
Edge N-Level Sparse Visibility Graphs: Fast Optimal
Any-Angle Pathfinding Using Hierarchical Taut Paths

Shunhao Oh, Hon Wai Leong
Department of Computer Science
National University of Singapore

ohoh@u.nus.edu, leonghw@comp.nus.edu.sg

Abstract

In the Any-Angle Pathfinding problem, the goal is to find the
shortest path between a pair of vertices on a uniform square
grid, that is not constrained to any fixed number of possi-
ble directions over the grid. Visibility Graphs are a known
optimal algorithm for solving the problem with the use of
pre-processing. However, Visibility Graphs are known to per-
form poorly in terms of running time, especially on large,
complex maps. In this paper, we introduce two improve-
ments over the Visibility Graph Algorithm to compute opti-
mal paths. Sparse Visibility Graphs (SVGs) are constructed
by pruning unnecessary edges from the original Visibility
Graph. Edge N-Level Sparse Visibility Graphs (ENLSVGs)
is a hierarchical SVG built by iteratively pruning non-taut
paths. We also introduce Line-of-Sight Scans, a faster algo-
rithm for building Visibility Graphs over a grid. SVGs run
much faster than Visibility Graphs by reducing the average
vertex degree. ENLSVGs, a hierarchical algorithm, improves
this further, especially on larger maps, with millisecond run-
times even on 6000 × 6000 maps. On large maps, with the
use of pre-processing, these algorithms are at least an order
of magnitude faster than existing algorithms like Visibility
Graphs, Anya and Theta*.

Introduction
In many pathfinding applications involving open spaces, it is
common strategy to abstract a 2D map into a uniform square
grid (Algfoor, Sunar, and Kolivand 2015). Many grid-based
pathfinding algorithms are 8-directional, where the agent
can only move in the four cardinal and four diagonal direc-
tions along the grid. We consider the Any-Angle Pathfind-
ing problem, where this constraint is removed. The start and
goal are vertices of the grid. The objective is to compute the
shortest path in terms of Euclidean distance from the start to
the goal that does not intersect any blocked tiles in the grid.

There are many algorithms for optimal 8-directional
pathfinding, like a simple 8-directional A*, or faster algo-
rithms like Jump-Point Search (Harabor and Grastien 2011)
and Subgoal Graphs (Uras, Koenig, and Hernández 2013).
On the other hand, computing optimal any-angle paths is
more difficult. Thus, many existing Any-Angle Pathfinding
algorithms like Theta* (Nash et al. 2007) and Block A* (Yap
et al. 2011), are heuristic in nature.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A known optimal Any-Angle Pathfinding algorithm is A*
on Visibility Graphs (Lozano-Prez and Wesley 1979). How-
ever, Visibility Graphs can be inefficient in practice for two
reasons. Firstly, Visibility Graph construction requires many
Line-of-Sight Checks, quadratic on number of tiles in the
grid. While this can be partially solved by pre-processing
the visibility graph, a second issue is the high average vertex
degree, slowing down an A* search on the graph.

Two recent Any-Angle Pathfinding algorithms have also
been shown to perform significantly better than Theta* in
practice. The first algorithm is Anya as described in (Hara-
bor et al. 2016), a fast online optimal algorithm based on
searching intervals instead of vertices. The second algo-
rithm, in (Shah and Gupta 2016), describes multiple optimi-
sations to speed up A* on a Visibility Graph over a quadtree.
We refer to this algorithm as SG16. These algorithms have
the advantage of being online, requiring no pre-processing.

In this paper, we introduce two improvements to the Vis-
ibility Graph algorithm, Sparse Visibility Graphs (SVGs)
and Edge N-Level Sparse Visibility Graphs (ENLSVGs),
which are at least an order of magnitude faster than exist-
ing algorithms like Theta*, Anya16 and SG16. The relation-
ship to other algorithms can be found in (Uras and Koenig
2015a). SVGs are constructed from removing unnecessary
edges from the Visibility Graph. ENLSVGs are constructed
by building a hierarchy over an underlying SVG.

The SVG and ENLSVG algorithms are fast and optimal,
but are offline algorithms, using a slower pre-computation
step so that many shortest path queries can be made quickly.
A drawback of offline algorithms is that the pre-computation
step needs to be repeated each time the map changes.

