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Abstract

In this paper, we propose: (a) a restart schedule for an adap-
tive simulated annealer, and (b) parallel simulated annealing,
with an adaptive and parameter-free annealing schedule. The
foundation of our approach is the Modified Lam annealing
schedule, which adaptively controls the temperature parame-
ter to track a theoretically ideal rate of acceptance of neigh-
boring states. A sequential implementation of Modified Lam
simulated annealing is almost parameter-free. However, it re-
quires prior knowledge of the annealing length. We eliminate
this parameter using restarts, with an exponentially increas-
ing schedule of annealing lengths. We then extend this restart
schedule to parallel implementation, executing several Mod-
ified Lam simulated annealers in parallel, with varying initial
annealing lengths, and our proposed parallel annealing length
schedule. To validate our approach, we conduct experiments
on an NP-Hard scheduling problem with sequence-dependent
setup constraints. We compare our approach to fixed length
restarts, both sequentially and in parallel. Our results show
that our approach can achieve substantial performance gains,
throughout the course of the run, demonstrating our approach
to be an effective anytime algorithm.

1 Introduction

For many scheduling and optimization problems, meta-
heuristics such as simulated annealing (SA), genetic algo-
rithms (GA), ant colony optimization (ACO), tabu search,
etc, offer a means of trading off guarantees of optimality in
favor of efficiently finding high quality solutions. Such al-
gorithms often exhibit anytime behavior, providing increas-
ingly better solutions with increases in available time.

Metaheuristic behavior is usually controlled by several
parameters. GAs have mutation and crossover rates, among
other parameters. SA has parameters that control the anneal-
ing schedule. ACO has parameters that balance the relative
influence of heuristic guidance and the learned pheromone
trails. Control parameters can either be tuned beforehand by
some process (automated or otherwise) or adapted dynami-
cally using search feedback. For example, there exist param-
eter control approaches for GA and other forms of evolution-
ary computation (Eiben, Hinterding, and Michalewicz 1999;
Wessing, Preuss, and Rudolph 2011; Aleti and Moser 2013),
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adaptive annealing schedules for SA (Lam and Delosme
1988; Swartz 1993; Boyan 1998), among others.

Parallel implementation of many metaheuristics is
straightforward, such as population-based algorithms like
GA and ACO, whose motivations come from naturally oc-
curring distributed behavior. While for others, parallel im-
plementation is less obvious. In this paper, we propose a
new approach to parallel SA. We execute several indepen-
dent runs, with restarts, in parallel of an adaptive SA us-
ing the Modified Lam (Swartz 1993; Boyan 1998) annealing
schedule. The Modified Lam annealing schedule is nearly
parameter-free, requiring only knowledge of the annealing
length. In our proposed parallel SA, we eliminate this last
parameter with restarts following a schedule of annealing
lengths that better balance the risk associated with errors in
estimating available computation time. The initial and restart
annealing lengths increase exponentially. The result is a par-
allel parameter-free SA with improved anytime behavior.

We validate our approach using an NP-Hard scheduling
problem with sequence-dependent setups. We begin our ex-
periments with the sequential case. Although for any a priori
known fixed time limit, a single run of that length outper-
forms our restart schedule at run end, our proposed restart
schedule exhibits greatly improved anytime behavior during
the run. We continue our experiments in parallel, demon-
strating our parallel variable-length SA to significantly dom-
inate parallel fixed-length restarts early in the run.

The paper is organized as follows. In Section 2, we dis-
cuss related work on parallel SA. We provide details of
our parallel parameter-free SA in Section 3. Then, in Sec-
tion 4, we validate our approach experimentally with an NP-
Hard scheduling problem, consisting of sequence-dependent
setup constraints, and offer conclusions in Section 5.

