end(k) and
Sat-pref(sk, k) or end(n) and Ignore-pref.

(Claim 2) Since 7’ is a valid plan for II’, then it contains
either (a) end(k) and Sat-pref (s, k) for some k < n or
(b) end(n) and Ignore-pref. Consider case (a). Then, 7/
is formed as indicated before by items (1-5). We show that
there exists a solution multiplan 7 = (7, ..., 7) obtained
by substituting the actions in {7‘(; }j=1..x with the correspond-
ing actions in A . All the actions in 7 are executable because
plan 7’ is executable, and, for each action in 7, all its precon-
ditions are also preconditions of the corresponding action in
7. By construction of set of actions {end(j) | 1 < j < k},
and since the difference between the action in 7 and 7’ does
not concern additive or delete effects of P, plan 7 satisfies
all the achievement goals {¢/ | 1 < j < k}. For1 < j <k,
plan 7; maintains ¢/ because ¢’ is a precondition of action
start(j) and any action in 7/ has ¢ as its precondition.
Moreover, since 7’ is valid, by construction of set of actions
{start(j) | 1 < j <k} and Sat-pref(sg, k), for each TES
s € SJT and 1 < j < k, plan 7’ contains at least one action
a € Act-tabu(s) achieving conjunct not-tabu(s, j—1). By
construction of A7 and Act-tabu(s, j — 1), since all actions
in 7" are executable and the actions in A¢, Ap and At do
not add/delete propositions of P, v(sg, (71, ...,7;)) & S
Finally, since the last action of 7’ is Sat-pref(sg, k), the
end state of 7 is in Slk;.. Hence, all the conditions (1-4) in
Definition 2 hold, and 7 is a solution multiplan.

Similarly, in case (b), if the last two actions of 7’ are
end(n) and Ignore-pref, then there exists a solution multi-
plan m = (mq,...,m) with k = n. In this case, conditions
(1-3) of Definition 2 hold for the same arguments as in the
previous case. Condition (4) holds because, even if the last
state of 7 is not preferred, k is equal to n. [J

The cost of a plan 7’ solving I’ is the sum of the cost
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of the actions executed in 7/. Since there can be at most
one occurrence of action Ignore-pref in any valid plan, by
definition of cost function ¢, the cost of every valid plan is
either O or 1. The plans with zero cost are the best ones.

Theorem 2 Let 11 be a multiple planning problem with PESs
and TESs that has a solution plan ending in a PES, and 11" a
planning problem with action costs obtained from 11 by the
translating scheme presented before. Then, (1) there exists
a plan 7' solving TU' such that c(7') = 0, and (2) for every
plan @' solving 11 such that ¢(n') = 0, the plan obtained
by removing the actions in Ac U Ar U Ap from 7' and
substituting the actions in " with the corresponding actions
in A is a valid multiplan solving 11 and ending in a PES.

Proof. (Claim 1) Let 7 be a valid multiplan for IT ending in a
PES of II. By Theorem 1, there exists a valid plan 7’ which
is formed by the actions (1-5) listed at the beginning of the
proof of Theorem 1. Since the cost of every action of 7’ is
zero, ¢(n') = 0.

(Claim 2) By Theorem 1, the multiplan 7 obtained from 7’
by removing the actions in A, Ap and Ar and substituting
the actions in 7’ with the corresponding actions in A is valid
for II. Since ¢(n’) = 0 and #’ is valid, 7’ contains an action
Sat-pref(sy, k) achieving the goal conjunct check-pref
of ¢, for some PES s, € SIIB and k£ < n. By construction of
action set A’ and action Sat-pref (s, k), Sat-pref (s, k)
can be executed only as the last action of 7/. Moreover,
by construction of Sat-pref (s, k) and since 7’ is valid,
multiplan 7 must end in a PES of II. [J

Experimental Results

In our experiments, planning programs are constructed over 3
benchmark domains and with 4 different program structures
defined by the p-program transition relation §. We mod-
ified domains Blocksworld, Storage, and ZenoTravel
to admit dead-end states (Bacchus 2001; Gerevini et al.
2009; Long and Fox 2003). Specifically, the actions of
Blocksworld have been constrained so that, every two
moves of any block, the block has to be on the table; if
this does not happen the block cannot be moved anymore.
For the modified Storage and ZenoTravel domains, hoists
and airplanes consume energy, and can recharge only at cer-
tain locations. The considered p-program structures are: a
single cycle (shortly, 1C), multiple binary cycles in sequence
(MC), a random sparse directed graph (RS), and a sequence
of vertices plus a vertex linked from any vertex of the se-
quence (S+1). More formally, these structures are defined as
follows.