Both algorithms, SVGs and ENLSVGs, are based only on
the simple concept of pruning non-taut paths to reduce the
search space. Through these algorithms, we observe the re-
lationship between taut and optimal paths. Optimal paths are
difficult to compute in general, but taut paths, being locally
optimal rather than globally optimal, can be computed very
easily in constant time. We show how just simple taut path
restrictions can greatly reduce the search space for an opti-
mal search. Pruning taut paths on one level forms SVGs, and
extending it to n levels of pruning forms ENLSVGs.

Previous work making use of taut paths in Any-Angle
search include Anya (Harabor and Grastien 2013) and Strict
Theta* (Oh and Leong 2016). The idea of building a multi-

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

64



level hierarchy for optimal pathfinding is based on previous
work on N-Level Subgoal Graphs (Uras and Koenig 2015b).
N-Level Subgoal Graphs prune vertices using shortest paths,
while ENLSVGs prune edges using taut paths.

We also introduce Line-of-Sight Scans, a fast algorithm
for querying visible neighbours of a vertex in the grid. This
replaces Line-of-Sight Checks for building the Visibility
Graph and inserting the start and goal points into the graph.

Preliminaries

As previously mentioned, A* on Visibility Graphs (VGs) re-
turns optimal any-angle paths. The vertices of a Visibility
Graph consist of the start and goal vertices, and all convex
corners of obstacles. We connect all pairs of vertices with
Line-of-Sight. One method to build a Visibility Graph is to
run Line-of-Sight Checks between every pair of vertices on
the grid using Bresenham’s line-drawing algorithm (Bresen-
ham 1965). The Rotational Plane Sweep Algorithm (Choset
2005) can also be used to construct a Visibility Graph in
O(n2 log n) time on a set of polygons with total n vertices.
Both of these methods can be very slow on large grids. Thus,
it is more reasonable to pre-process a Visibility Graph on the
grid, and reuse the graph for multiple shortest-path queries.

As start and goal vertices differ for each query, we leave
them out of the pre-processed graph. During a shortest-path
query, we connect the start and goal vertices to the Visibility
Graph by doing Line-of-Sight Checks to all other existing
vertices. We remove them after the query. To take care of the
special case where there is Line-of-Sight between the start
and goal, we do an initial Line-of-Sight check for a direct
path before attempting to add them to the visibility graph.

We use taut path restrictions to reduce the search space.
Informally, a taut path is a path which, when treated as a
string, cannot be made “tighter” by pulling on its ends. For-
mally and practically, a path is taut if and only if every head-
ing change in the path wraps tightly around some obstacle
(Oh and Leong 2016). As shown in Figure 1, only a single
obstacle needs to be checked per heading change to deter-
mine if a path is taut (Figure 1c can never be taut). As all
optimal paths are taut, if we restrict the search space to taut
paths, the optimal path will be included in the search space.

(a) (b) (c)

Figure 1: (a) is taut, while (b) and (c) are not.

For the rest of this paper, we make use of Taut A* for
graph search in place of the standard A* algorithm. In Taut
A*, whenever we attempt to generate a successor v from
the current state u, we first check for tautness. v can be a
successor of u only if the subpath parent(u)−u−v is taut.
We use the Euclidean distance to the goal as our heuristic.

Sparse Visibility Graphs

Many edges in the Visibility Graph are unnecessary, as they
are never used in the final path found by A*. In particular,
these edges cannot be part of any taut path between any pair
of start or goal points, unless the start or goal is one of the
edge’s endpoints, in which case the edge will be added any-
way when connecting the start or goal to the visibility graph.

Refer to the edge uv in Figure 2a. Suppose endpoint v is
neither the start nor the goal. Thus, in any path involving
edge uv, the path must leave v to move to another vertex.
However, in all legal directions the path can leave v from,
the path will not be taut, and thus not optimal. We say that
the edge uv has no taut exit from v.

(a) Edge with no taut exit from v (b) Taut regions (shaded) of v

Figure 2: Edges without taut exit directions are unnecessary.

To identify the edges to be pruned, we consider the taut
regions around each vertex v in the graph. A vertex u is in
the taut region of vertex v if the edge uv has a taut exit from
v. To find the taut regions, we need only consider the obsta-
cles adjacent to v as shown in Figure 2b. We prune any edge
uv where any one of the endpoints does not lie within the
taut region of the other endpoint (Figure 3). The remaining
edges make up the Sparse Visibility Graph (SVG).

Figure 3: v lies within the taut region of u, but u does not lie
within the taut region of v. Edge uv is pruned.