2 Background

SA is typically described in a very sequential manner, and
not parallelized as obviously as other metaheuristics. There
are two major categories of parallel SA (Rudolph 1993):
namely, approaches that implement neighbor evaluations in
parallel, and approaches that are essentially parallel imple-
mentations of multistart SA. An example of the first case
is the work of Ludwin and Betz who use a parallel SA for
FPGA placement to optimize critical path length (Ludwin
and Betz 2011). They execute multiple move evaluations in
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parallel using what they call speculative moves.
The second type can be referred to as parallel multistart.

Although restarting some algorithms, such as hill climbers,
offers a means of countering large numbers of local optima;
many have shown sequential multistart SA to be ineffective.
One long run of SA the length of the available time is typ-
ically more effective than taking the best solution from a
set of shorter runs. Therefore, it is not surprising that ap-
proaches to parallel SA that execute multiple runs of SA in
parallel rarely involve independent runs. More commonly,
parallel multistart SA involves sharing information among
the parallel runs. For example, Ram et al’s approach (for
job shop scheduling) periodically exchanges the best so-
lution among the parallel runs, each continuing its search
from there (Ram, Sreenivas, and Subramaniam 1996). More
recently, in Jha and Menon’s approach, at intervals called
“beats” the best solution is shared among threads (Jha and
Menon 2014). Jha and Menon developed their approach for
general purpose computation on graphics processing units
(GPGPU) for a sports league scheduling problem.

Others apply SA in parallel to optimize a set of sub-
problems, each SA instance solving a different sub-problem.
For example, Rahimian et al’s approach to graph partition-
ing, specifically for large social network graphs, distributes
the problem, and individual distributed instances of SA op-
timize portions of the problem (Rahimian et al. 2015). They
apply this to both edge-cut and vertex-cut partitioning.

Other forms of search often rely on restarts, quite effec-
tively. For example, in constraint satisfaction, satisfiability,
and other similar problems, backtracking search using ran-
domized variable-ordering and value-ordering heuristics of-
ten exhibit heavy-tailed runtime distributions (Gomes et al.
2000). Using an effective restart strategy, one can try to
abandon the runs that are likely in the heavy-tail, restarting
in an attempt to more directly solve the problem. The Luby
restart schedule is the most widely known (Luby, Sinclair,
and Zuckerman 1993), and has been parallelized (Cire, Ka-
dioglu, and Sellmann 2014). The first several restart lengths
of the Luby schedule (in number of backtracks) are as
follows: [1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .]. You begin
with a restart sequence, [1, 1, 2], then repeat the entire prior
sequence from the beginning followed by a restart double
the length of the last, etc.

3 Technical Approach

3.1 Modified Lam Simulated Annealing

The foundation of our approach is an existing sequential
simulated annealer with an adaptive annealing schedule. SA
operates via a mechanism modeled after the process of heat-
ing a metal and allowing it to cool slowly. Heating enables
the material to be shaped as desired, while cooling at a slow
rate minimizes internal stress thus enabling greater stability
in the final state.

In SA, search is controlled by a temperature parameter.
The most basic form of SA begins with a high temperature
and then “cools” at some rate, with both initial temperature
and cooling rate as system parameters. The Modified Lam
annealing schedule (Swartz 1993; Boyan 1998) eliminates

Modified Lam Annealing

S ← GenerateRandomInitialState
T ← 0.5
AcceptRate← 0.5
for i = 1 to MaxEvals do
S′ ← random selection from η(S)
if Cost(S′) ≤ Cost(S) or Rand ∈ [0, 1) <

e(Cost(S)−Cost(S′))/T then
S ← S′
AcceptRate← 1

500 (499 · AcceptRate + 1)

else AcceptRate← 1
500 (499 · AcceptRate)

if i/MaxEvals < 0.15 then

LamRate← 0.44 + 0.56 · 560−i/MaxEvals/0.15
else if 0.15 ≤ i/MaxEvals < 0.65 then

LamRate← 0.44
else if 0.65 ≤ i/MaxEvals then

LamRate← 0.44 · 440−(i/MaxEvals−0.65)/0.35

if AcceptRate > LamRate then T ← 0.999 · T
else T ← T/0.999

return Best solution found during run

Figure 1: SA with the Modified Lam annealing schedule.

