
Boost SAT Solver with
Hybrid Branching Heuristic

Seongsoo Moon, Mary Inaba
Graduate School of Information Science and Technology,

The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
E-mail address: logic85@hotmail.com, mary@is.s.u-tokyo.ac.jp

Abstract

Most state-of-the-art satisfiability (SAT) solvers are capable
of solving large application instances with efficient branch-
ing heuristics. The VSIDS heuristic is widely used because
of its robustness. This paper focuses on the inherent ties in
VSIDS and proposes a new branching heuristic called TB-
VSIDS, which attempts to break the ties with the consider-
ation of the interplay between the branching heuristic and
learned clauses. However, a branching heuristic cannot cover
all problems, and its performance improves when combined
with an appropriate configuration. Therefore, we also pro-
pose a hybrid model of branching heuristics based on random
forest. The efficiencies of TBVSIDS and hybrid branching
heuristics are evaluated on benchmarks in SAT Competitions.
By constructing a model that reduces the overfitting problem,
we hope to realize a hybrid branching heuristic that is widely
applicable to other solvers.

Introduction

The satisfiability (SAT) problem is a well-known NP-
complete problem; that is, it cannot be solved in polynomial-
time. Despite the lack of polynomial-time solutions, SAT
algorithms have substantially progressed in recent years,
and state-of-the-art SAT solvers can rapidly solve software
verification problems, puzzles, planning, and other applica-
tion problems. One of the most influential speed-enhancers
of SAT solvers is the branching heuristic, most promi-
nently represented by the variable state independent de-
caying sum (VSIDS) (Moskewicz et al. 2001). Several re-
searchers (Goldberg and Novikov 2007; Dershowitz, Hanna,
and Nadel 2005; Liang et al. 2016a) have designed heuris-
tics that outperform VSIDS, but VSIDS remains popular be-
cause of its robustness. Several variants of VSIDS (Biere
and Fröhlich 2015) have also been proposed, but most of
these variants are designed to smooth the scores after con-
flicts. As far as we know, nobody has actually measured tie
occurrences in VSIDS and paid attention to break ties.

In this paper, we raise awareness of the frequent tie oc-
currences inherent in VSIDS., and propose a tie-breaking
method called Tie-breaking of VSIDS (TBVSIDS). Because
a single branching heuristic cannot generally handle the
wide and expanding range of practical applications of SAT

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solvers, we were motivated to improve the branching heuris-
tic by a hybrid strategy that combines several branching
heuristics.

We first show the effectiveness of the hybrid strategy
in our preliminary version constructed by combining two
branching heuristics. Next, we construct a model by ran-
dom forest. For this purpose, we prepare several branching
heuristics and extract several features of the SAT formula.
The objective of our model is to reduce the performance gap
between the virtual best solver (VBS) and a hybrid branch-
ing heuristic, while avoiding overfitting. The VBS is hypo-
thetically optimized for all instances and selects the best pol-
icy among several policies provided at each instance.

The remainder of this paper discusses related work, ex-
plains our proposals, and presents the experimental results.
The paper ends with some concluding remarks.

Contributions

Our study makes two major contributions to SAT technol-
ogy:
• Inspired by the inherent tie occurrences in VSIDS, we

measured these tie occurrences and developed a new
branching heuristic called TBVSIDS that breaks the ties.
To our knowledge, tiebreaking has not been accomplished
to date. Moreover, the heuristic is potentially applicable to
other branching heuristics.

• Second, we develop a hybrid branching heuristic based
on a random forest model. Because we used a single
solver, our hybrid heuristic can provide a base solver for
other solvers. To reduce the learning time of the model
and render it universally applicable to large instances, we
proposed feature extraction by random sampling. To our
knowledge, random sampling has never been applied to
feature extraction for SAT formulas.