Collinear Points

We describe our policy on collinear points in an SVG.
Naively, a set of k collinear points would form a size k clique
due to Line-of-Sight between any two points in the set (Fig-
ure 4). This is clearly wasteful and unnecessarily increases
the average vertex degree. In these cases, it suffices for each
vertex to have edges only to its closest neighbour on each
side of the point on the line. Intuitively, we can imagine each
vertex as being an epsilon-size Line-of-Sight obstruction.

65



Figure 4: Every pair of points on the line has Line-of-Sight.

Fast Construction Using Line-of-Sight Scans

Constructing Visibility Graphs using Line-of-Sight checks
between every pair of vertices takes Θ(V 2) Line-of-Sight
Checks even in the best case. This is because the computa-
tion is non-local. Even on dense maps where Line-of-Sight
is uncommon, Line-of-Sight Checks are still conducted be-
tween vertices on opposite ends of the map.

In place of individual vertex-to-vertex Line-of-Sight
Checks, we introduce Line-of-Sight Scans, which computes
the set of visible vertices from a single vertex. Intuitively, a
Line-of-Sight Scan from a vertex v is a radial outwards scan
which breaks whenever it hits an obstacle. We implement
this using a similar method to the interval search used by
Anya (Harabor and Grastien 2013).

The key advantage of Line-of-Sight Scans is that it is lo-
cal. For each vertex, the running time of Line-of-Sight Scans
depends on the number of visible vertices, while Line-of-
Sight Checks depends on the total number of vertices in the
entire map. Line-of-Sight Scans is much faster, especially
on larger maps with a low likelihood of cross-map visibility.

(a) Initial intervals (b) Resulting search tree

Figure 5: An All-Direction Line-of-Sight scan. The dark cir-
cle is the origin of the scan. Intervals are the horizontal lines.
The found visible successors are also marked.

We initialise the scan around a point (the source) by gen-
erating horizontal intervals around it as shown in Figure 5a.
Each interval is a tuple (xL, xR, y) consisting of an integer
y-coordinate and two fractional endpoints on the x-axis. The
successors of an interval are the observable successors de-
fined in (Harabor and Grastien 2013), which are computed
by projecting the current interval onto the next y-coordinate
away from the source. Obstacles split up generated intervals.
An example is shown in Figure 6.

From there, we conduct a depth-first search over the inter-
vals, with each interval generating its observable successors,
forming the search tree in Figure 5b. As visibility graph ver-
tices only occur at the endpoints of the intervals, it suffices to
check the interval endpoints to obtain the list of visible suc-
cessors. We call this an All-Direction Line-of-Sight Scan.

Figure 6: Successor intervals I2 and I3 generated from I1.

In a Sparse Visibility Graph, we only add edges to ver-
tices in taut regions (Figure 2a), which are determined by
the current vertex’s adjacent obstacles. Figure 7 illustrates
the six different cases. Thus, for each vertex we need only
scan within the taut regions. We do this by simply changing
the initial states of the search as shown in Figure 8. We call
this a Taut-Direction Line-of-Sight Scan.

Figure 7: The six different obstacle (dark grey, outlined)
configurations that determine taut regions (shaded).

(a) Initial intervals (b) Resulting search tree

Figure 8: A Taut-Direction Line-of-Sight scan. The found
visible neighbours with a darker shade in (b) are also pruned
as they do not meet the condition shown in Figure 3.

Line-of-Sight Scans can be sped up by pre-computing
left and right extents for each grid vertex - the number of
tiles one can traverse in that direction before hitting an ob-
stacle, as shown in implementation of Anya in (Uras and
Koenig 2015a). This pre-computation also improves the run-
time speed of the algorithm, as All-Direction Line-of-Sight
Scans are used to insert start and end points into the graph.

Properties of Sparse Visibility Graphs

The Sparse Visibility Graph Algorithm simply uses Taut A*
over a pre-processed SVG. SVGs reduce the average vertex
degree with no cost to optimality. On randomly generated
maps with percentages of blocked tiles ranging between 6%
and 40%, the average vertex degree of VGs remains approx-
imately 2.5 times that of SVGs. We see this in Figure 9.

66



Figure 9: Comparison of average vertex degree on
randomly-generated maps of various blocked densities.

Also, from Figure 10, we can see that the search tree of
the Sparse Visibility Graph algorithm is more sparse than
that of the original Visibility Graph algorithm.

(a) VG (b) SVG

Figure 10: Search tree comparson on the map EbonLakes.

A key property of SVGs is that it almost cannot be pruned
any further. Theorem 1 describes this property:

Theorem 1. For each edge in the Sparse Visibility Graph,
there exist two points which have an optimal path that uses
that edge, neither of which are the endpoints of the edge.