these parameters, by dynamically adjusting temperature us-
ing search feedback. It’s based on results of Lam and De-
losme (Lam and Delosme 1988), where they showed that the
ideal run of SA accepts neighboring states at a rate of 0.44,
which formed the basis for an annealing schedule that tracks
this acceptance rate. Lam and Delosme’s version originally
used a monotonically decreasing temperature schedule, and
adjusted the size of the neighborhood to maintain the ac-
ceptance rate as near 0.44 as possible—e.g., they increased
the size of the local neighborhood to decrease the accep-
tance rate, and decreased the size of the local neighborhood
to increase the acceptance rate. They relied on the common
assumption that nearby search states are of similar quality;
and thus, a smaller local neighborhood implies smaller dif-
ference between current fitness and neighbor fitness, which
leads to higher probability of neighbor acceptance.

Swartz later made additional observations on Lam and
Delosme’s annealing schedule (Swartz 1993), which were
then refined by Boyan into the Modified Lam sched-
ule (Boyan 1998). Specifically, Swartz observed that at the
beginning of the search, the acceptance rate is near 1.0 (i.e.,
random search) and decreases at an exponential rate during
the first 15% of the run when it reaches the target accep-
tance rate of 0.44, continues at that rate for 50% of the run,
and then declines exponentially to the end of the run (i.e.,
end of run converges to a stochastic hill climb). Rather than
adjusting the size of the local neighborhood, Swartz’s and
Boyan’s Modified Lam schedule varies the temperature—
increasing temperature to increase acceptance rate, and de-
creasing temperature to decrease acceptance rate. Figure 1
shows SA with the Modified Lam schedule. In the pseu-
docode, η(S) refers to the set of neighboring states of S (i.e.,
our neighborhood function).
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3.2 Parallel Variable Length Runs

The Modified Lam annealing schedule is nearly parameter-
free. However, it requires the annealing length, referred to
as MaxEvals in the pseudocode of Figure 1. It is not always
practical to accurately predict the time available for search.
If the run is shorter than you anticipate, the search would
have spent too much time randomly exploring, and insuffi-
cient time exploiting observed high quality portions of the
search space. If the run is much longer than you expected, it
will get stuck too early in a local optimum, failing to effec-
tively utilize the unexpected extra time.

For sequential SA, many have shown that one longer run
of SA is typically much better than restarting shorter runs.
Extending this to parallel SA with independent instances,
one would expect better performance if all parallel instances
were single runs of the available time. However, the avail-
able time may not be known, and may be difficult to ac-
curately predict. Our approach attempts to balance the risk
associated with incorrectly estimating time available, using
restarts with a schedule of increasing annealing lengths.

Additionally, we define our restart schedule to support
both sequential and parallel implementations. Specifically,
we propose a parallel SA, that executes several SA instances
with the Modified Lam annealing schedule. Each SA in-
stance has a different initial value of MaxEvals. As each
SA instance completes its initial run, it restarts with a new
longer run. The SA instances operate independently, sharing
no data, and each restart begins anew with randomly gen-
erated initial solutions. The best solution found among all
parallel runs is returned. The approach is essentially a paral-
lel implementation of a multistart SA, but where the length
of the restarts varies and increases.

Variable Annealing Length (VAL): In the sequential
case, our annealing length schedule, VAL, is as follows.
Restart r (r = 0 is the initial run) is of length:

MaxEvals(r) = 1000 ∗ 2r. (1)

Thus, the multistart SA follows a sequence of annealing
lengths {1000, 2000, 4000, 8000, 16000, 32000, . . .}.