Related work

Branching heuristics

Most SAT solvers find a solution by a backtracking search.
During backtracking, a branching heuristic selects an unas-
signed variable and assigns it as true or false. The selec-
tion of the next variable for branching significantly affects
the search efficiency. To pick a variable, branching heuris-
tics invoke ranking functions that maintain a map of scores

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

56

corresponding to each variable. The VSIDS (Moskewicz et
al. 2001) is the most representative branching heuristic, and
has been widely used for a long time owing to its robustness,
which has been demonstrated on benchmarks over the years.
The score map is updated at every conflict. When a conflict
occurs, the score of the variables related to that conflict is
incremented by one.

Recently (Liang et al. 2016a) proposed the conflict
history-based branching heuristic (CHB), which updates the
scores based on rewards calculated by the conflict history.
The CHB adopts the concept of reinforcement learning. The
same authors also proposed learning rate branching (Liang
et al. 2016b), which try to maximize learning rate. The score
of the variable is updated when it is unassigned. A variable
gets higher score the more it is participated in analysis of
conflicts between an assignment and unassignment. If their
robustness could be demonstrated in a variety of instaces,
these branching heuristics might replace VSIDS.

The present paper focuses on tie occurrences in branching
heuristics, and proposes a method for breaking these ties.
Especially, we propose Tie-breaking of VSIDS (TBVSIDS),
which is designed for VSIDS.

Hybrid strategies

Parallel SAT solvers often employ multiple strategies to di-
versify the search. In contrast, sequential solvers normally
adopt a single strategy to intensify the search. Several stud-
ies have attempted to integrate different strategies in a se-
quential solver. For example, the multi-solver SATzilla (Xu
et al. 2007) builds an empirical model using machine learn-
ing techniques and chooses an adequate solver for each
problem based on its feature values. A deep learning ap-
proach has also been attempted (Loreggia et al. 2016). This
approach converts a CNF into a grayscale image and builds
a classifier using a convolutional neural network. However,
these methods require several state-of-the-art solvers. They
achieve higher performance than single solvers, but are un-
suitable as base solvers for other solvers because they al-
ready include several base solvers.

Noting that a slow Luby restart policy is superior to rapid
restart policies for SAT problems, (Oh 2015) designed a hy-
brid restart strategy. Such approaches could be combined
with other approaches.

Tie-breaking

In this section, we first demonstrate tie occurrences. If fre-
quent ties are broken appropriately, the search efficiency
might improve. We then propose a tie-breaking method and
evaluate it through benchmarks of SAT Competitions.

Tie occurrences

Our objective is to observe the tie frequency in a branch-
ing heuristic. For this purpose, we ran Glucose (Simon and
Audemard 2009) on 300 benchmarks from the SAT Com-
petition 2014 Application Track. The time limit was set to
1,000 s for each instance. Figure 1 shows the tie occurrences
and ratios in each instance. The gray curve represents the
tie ratios sorted in ascending order. Instances solved within

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 0 20 40 60 80 100 120 140 160
 0

 0.2

 0.4

 0.6

 0.8

 1

T
ie

 o
c
c
u
rr

e
n
c
e
s

T
ie

 r
a
ti
o

Instance

Ties

Decisions

Tie ratio

Figure 1: Tie occurrences in instances from the SAT Com-
petition 2014 Application Track.

1,000 s were excluded because they were too short to cal-
culate the tie ratios. We counted the presence of ties on ev-
ery decision in the branching heuristic. The numbers of ties
and decisions ranged from 2 million to 200 millon, so were
plotted on a logarithmic scale. This figure confirms that ties
frequently occur in some instances. The median and mean
ratios were 0.05 and 0.19, respectively, meaning that ties oc-
cur once per five conflicts on average. Therefore, improving
the tie-breaking policy is a worthwhile exercise, at least in
VSIDS.