Proof. Edges in the SVG each belong to one of the four
cases in Figure 11. In each case, the two required points
are marked with crosses. The tiles that are necessarily un-
blocked in each case are marked with dotted lines.

(a) (b)

(c) (d)

Figure 11: The four possible types of edge in SVGs.

We note that Theorem 1 does not guarantee that an edge is
necessary in the case of multiple optimal paths between the

two points. However, this is uncommon, so pruning these
edges will yield only a marginal running time improvement.

Experimental evaluation of SVGs can be found in the Ex-
periments section at the end of the paper.

Edge N-Level Sparse Visibility Graphs

Before we discuss ENLSVGs, it is important to understand
the flaws of the SVG Algorithm. Even though Theorem 1
states that every edge in an SVG is necessary with a few rare
exceptions, a large percentage of the edges are only useful
for a small set of start-goal pairs. An example is Figure 12a,
where edge uv is only useful for constructing a path between
the two marked points. Figure 12b shows a clique of edges,
each of which are useful for only a few start or goal points.

(a) (b)

Figure 12: Edges with limited usefulness within a concave
section of blocked tiles.

Edge Levels

In SVGs, we prune outgoing edges that, when traversed,
cannot be taut on the next hop. We extend this concept by
looking further ahead than one hop, and prune outgoing
edges that cannot be taut in future hops. We note that in
SVGs, edges pruned due to a lack of taut exits are present
in an optimal path only if they are the first or last hop of the
search. We thus define the following concept of edge levels:

Definition 1. Edge Level
An edge is level k ≥ 0 if at any one of its endpoints, it

has no taut neighbouring edge of level more than k − 1, and
if k > 0, also has a taut neighbouring edge of level k − 1.
Edges that do not fit this definition have level ∞.

All “edges” not in the Sparse Visibility Graph are referred
to as Level-0 edges. The idea is that for an edge e of level �,
for any taut path that passes through e, edge e must be the kth

hop from one of the endpoints of the path, for some k ≤ �.
If we were to restrict our search to only edges of increasing
level from either end, all taut paths will be considered in the
search, maintaining optimality.

These edge levels can be computed by iteratively pruning
edges level-by-level as shown in Algorithm 1. Note that the
computed edge levels are independent of the order the edges
are selected in line 8. A simple algorithm is used for ease of
understanding, though we believe that this procedure can be
implemented with a more efficient algorithm.

Figure 13 illustrates an example of edge levels on an SVG.
Edges of different levels are given different colour shades.
Figure 14 highlights these edge levels more clearly.

67



Algorithm 1 ComputeEdgeLevels

1: procedure COMPUTEEDGELEVELS(E)
2: for each e = (u, v) ∈ E do
3: e.level ← ∞
4: hasChanges ← True
5: � ← 1
6: while hasChanges do
7: hasChanges ← False
8: for each e = (u, v) ∈ E do
9: if u or v has no taut exit of level ≥ � then

10: e.level ← �
11: hasChanges ← True
12: � ← �+ 1

Figure 13: Edge levels in a Sparse Visibility Graph

Figure 14: Zoom-in of Figure 13, with edges of level 2 and
above outlined and labelled.

With the edge levels defined as before, we have the
following results on the edge levels:

Lemma 2. Consider any taut path. Let the levels of the
edges along be the path be �1, �2, · · · , �n respectively. Then
for each i ∈ {2, 3, · · · , n − 1}, if �i is finite, then either
�i−1 < �i or �i+1 < �i.

Proof. Suppose that there is an i such that �i−1 ≥ �i and
�i+1 ≥ �i. As the subpaths ei−1ei and eiei+1 are taut, this
means edge ei has neighbouring edges on both endpoints
with level ≥ �i, implying the level of ei is at least �i + 1,
which is a contradiction.

Theorem 3. Assuming that every edge has a finite level, the
sequence of edges of any taut path between the start and the
goal vertices will be of the form

e1e2 · · · eke′k+1 · · · e′n
where edges e1e2 · · · ek have strictly increasing levels,

and e′k+1e
′
k+2 · · · en have strictly decreasing levels.

Proof. Let the levels of the edges along be the path be
�1, �2, · · · , �n respectively. From the lemma, we can see that
in the path, if there is an i such that �i ≥ �i+1, then we must
have �i+1 > �i+2, implying �i+2 > �i+3 and so on, induc-
tively proving that the remaining edges of the path will have
strictly decreasing levels, proving Theorem 3.