e 1C[n]: 0 = {{vi, Gi, V(i mod n)+1)) | vi €V, 1 <0 <
n};

e MC[n|: 0 = {(vi,Gi,vit1), (Vit1, Gign—1,vi) | v; €
V,1<i<n}

e RS[n]:0 = {(vi,Gi,wy) | (vi,wi) € ERrang,1 < i
|ERanal = [n - logan]};

o S+i[n]: 6 = {(vi, Gi,vit)), (vj, Gjgra—2, V) | V4,05
Vi<i<z-11<j<z—-1lx= {%*3}},
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Figure 3: CPU time and percentage of generated tabu states of
RealizePlanProg™ using LPG and LAMA with a planning horizon
equal to 1 and 5 for planning programs with structure RS[14] (s.t.
|6| ~ 50) over domain Blocksworld. The x-axis refers to the
number of planning program.

where V is the set of program states, n = |V|, Erana is a set
of [n-log, n] randomly selected pairs of program states, and
G, denotes the z-th set of (randomly generated) achievement
goals. Unless differently specified, the sets of achievement
goals were obtained by using the existing problem genera-
tors. For simplicity, we set all the maintenance goals, and
transition guards to true (i.e., we assume there are none of
them).

Overall, we constructed 77 planning programs with a
randomly generated initial state and || problem goal sets.
Specifically, our benchmark consists of: 20 Blocksworld
planning programs with a number of blocks ranging from
3 to 12 and program transition relation yielding structure
RS[14] (|6| & 50); for each considered domain, 77 planning
programs with the same small domain size (the number of
domain objects ranges from 8 to 11) and program transition
relation yielding structures 1C[5-100], MC[4-51], RS[3-23],
and S+1[5-43] (|¢| ranges from about 5 to 100).

Algorithm RealizePlanProg™ has been tested using two al-
ternative well-known incorporated planners: LAMA (Richter
and Westphal 2010), and LPG (Gerevini, Saetti, and Se-
rina 2003a; 2003b). The tests were conducted on an In-
tel Xeon(tm) 2 GHz machine, with 2 Gbytes of RAM.
Unless otherwise indicated, the CPU-time limit used by
RealizePlanProg™ to realize planning programs was 20 min-
utes. The termination of the incorporated planner was forced
after 10 minutes or when two different solution plans (with
increasing quality) were computed. Note that in this latter
case, the second plan necessarily achieves a PES. Moreover,
the second plan computed by either LAMA or LPG is an op-
timal solution (in terms of satisfied PESs). This is because
LAMA and LPG minimize the total cost of the plan solving
the problem obtained by compiling PESs and TESs away,
and, by construction of the compiled problems, at most one
action with positive cost can be executed in a valid plan (the
cost of every other action is equal to zero).

RealizePlanProg*[X](n) denotes RealizePlanProg™ in-
corporating planner X and using a planning horizon of n
p-program transitions. Figure 3 shows the performance
of RealizePlanProg*[LAMA] and RealizePlanProg™ [LPG]
with n equal to 1 and 5 for Blocksworld planning programs.
Using n = 1, the algorithm is the same as the version pro-
posed by De Giacomo et al. (2016). The results show that, us-
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ing n = 1, RealizePlanProg™ solves few planning programs
because, for most of the Blocksworld planning programs,
almost every D-state generated by RealizePlanProg™ is a
dead-end. Using n = 5, the percentage of the generated
states that are dead-ends is almost always equal to zero and
RealizePlanProg™ is almost always much faster, and solves
many more problems than using n = 1. This indicates that
for domains with dead-end states, realizing more than one
p-program transitions together can be very effective.

The results in Figure 3 raises the question of how many
p-program transitions should be realized “together”. Ta-
ble 2 addresses this question by comparing the IPC time
score (Helmert, Do, and Refanidis 2010) and the number
of solved problems of RealizePlanProg™[LAMA](n) and
RealizePlanProg™ [LPG](n) with n ranging from 1 to 25.
The results show that there is a tradeoff between the planning
horizon and the hardness of the multiple planning problems
derived by RealizePlanProg™. The higher the planning hori-
zon, the harder the derived multiple planning problems are.
Therefore, with a higher planning horizon, it is more likely
that LAMA and LPG fail to solve the compiled planning prob-
lems. On the other hand, the higher the planning horizon,
the more “advised” the computation of a p-program real-
ization is, and hence it is less likely that RealizePlanProg™
generates dead-end states. Overall, according to our experi-
mental results, the best tradeoff is obtained using a planning
horizon n equal to 10. For Storage and two p-program
structures over three, RealizePlanProg ™ [LPG] performs best
when used with n = 5, because solving the compiled plan-
ning problems derived from these p-program is hard for LPG.
On the contrary, for ZenoTravel and two p-program struc-
tures over three, solving the compiled planning problems
derived from these p-program is relatively easy for LAMA,
and the best performance is obtained by using n = 25.