Parallel Variable Annealing Length Version 0 (P-
VAL-0): Assume that we execute N instances,
{SA0, SA1, . . . ,SAN−1}, of multistart Modified Lam
SA in parallel. The length, MaxEvalsi(r), for restart r of
instance SAi is:

MaxEvalsi(r) = 1000 ∗ 2i+r∗N . (2)

In the case of N = 1, there is a single instance SA0 and thus
P-VAL reduces to VAL.

Consider N = 3 as an example. SA0 has a sequence of an-
nealing lengths {1000, 8000, 64000, . . .}, SA1 has anneal-
ing lengths {2000, 16000, 128000, . . .}, and SA2 has an-
nealing lengths {4000, 32000, 256000, . . .}.

Parallel Variable Annealing Length (P-VAL): There are
deficiencies in P-VAL-0 related to parallel speedup, for

N > 4, which we discuss later in Section 4.5. We resolve
those deficiencies with the following schedule of annealing
lengths MaxEvalsi(r), for restart r of instance SAi:

MaxEvalsi(r) = 1000 ∗ 2(i mod 4)+r∗min{N,4}. (3)

When N ≤ 4, P-VAL is identical to P-VAL-0. When N > 4,
{SA0, SA4, SA8, . . .} all have a sequence of annealing
lengths {1000, 16000, 256000, . . .}, {SA1, SA5, SA9, . . .}
have annealing lengths {2000, 32000, 512000, . . .},
{SA2, SA6, SA10, . . .} have annealing lengths
{4000, 64000, 1024000, . . .}, and {SA3, SA7, SA11, . . .}
have annealing lengths {8000, 128000, 2048000, . . .}.

4 Experiments

4.1 Scheduling with Sequence-Dependent Setups

To validate our approach, we consider an NP-Hard single
machine scheduling problem, characterized by sequence-
dependent setups, with an objective of minimizing weighted
tardiness. The problem is NP-Hard even if setups are in-
dependent of job ordering (Morton and Pentico 1993), and
the sequence-dependent setups magnify computational dif-
ficulty by inducing a non-order-preserving property of the
evaluation function (Sen and Bagchi 1996).

The problem is defined as follows, and consists of N jobs,
J = {j1, j2, . . . , jN}. Each job jk has weight wk, duedate
dk, and processing time pk. Setup times si,k, required prior
to processing job jk if it immediately follows job ji, depend
on the job ordering, and are asymmetric (i.e., si,k �= sk,i);
and s0,k is the initial setup time required if job jk is pro-
cessed first. The jobs J must be sequenced to minimize:

T =
N∑

k=1

wkTk =
N∑

k=1

wk max(ck − dk, 0), (4)

where Tk is the tardiness of job jk. The completion time ck
of jk is the sum of the processing and setup times of jk and
of all jobs that preceed jk. If π(k) is the position of job jk
in the sequence, then define ck as:

ck =
∑

π(x)≤π(k),π(x)=π(y)+1

(px + sy,x). (5)

In our experiments, we use the standard benchmark set for
the problem (Cicirello 2003a; 2003b), which consists of 120
instances, 40 each of loose, medium, and tight due dates. Of
these, 22 loose duedate instances have an optimal weighted
tardiness of 0.

The best available exact solver, Tanaka and Araki’s Suc-
cessive Sublimation Dynamic Programming, can solve all
of the available benchmark instances, but requires over two
weeks of memory-intensive CPU time to solve the hardest
instances (Tanaka and Araki 2013). Therefore, metaheuris-
tics are a more practical approach. A variety of algorithms
have been proposed for the problem, such as dynamic pro-
gramming (Tanaka and Araki 2013), neighborhood search
(Liao, Tsou, and Huang 2012), iterated local search (Xu,
Lü, and Cheng 2014), value-biased stochastic sampling (Ci-
cirello and Smith 2005), ACO (Liao and Juan 2007), GA
(Cicirello 2015; 2006), SA (Cicirello 2007), etc.
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Figure 2: Sequential case: %ΔOpt.