Level-W Edges

Not all edges will be assigned a finite level by Algorithm 1.
We refer to the remaining edges (with level ∞) as level-W
edges. Notably, an edge is level-W if and only if it is part of
some taut cycle. Examples of taut cycles are shown in Figure
15. We observe that the graph of level-W edges is similar to
the tangent graphs described in (Liu and Arimoto 1992), as
taut cycles wrap around the convex hulls of obstacles.

(a) (b) (c)

Figure 15: Examples of cycles of taut edges.

With this definition of level-W edges, we have a similar
theorem regarding the edge levels of taut paths.

Theorem 4. The sequence of edges of any taut path between
the start and goal vertices will be of the form:

e1e2 · · · ek1wk1+1wk1+2 · · ·wk2e
′
k2+1e

′
k2+2 · · · e′n

where edges e1e2 · · · ek1 have strictly increasing lev-
els, wk1+1wk1+2 · · ·wk2 are level-W, and e′k2+1e

′
k2+2 · · · en

have strictly decreasing levels.

Proof. The proof is similar to that of Theorem 3. Let the lev-
els of the edges along be the path be �1, �2, · · · , �n respec-
tively. From Lemma 2, we can see that in the path, if there
is an i such that �i ≥ �i+1 and �i+1 is finite, then we must
have �i+1 > �i+2, implying �i+2 > �i+3 and so on, induc-
tively proving that the remaining edges of the path will have
strictly decreasing levels. This gives the required form.

As the optimal path is taut, it obeys the rule in Theorem
4. Thus, other than near the start and the end of the route, we
only have to search level-W edges to ensure that the optimal
path is included in the search.

Edge Marking and Search

Edge Marking is how we make use of Theorem 4 in the
search. Before the search, from both the start and goal ver-
tices, we run a depth-first search to mark all finite-level
edges reachable by a taut path of strictly increasing edge
levels. We stop the search when we reach Level-W edges.
Figure 16 illustrates the edges that are marked this way.

We then restrict our A* search to use only marked edges
and level-W edges. Let H denote the subgraph induced by

68



(a) Before Marking (b) After Marking

Figure 16: Illustration of the edge marking process.

the marked and level-W edges. To prove that the algorithm
is optimal, it suffices to show that the optimal path resides
within the graph H .

Theorem 5. All taut paths (including the optimal path) from
the start s to the goal t reside within the graph H .

Proof. Consider any taut path from s to t. It must have edges
of the form in Theorem 4. Edges e1, e2 · · · , ek1

would have
been marked from s as each of these edges are reachable by
a taut path of increasing edge levels from s. Similarly, edges
e′k2+1, · · · e′n will be marked from t. Thus all of the edges in
the path are either marked or Level-W, and so are in H .

Thus the algorithm can be summarised in three steps:

1. Insert start, goal into the graph using Line-of-Sight Scans.

2. Mark reachable edges from the start and goal vertices.

3. Compute optimal path to the goal by running Taut A* on
only the marked and Level-W edges.

Skip-Edges

The graph of level-W edges can be further reduced through
the concept of Skip-Edges. As seen in Figure 17a, large con-
vex hulls can produce long, unbranching paths of level-W
edges. Each unbranching path can be reduced to a single
edge with weight equal to the length of the path as shown
in Figure 17b. We refer to these edges as Skip-Edges. Skip-
Edges makes the search time dependent on the amount of
detail in the map, rather than the scale of the map.

(a) level-W Edges (b) Skip-Edges

Figure 17: Skip-Edge network derived from level-W edges.

To construct the Skip-Edge network, consider the graph
W induced by the level-W edges. All vertices of degree

at least 3 in W are identified as Skip-Vertices. We then
trace the unbranching paths of Level-W edges between Skip-
Vertices to form the Skip-Edge network.

We also make a slight change to the marking scheme. If
we reach a Level-W edge while marking edges of increasing
level, we continue marking subsequent Level-W edges until
a Skip-Vertex is reached. This is illustrated in Figure 18. We
then run Taut A* on only marked edges and Skip-Edges.

(a) Before Marking (b) After Marking

Figure 18: The edge marking process with Skip-Edges.

Search Tree Comparison

Figure 19 illustrates the difference between the search trees
of the SVG and ENLSVG algorithms. We can observe the
running time improvement through how much of the original
search tree the algorithms prune.

(a) SVG (b) ENLSVG

Figure 19: Search tree comparson on the map EbonLakes.