Another interesting question is how the sequence of p-
program transitions should be selected to be realized together.
To investigate this question, we compare the heuristic based
on the longest path, previously presented, with a strategy
that randomly selects a p-program transition path of length
n. The results of this comparison are in Table 3. This ex-
periment uses planning programs with structure S+1[5-43]
where, for almost every P-state v of these planning pro-
grams, there are 2 p-program transition paths starting from
v of different sizes. Overall, RealizePlanProg*[LAMA] and
RealizePlanProg™ [LPG] using the longest path heuristic are
faster than using a randomly selection of the transitions, and
solve many more problems. This means that an accurate se-
lection of the p-program transitions realized together can be
very useful.

Conclusions

In this paper, we addressed the problem of effectively con-
structing planning program realizations over domains with
dead-end states. We proposed a significant enhancement of
the approach described in (De Giacomo et al. 2016), which
realizes a program transition while verifying the existance
of a solution plan for successive program transitions. Sub-
stantially, while the previous basic approach constructs a
realization of the planning program by iteratively realizing



Domain and RealizePlanProg T[LPG] RealizePlanProg T[LAMA]

structure of 1 2 5 10 25 1 2 5 10 25
p-program Score  #P Score  #P Score  #P Score  #P Score  #P Score  #P Score  #P ScatBrob Score  #P Score  #P
Blocksworld

1C[5-100] 00 0 |00 O |33 4 |195 20133 19|00 0 |00 O [20 2 |174 18|69 10
MC[4-51] 00 O .5 2 139 14 | 15.7 17 | 6.0 8 00 0 |00 O 80 8 |[11.8 16 | 0.0 O
RS[3-23] 00 O |46 5 |121 13|96 11|47 6 0.0 O 14 2 [189 19 |11.7 17|07 1
Storage

1C[5-100] 29 5 137 15| 17.1 20| 43 7 27 5 04 1 37 5 165 18 | 17.3 20| 17.3 20
MC[4-51] 00 0 |24 3 82 9 |63 7 1.7 3 00 0 |70 9 |16.,5 17 | 146 17 | 13.1 17
RS[3-23] 1.0 1 29 3 14 2 |41 5 |26 3 00 0 |40 5 11.7 13 | 159 17 | 10.1 13
ZenoTravel

1C[5-100] 14 2 |08 1 45 7 149 17 | 17.0 20| 0.9 1 1.0 1 1.9 2 |76 8 |18.0 20
MC[4-51] 22 3 1.6 2 |11.6 12 |14.0 16 | 125 15| 1.0 2 |13 2 |40 4 11.1 12 | 141 17
RS[3-23] 19 3 37 4 |77 9 |66 8 52 17 08 2 |42 5 15.5 16 | 17.9 19 | 12.3 17
Total 9.5 14| 31.1 35| 80.0 90 | 95.0 lﬂg\ 65.8 86 || 3.1 6 | 226 29| 950 99 | 125.4144 92.3 115

Table 2: Time score, and number of solved problems of RealizePlanProg™ [LPG] and RealizePlanProg* [LAMA] with a planning
horizon ranging from 1 to 25 p-program transitions for planning programs with structures 1C[5-100], MC[4-51] and RS[3-23]
over domains Blocksworld, Storage and ZenoTravel. Bold numbers indicate the best results.

Domain Using LPG Using LAMA
Random | Longest || Random | Longest
Blocksworld | 3.5(4) | 17.0(17) 14(2) | 12.0(12)
Storage 16.6 (18) | 18.6 (20) || 18.2(19) | 18.7 (20)
ZenoTravel 44(06) |17.0(17) 1.7(2) | 14.0 (14)
Total 24.5(28) | 52.6 (54) || 21.2(23) | 44.7 (46)

Table 3: Time score, and number of solved problems (in
parenthesis) of RealizePlanProg™[LPG/LAMA] with the
best performing horizon (see Table 2) for planning pro-
grams with structure S+1[5-43] in domains Blocksworld,
Storage and ZenoTravel.

single program transitions, the enhanced proposed approach
constructs the realization by realizing a set of heuristically
chosen transitions together.

We have provided experimental evidence of the effective-
ness of the new technique, and given (preliminary) experi-
mental results studying a heuristic criterion for selecting the
set of program transitions to realize together, and the tradeoff
between the size of the set of program transitions realized
together and the hardness of the multiple planning problems
derived from this set of transitions. An interesting direction
for future work is investigating additional, more informative
heuristics for selecting the sets of program transitions that it
is more useful to realize together.
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