We preprocess the instances transforming them as sug-
gested by others (Tanaka and Araki 2013; Cicirello 2015).
To minimize the impact of setup times, we increase the pro-
cessing time of each job, jk, by its minimum setup time, and
reduce all setup times accordingly (Cicirello 2015):

smin
k = min

0≤i≤N,i�=k
si,k, (6)

pk = pk + smin
k , (7)

si,k = si,k − smin
k , ∀i, i �= k, 0 ≤ i ≤ N. (8)

We also eliminate jobs jk, such that wk = 0, if ∀x∀y, x �=
y, sx,k + pk + sk,y ≥ sx,y (Tanaka and Araki 2013).

4.2 Experimental Design

We conduct our experiments on an Ubuntu 14.04 Server,
with 32GB memory and two Intel Xeon L5520 Quad-Core
CPUs (2.27GHz). The L5520 supports hyper-threading with
two threads per core, so our server has a total of 16 logical
cores. We implement our experiments with Java 8 and the
Java HotSpot 64-bit Server VM.

We conduct experiments in both the sequential case (N =
1) as well as in parallel. For the parallel runs, we consider
both N = 4 and N = 8 parallel instances. We record the
best solution found at 1 second intervals over 60 seconds.

We compare our VAL and P-VAL to multistart SA with
fixed annealing length (FAL and P-FAL in parallel). We con-
sider several fixed annealing lengths. FAL-1 and P-FAL-1
use an annealing length tuned to the total available time (60
seconds), specifically runs of 108 million SA evaluations.
This threshold was determined based on the total number of
evaluations that VAL was able to do in 60 seconds. Likewise,
FAL-1/2, FAL-1/4, FAL-1/8, use annealing lengths that are
1/2, 1/4, and 1/8 of the available 60 second limit (54 mil-
lion, 27 million, and 13.5 million SA evaluations, respec-
tively), restarting at that same length as long as time remains.
P-FAL-1, P-FAL-1/2, P-FAL-1/4, P-FAL-1/8 are equivalent
to a best of N , 2N , 4N , and 8N independent runs, respec-
tively, with approximately the same total cost.

We represent solutions as permutations, and use Inser-
tion Mutation as our neighborhood function. This opera-
tor removes a random element, and reinserts it at a differ-
ent random position. Several existing metaheuristics for this
scheduling problem use this operator, and it has been shown
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Figure 3: Sequential case: %ΔOptSum.

effective for permutation optimization problems charac-
terized by asymmetric edges and general position within
the permutation (Cicirello 2016). This problem has both:
sequence-dependent setups (asymmetric edges), and due
dates influence general position within permutation.

We use the following commonly employed metrics in the
analysis of our experiments for this scheduling problem.
Most commonly reported is the average percentage devia-
tion from the optimal solutions, averaged only across the 98
instances with non-zero optimal values:

%ΔOpt =
100

N

N∑

i=1

(Si −Oi)

Oi
, (9)

where Si and Oi are the value of the solution found for prob-
lem instance i and its optimal solution, respectively. One is-
sue with this metric is that it ignores the 22 instances whose
optimal solutions have weighted tardiness of 0. Thus, we
also report the percentage deviation of the sum across all
120 instances relative to the sum of the optimal solutions:

%ΔOptSum = 100

∑N
i=1 Si −

∑N
i=1 Oi∑N

i=1 Oi

. (10)

Using each algorithm, we optimize each instance 10
times. We use t-tests to test the significance of the
%ΔOptSum results. We use the Wilcoxon signed rank test to
test the significance of the %ΔOpt. Since %ΔOpt is an aver-
age across multiple problem instances with values of varying
scale, the t-test’s normality requirement is not met.

4.3 Sequential Results

The results for sequential SA are summarized in Figures 2
and 3, which show average %ΔOpt and %ΔOptSum, re-
spectively, throughout the duration of the 60 second runs.
Early in the run, VAL dominates, and then performance ap-
proximately tracks that of each progressively longer fixed
annealing length.