Experimental Results

Experimental Setup

The algorithms compared are Theta*, Anya (Anya16), the
algorithm of Shah and Gupta (SG16), the Visibility Graph
Algorithm, SVGs and ENLSVGs. For the Visibility Graph
Algorithm, we implement it using Line-of-Sight Checks
(VGC), Rotational Plane Sweeps (VGRPS) and Line-of-Sight
Scans (VGS). The relationship between Theta* and other al-
gorithms can be found in (Uras and Koenig 2015a).

Other than Anya16, we have implemented all the algo-
rithms listed above in Java1. Anya16 refers to the recent im-
plementation of Anya in (Harabor et al. 2016), also in Java.

1The implementations are available at github.com/
Ohohcakester/Any-Angle-Pathfinding

69



(a) Generated, 30% blocked (b) Generated, 45% blocked

(c) Upscaled benchmark map (d) Tiled benchmark maps

Figure 20: Some 4000×4000 maps used in the experiments.

Note that this implementation contains multiple optimisa-
tions that makes it perform much better than the implemen-
tation given in (Uras and Koenig 2015a).

In addition to the 512 × 512 benchmarks from (Sturte-
vant 2012), we use three methods to generate larger maps.
The first two sets are generated using cellular automata
(Johnson, Yannakakis, and Togelius 2010), a common tech-
nique for generating cave-like game maps, with 30% / 45%
blocked tiles respectively. The third set is upscaled ver-
sions of benchmark game maps, smoothed using cellular
automata. The fourth set is generated by tiling benchmark
game maps to form larger maps. Examples are shown in Fig-
ure 20. Map sizes used are around 2000×2000, 4000×4000,
and 6000× 6000. Running times on each map are averaged
over 1000 to 2500 runs using 100 randomly-picked pairs of
reachable points. All times are given in milliseconds. All ex-
periments were run on a 3.40 GHz Intel Core i7-6700 CPU
with 8GB RAM.

Comparison of Construction Times

As the Visibility Graph algorithms are offline algorithms,
we also measure the time taken to preprocess the Visibility
Graph. We compare the construction times of the Visibility
Graph variants VGC, VGRPS, VGS, SVGs and ENLSVGs.
SVGs and ENLSVGs use Line-of-Sight Scans. The con-
struction times are given in Table 3.

Rotational Plane Sweeps (VGRPS) runs the slowest out
of the three variants, by a large margin. The improve-
ment in construction time from using Line-of-Sight Scans
(VGS) over the other two methods is especially significant
on random maps. SVG construction is faster than VGS as
it takes advantage of Taut-Direction Line-of-Sight Scans.
ENLSVGs includes an additional hierarchy-building step af-

ter the construction of the SVG, and thus is slightly slower.

Comparison of Line-of-Sight Algorithms

The choice of Line-of-Sight algorithm also affects the time
taken to insert the start and goal points into a Visibility
Graph during a query. A large proportion of the time saving
from VGC to SVGs comes from using Line-of-Sight Scans
over Line-of-Sight Checks for insertion. This is reflected in
the running time of VGS in Table 1. As Rotational Plane
Sweeps have been shown to be much slower than Line-of-
Sight Checks, we omit it from our running time tests.

This is because the running time of Line-of-Sight Checks
depends on the number of visibility graph vertices (convex
corners) in the entire grid, while the running time of Line-of-
Sight Scans depends on the size of the visible region from
each vertex. Random maps have more convex corners and
smaller visible regions. The Rotational Plane Sweep Algo-
rithm is implemented by tracing the boundaries of each ob-
stacle to form polygons. This makes the algorithm very slow
as these polygons have a large number of edges.

Running Time Breakdown

We break down the ENLSVG algorithm into three compo-
nents: insertion, marking and search. Insertion is the Line-
of-Sight Scans to connect the start and goal to the graph.
Search refers to the final A* search. Only the insertion and
search components apply to the SVG algorithm. The break-
down of the running times is given in Table 2.

We see that ENLSVGs perform a lot better than SVGs
on tiled and generated maps, but only slightly better on up-
scaled maps. This is because the bottleneck on upscaled
maps is the insertion and marking steps, while the bottle-
neck on tiled maps is the search step. Insertion time depends
on how wide the open spaces are, while search time is tied to
the complexity of the map. Upscaled maps have large open
spaces and low complexity, while tiled maps are the oppo-
site. If we look at search time alone however, we see that
ENLSVGs consistently do much better than SVGs.

Comparison with other Algorithms

As SVGs are simply less dense Visibility Graphs, SVGs im-
prove the running time from VGS with no additional cost.
While SVGs effectively cut running time regardless of map
structure, ENLSVGs speed up search by taking advantage of
map structure to build a hierarchy. As such, the cost savings
are small on completely random maps (Table 1).