On the %ΔOpt metric, VAL dominates early in the run,
but the FAL variations overtake it at approximately the time
corresponding to the annealing length for which they were
tuned. However, as VAL’s longer runs complete, VAL’s per-
formance then matches that of the fixed length restarts. For
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Figure 4: Sequential case: Number of optimals.

example, consider VAL versus FAL-1/8. For the first 6 sec-
onds, VAL strongly dominates at extremely significant lev-
els (p-values: < 10−18). FAL-1/8 then outperforms VAL
for approximately 2 seconds at significant levels (p-value at
second 8 is < 0.0001). From that point onward, there are
periods where VAL’s increasingly longer runs enable it to
gain a performance advantage over FAL-1/8 (at significant
levels), and stretches with no significant performance dif-
ference. Next, consider VAL versus FAL-1, fixed annealing
length as long as the experiment. FAL-1 catches up to VAL
in performance (on %ΔOpt) at second 50, and its end of run
performance is best among all variations considered. How-
ever, the end of run differences are not significant. At one
second intervals, from second 48 to the end of the run, p-
values (from Wilcoxon signed rank test) between VAL and
FAL-1 are no lower than 0.06 and are as high as 0.86.

The results on %ΔOptSum are similar. For example, for
the first 48 seconds, VAL outperforms FAL-1 at significant
levels (t-test p-values from near zero early on to p = 0.018
at second 48). However, from second 49 to the end of the
run, the difference in performance between VAL and FAL-1
is not significant (p-values > 0.35).

Figure 4 shows the number of optimal solutions found out
of 1200 runs as a function of time. VAL dominates early
in the run, finding more optimal solutions than the others.
At the end of the run, the FAL variations all find optimal
solutions slightly more often than VAL.

In the sequential case, the restart schedule of annealing
lengths enables SA to approximate the performance of long
runs near the end of the run, while simultaneously obtaining
huge performance gains earlier in the run.

4.4 Parallel Results: 4 Parallel Instances

Figures 5 and 6 show average %ΔOpt and %ΔOptSum, re-
spectively, for the duration of the 60 second runs for N = 4
parallel instances. Among the P-FAL variations, P-FAL-1
has the best performance on both metrics at the end of the
run. However, the end of run differences among the P-FAL
variations are not statistically significant (p-values > 0.13
for %ΔOpt and p-values > 0.08 for %ΔOptSum). Early
in the run, P-VAL dominates relative to any fixed annealing
length. For 90% of the run, P-VAL strongly dominates P-
FAL-1, and dominates P-FAL-1/2 for nearly half the run, on
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Figure 5: Parallel case (N = 4): %ΔOpt.
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Figure 6: Parallel case (N = 4): %ΔOptSum.

both metrics, and similarly for P-FAL-1/4 and P-FAL-1/8.
But late in the run, P-VAL does not match the performance
of fixed annealing length as well as it did in the sequen-
tial case. Once the fixed annealing length is reached, P-FAL
outperforms to end of run, while P-VAL exhibits superior
performance during the run. All differences in performance
between P-VAL and the P-FAL variations at each 1 second
interval, except where the P-FAL curves cross the P-VAL
curve, are statistically significant (p-values < 0.0001).

Although in the sequential case, VAL approximates the
end of run performance of long fixed length runs, in par-
allel P-VAL is outperformed at the end of the run by the
long fixed length runs. P-VAL’s advantage, however, is in
improved anytime performance early in the run.

4.5 P-VAL and P-VAL-0: 8 Parallel Instances

Earlier, we indicated that deficiencies exist in P-VAL-0
when N > 4. We consider this further here. First, examine
the performance of P-VAL-0 relative to P-VAL in the case of
8 parallel instances. Figures 7 and 8 show average %ΔOpt
and %ΔOptSum, respectively, for the duration of the 60 sec-
ond runs. P-VAL strongly dominates P-VAL-0 throughout
the run, on both metrics, at extremely statistically significant
levels (p-values < 0.00001 at every one second interval).