When compared to existing algorithms VGC, Theta*,
Anya16 and SG16, especially on large maps, SVGs and
ENLSVGs are at least an order of magnitude faster. We find
that Anya16 also performs well even on large maps, while
SG16 and Theta* degrades quickly on certain maps.

In SG16, the complexity of the map is indicated by the
number of quadtree nodes representing it. Thus, for a better
comparison, we have included the number of quadtree nodes
required to represent each the maps (on average) in Table 1.

SG16 improves on the naive Rotational Plane Sweep al-
gorithm by dividing the map into nonintersecting convex
hulls. From our experiments, we find that SG16 performs

70



Map Set Size Quadtree Nodes Theta* SG16 Anya16 VGC VGS SVG ENLSVG
bg512 5122 9443.2 3.01 12.39 0.12 0.21 0.23 0.04 0.05

sc1 5122 30209.2 22.20 22.34 1.10 2.74 1.06 0.39 0.19
wc3 5122 13722.3 3.12 12.18 0.16 0.38 0.28 0.05 0.07

random10 5122 123904.6 2.82 - 2.96 8.17 4.22 0.86 1.00
random20 5122 179588.2 4.44 - 10.97 11.41 5.37 1.82 1.74
random30 5122 209655.4 5.73 - 16.23 10.90 5.37 2.45 2.26
random40 5122 145179.1 6.01 - 13.83 6.27 3.74 2.01 1.58

gen30 2000 20002 214479.0 101.22 145.43 2.99 18.37 4.71 1.30 0.98
gen30 4000 40002 867156.0 421.03 1517.17 12.72 76.72 16.40 5.16 1.73
gen30 6000 60002 1953102.0 991.00 8158.56 32.55 168.89 34.63 12.08 3.16
gen45 2000 20002 242387.0 185.09 316.55 6.53 17.92 7.16 2.51 0.63
gen45 4000 40002 976729.0 832.99 2454.35 23.80 75.73 27.61 10.33 1.18
gen45 6000 60002 2192387.0 2412.02 10882.95 63.80 177.11 73.97 28.16 1.80
scaled 2048 20482 58070.5 225.67 157.12 1.10 10.14 2.50 0.56 0.43
scaled 4096 40962 106296.5 1429.99 698.81 2.39 47.66 8.07 1.76 1.51
scaled 6144 61442 180578.0 4665.53 1624.11 4.05 102.75 16.25 3.56 3.29
tiled 2048 20482 256104.3 163.31 338.50 6.50 14.24 4.31 1.77 0.29
tiled 4096 40962 1041379.0 751.63 3133.74 24.61 69.75 18.76 8.81 0.74
tiled 6144 61442 2353286.5 1911.95 13665.52 57.04 145.34 46.67 23.26 1.87

Table 1: Running times (in milliseconds) for benchmark maps, as well as generated, scaled and tiled maps.

SVG ENLSVG
Map Set Insert Search Insert Marking Search
bg512 0.0214 0.0212 0.0222 0.0261 0.0053

sc1 0.0317 0.3616 0.0333 0.1199 0.0372
wc3 0.0236 0.0236 0.0248 0.0374 0.0114

random10 0.0218 0.8381 0.0280 0.1584 0.8098
random20 0.0081 1.8114 0.0099 0.0410 1.6888
random30 0.0046 2.4404 0.0057 0.0176 2.2403
random40 0.0026 2.0078 0.0032 0.0083 1.5699

gen30 2000 0.2100 1.0926 0.2230 0.6372 0.1214
gen30 4000 0.3229 4.8377 0.3278 0.8996 0.5037
gen30 6000 0.4052 11.6717 0.5942 1.1845 1.3771
gen45 2000 0.1224 2.3805 0.1291 0.3337 0.1680
gen45 4000 0.1974 10.1294 0.1790 0.4398 0.5606
gen45 6000 0.2236 27.9335 0.1908 0.4715 1.1323
scaled 2048 0.1151 0.4424 0.1159 0.2900 0.0277
scaled 4096 0.3002 1.4570 0.3648 1.0894 0.0508
scaled 6144 0.5852 2.9704 0.8392 2.3696 0.0803
tiled 2048 0.0427 1.7245 0.0395 0.1052 0.1450
tiled 4096 0.0746 8.7308 0.0438 0.1184 0.5735
tiled 6144 0.0944 23.1664 0.0743 0.1469 1.6480

Table 2: Running time (ms) breakdown of the ENLSVG and
SVG algorithms.

well on large maps with few details. However, performance
degrades quickly with the amount of detail in the map. As
compared to Theta*, SG16 performs better on large maps
with few details, while Theta* performs relatively better on
smaller maps with more details. SG16 was unable to run
some of the benchmarks within a reasonable amount of time.
For the rest of the benchmarks, we ran SG16 with only one
trial per test case, rather than the usual 25.