Why is this the case? For P-VAL-0, restart r of SAi is of
length 1000∗2i+r∗N , and completes at time proportional to:

Ci(r) = 1000
r∑

j=0

2i+j∗N = 1000∗2i∗ 2
N(r+1) − 1

2N − 1
, (11)
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which is the sum of the annealing lengths up to and including
restart r. The restart, r0, of the sequential VAL that is of
length 1000 ∗ 2i+r∗N is r0 = i + r ∗ N , and completes at
time proportional to:

C0(r0) = 1000

i+r∗N∑

j=0

2j = 1000 ∗ (2i+r∗N+1 − 1), (12)

the sum of the run lengths up to and including restart r0. If
parallel speedup was impacted only by completing longer
runs sooner, then the expected speedup factor is:

C0(r0)

Ci(r)
=

(2i+r∗N+1 − 1)(2N − 1)

2i(2N(r+1) − 1)
. (13)

In the limit as the number of restarts r grows large, the
speedup due to completing longer runs earlier is:

lim
r→∞

C0(r0)

Ci(r)
=

2N − 1

2N−1
. (14)

For N = 4, the anticipated speedup from completing longer
runs earlier is 1.875, and for N = 8 is approximately
1.992. In fact, in the limit as the number of parallel instances
N → ∞, the speedup factor approaches 2.0. Specifically,
the longest completed restart finishes in half the time rela-
tive to the sequential VAL. With N = 4, P-VAL-0 is already
approaching this limiting behavior, maximizing the benefit
from shortening the time for the longest runs to complete.

We experimentally examine this in Figures 9 and 10,
which show average %ΔOpt and %ΔOptSum, respectively,
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Figure 9: VAL vs P-VAL vs P-VAL-0: %ΔOpt.
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Figure 10: VAL vs P-VAL vs P-VAL-0: %ΔOptSum.

for a single sequential instance of VAL, P-VAL for both
N = 4 and N = 8 parallel instances, as well as P-VAL-0
for N = 8 (recall that P-VAL and P-VAL-0 are identical for
N ≤ 4). Visually, it is impossible to distinguish the P-VAL-
0 results with N = 8 from the N = 4 case for both met-
rics. The performance differences between these two cases
are not significant. Using more than 4 parallel instances with
P-VAL-0 does not improve performance.

The time for P-VAL with N = 4 to reach a given %ΔOpt
(and likewise %ΔOptSum) is approximately one-half to
one-third the time taken by the sequential VAL (speedup fac-
tor between 2 and 3), rather than the one-fourth we would
expect from linear speedup. This is consistent with the anal-
ysis above of completion time of the longest runs. The
speedup factor for P-VAL with N = 8 is approximately 4
(the sequential VAL takes approximately 4 times as long to
reach equivalent levels of %ΔOpt and %ΔOptSum).

As you can see, as we increase N from 1 to 4 and then to
8, the difference in performance for P-VAL relative to VAL
is consistent throughout the run. The speedup, through paral-
lelization, is sublinear, but not limited by number of parallel
instances.

4.6 Parallel Results: 8 Parallel Instances

Now consider N = 8 parallel instances. Figures 11 and 12
show average %ΔOpt and %ΔOptSum, respectively, for the
duration of the 60 second runs. For most of the run, P-VAL
very strongly dominates. Each of the P-FAL variations even-
tually overtake P-VAL as they near their tuned annealing
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Figure 11: Parallel case (N = 8): %ΔOpt.
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Figure 12: Parallel case (N = 8): %ΔOptSum.

lengths. For example, P-FAL-1/2 overtakes P-VAL at sec-
ond 26 on %ΔOptSum and second 28 on %ΔOpt, and P-
FAL-1 overtakes P-VAL at second 51 on %ΔOptSum and
second 56 on %ΔOpt. Though not evident from the scale of
the graphs, P-FAL-1 outperforms all others by end of run,
at statistically significant levels, on both metrics. We should
expect P-FAL-1 to perform best at the end, as P-FAL-1 exe-
cutes multiple long runs in parallel, providing the Modified
Lam schedule with the actual experimental run length. This
is also consistent with other findings that show a long run of
SA is usually better than multiple independent short runs.

However, for 90% of the run, P-VAL strongly dominates
P-FAL-1, and dominates P-FAL-1/2 for nearly half the run,
on both metrics, and similarly for P-FAL-1/4 and P-FAL-
1/8. P-VAL exhibits superior performance during the run.

The %ΔOptSum differences between P-VAL and P-FAL-
1 are statistically significant (t-test p-values < 0.04) at every
one-second interval; and the %ΔOpt results are significant
(Wilcoxon signed rank test, p-values ranging from near-zero
to 0.008), except where the curves cross (p = 0.57). The
differences between P-VAL and each of P-FAL-1/2, P-FAL-
1/4, and P-FAL-1/8 are statistically significant at every 1
second interval.

4.7 On the Efficacy of Reannealing

Thus far, all experimental results use independent restarts
from random starting solutions, with no data sharing among
parallel instances. We now explore what, if any, benefit is
gained from reannealing prior solutions. Specifically, we
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Figure 13: Reannealing Sequential: %ΔOpt.
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Figure 14: Reannealing Sequential: %ΔOptSum.

consider VAL(R), where each restart reanneals the best of
run solution rather than a random one. P-VAL(R) reanneals
the current best of run solution across all parallel instances.
Likewise, FAL-1/8(R) is FAL-1/8, but with reannealing of
the best of run solution (similarly for P-FAL-1/8(R)).

The sequential results are found in Figures 13 and 14, and
the parallel results (for N = 8) are in Figures 15 and 16.
For variable annealing lengths, both sequential and parallel,
the differences in performance between reannealing and ran-
dom starting solutions are not statistically significant, except
for the parallel case during the last 15-20 seconds of the run,
where reannealing leads to marginally better results at statis-
tically significant levels (p-values less than 0.01). Visually,
in the graphs, it is virtually impossible to distinguish these.
For fixed annealing length, both sequential and parallel, the
differences in performance with and without reannealing are
not statistically significant. Reannealing good solutions does
not provide any benefit over independent runs in either the
sequential or parallel case.

5 Conclusions

In this paper, we proposed a restart schedule for SA using
the modified Lam annealing schedule. Our restart sched-
ule eliminates the need to know the annealing length a pri-
ori. Relying on the often demonstrated property of SA that
single long runs typically outperform multiple short runs,
our restart schedule increases the annealing length at an
exponential rate. The shorter runs at the beginning enable
quickly finding “good” solutions, while the increasing an-
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Figure 15: Reannealing Parallel (N = 8): %ΔOpt.
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Figure 16: Reannealing Parallel (N = 8): %ΔOptSum.

nealing lengths of the restarts enable approximating the end
of run performance of a single long run of SA.

Our restart schedule supports parallel implementation, us-
ing parallel independent SA instances that vary in initial
annealing length, and with exponentially increasing restart
lengths. The initial annealing lengths are staggered to ensure
that longer runs are already in progress as shorter runs com-
plete. Our aim is to balance the risk associated with errors in
determining the time available for problem solving.

The end-of-run behavior observed in experiments, both
sequential as well as in parallel, with a sequence-dependent
scheduling problem confirm the commonly found property
that a longer SA run outperforms restarts of a shorter run.
However, performance during the run is often overlooked.
For example, although FAL-1 performs best at the end of
run, FAL-1/2 achieved better results at the mid-way point.
Our annealing length schedule VAL, and in parallel P-VAL,
exhibited stronger anytime behavior throughout the run.
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