ENLSVGs perform well (in real-time, on the order of mil-
liseconds per computation) even on 10000 × 10000 grids.
Memory constraints from storing large grids however pre-
vent us from extracting reliable running time data, due to
inconsistent running times when memory paging occurs.

Map Set VGC VGRPS VGS SVG ENLSVG
bg512 37 398 9 7 10

sc1 1688 20070 58 47 90
wc3 81 667 15 11 14

random10 81847 1592350 1834 378 1376
random20 132736 4364323 728 206 636
random30 130427 5708782 378 127 376
random40 30445 1864484 126 51 139

Table 3: Graph construction times (ms) on benchmark maps.

Conclusions

On maps with wider open spaces, even though the ENLSVG
algorithm’s running time is bottlenecked by the insertion and
marking steps, the ultimate reduction in time used for the
search step gives is an indication of the potential speedup
that can be obtained through the use of ENLSVGs.

If we could do away with the insertion and marking steps,
this speedup could be achieved. For example, pre-processing
could be used to quickly find the visible neighbours of the
start and goal points. Regarding the marking step, we can
see that some form of goal-based initial search is needed
in this algorithm, in order for the search to “know” that it is
approaching the goal, and start following paths of decreasing
edge levels. Whether a double-ended search algorithm can
be used to omit the marking step is an open question.

In this paper, we also see the use of taut (locally opti-
mal) paths as a heuristic for globally optimal paths to reduce
the search space. The exact relationship between ENLSVGs
(edge levels by pruning non-taut paths) and the 8-directional
optimal algorithm N-Level Subgoal Graphs (vertex levels by
pruning suboptimal paths), as well as a deeper analysis of
their running times and pitfalls, remains to be investigated.

71



References

Algfoor, Z. A.; Sunar, M. S.; and Kolivand, H. 2015. A
comprehensive study on pathfinding techniques for robotics
and video games. International Journal of Computer Games
Technology.
Bresenham, J. E. 1965. Algorithm for computer control of
a digital plotter. IBM Systems journal 4(1):25–30.
Choset, H. M. 2005. Principles of robot motion: theory,
algorithms, and implementation. MIT press.
Harabor, D., and Grastien, A. 2011. Online graph pruning
for pathfinding on grid maps. In AAAI.
Harabor, D., and Grastien, A. 2013. An optimal any-angle
pathfinding algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling, 308–
311.
Harabor, D.; Grastien, A.; Oz, D.; and Aksakalli, V. 2016.
Optimal any-angle pathfinding in practice. Journal of Artifi-
cial Intelligence Research 56:89.
Johnson, L.; Yannakakis, G. N.; and Togelius, J. 2010. Cel-
lular automata for real-time generation of infinite cave lev-
els. In Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, 10. ACM.
Liu, Y.-H., and Arimoto, S. 1992. Path planning using
a tangent graph for mobile robots among polygonal and
curved obstacles communication. The International Journal
of Robotics Research 11(4):376–382.
Lozano-Prez, T., and Wesley, M. A. 1979. An algorithm
for planning collison-free paths among polyhedral obstacles.
Communications of the ACM 22:560–570.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007. Any-
angle path planning on grids. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 1117–1183.
Oh, S., and Leong, H. W. 2016. Strict theta*: Shorter motion
path planning using taut paths. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing.
Shah, B. C., and Gupta, S. K. 2016. Speeding up a* search
on visibility graphs defined over quadtrees to enable long
distance path planning for unmanned surface vehicles. In
Proceedings of the Twenty-Sixth International Conference
on International Conference on Automated Planning and
Scheduling, 527–535. AAAI Press.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Uras, T., and Koenig, S. 2015a. An empirical comparison of
any-angle path-planning algorithms. In Proceedings of the
Annual Symposium on Combinatorial Search.
Uras, T., and Koenig, S. 2015b. Speeding-up any-angle
path-planning on grids. In ICAPS, 234–238.
Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal
graphs for optimal pathfinding in eight-neighbor grids. In
ICAPS.
Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J. 2011. Block

A*: Database-driven search with applications in any-angle
path-planning. In AAAI.

72