Proposal of TBVSIDS

In most SAT solvers with VSIDS, ties are broken ran-
domly. In VSIDS, all variables related to resolution are in-
cremented by 1. Our proposal provides a bonus to variables
in a learned clause. We initially considered that the length of
the learned clause would be a good indicator. Short clauses
are more informative than long clauses in general, therefore
it would be reasonable to provide more bonuses to variables
in the short clauses. We implemented this idea in MiniSat
(Sorensson 2010) and it worked well. However, when ap-
plied in Glucose (Simon and Audemard 2009), the results
were poor. Shortly afterward, we realized that we should
consider the interplay between the branching heuristic and
clause learning. In Glucose, we thus replaced the length of a
learned clause with the literal blocks distance (LBD) index
(Simon and Audemard 2009), by which Glucose assesses
a learned clause. Adding more bonuses to variables in a
learned clause with smaller LBDs would improve the search
within the learning scheme of Glucose. We have devised
two tie-breaking methods, TBVSIDS1 and TBVSIDS2. Ow-
ing to limited space, we describe only TBVSIDS2 in de-
tail. In the TBVSIDS2 algorithm (algorithm 1), activity is a
floating map for the original VSIDS. TBVSIDS1 has two
floating maps; activity for VSIDS and activityQ for tie-
breaking. However, TBVSIDS2 directly adds small bonuses
of variables in a learned clause to activity. We proposed TB-
VSIDS2 because it is more agile than TBVSIDS1 because it
only updates one floating map, and we considered providing
small bonuses would reduce the tie occurrences.

57

Algorithm 1 TBVSIDS2 branching heuristic.
1: for v ∈ Vars do
2: activity[v] ← 0
3: end for
4: loop
5: if a conflict occurs then
6: for v ∈ variables resolved in conflict analysis do
7: activity[v] ← activity[v] + 1
8: end for
9: for v ∈ lc (lc: learned clause) do

10: quality(lc) ← 1 / dist(lc)
11: activity[v] ← activity[v] + quality(lc)
12: end for
13: else
14: unassigned← unassigned variables
15: v∗ ← argmaxv∈unassignedactivity[v]
16: end if
17: end loop
18: return v∗

Experimental results

The experimental environment was a Xeon X5680 3.3 GHz
CPU, 12 physical cores with 140 GB RAM. All experiments
in this paper were tested in the same environment.

We ran Glucose (Simon and Audemard 2009) on 900
benchmarks from the SAT Competitions. Figure 2 com-
pares the tie occurrences between VSIDS and TBVSIDS2
in a scatter plot. The time limit was set to 1,000 s for each
instance. Instances solved in either VSIDS or TBVSIDS
within a time limit were excluded for comparison of tie ra-
tios between the different branching heuristics. As described
in Figure 2, we find that tie occurrences in TBVSIDS2 were
reduced in 342 out of 469 instances (72.9%). We ran these
benchmarks with time limit 5,000 s and described in Table
1. In 900 benchmarks, TBVSIDS2 solved 14 more instances
than VSIDS.

We measured the qualities of the learned clauses through
their sizes and LBDs during searches to observe further. We
considered a SAT solver with more intensive search would
produce longer clauses. If a solver finds the learned clauses
within the restricted areas, then the search goes deeper and
deeper deriving longer clauses. Figure 3 compares the LBD
distribution of the learned clauses between VSIDS and TB-
VSIDS2. The lowest LBD for clauses is two, there for com-
parison starts at x = 2. For example, two boxes at x = 2 in-
dicate the sum of all the number of LBD = 2 clauses from
all instances for VSIDS and TBVSIDS2 respetively. VSIDS
found more clauses than TBVSIDS2 when their LBDs are
under 10 and less clauses when LBDs between 11 and 15.
For lack of space, we describe only LBDs distribution, but
the similar results were obtained when we observed their
sizes instead of LBDs. Short clauses are generally more in-
formative than long clauses because they might invoke rapid
propagations. However as we shown in Figure 3 and 1, in-
creasing the number of more informative clauses does not
necessarily improve the performance of a solver.

 1

 10

 100

 1 10 100

T
B

V
S

ID
S

2

VSIDS

y=x

count: 127

count: 342

Figure 2: Comparison of tie occurrences between VSIDS
and TBVSIDS2

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 9x10
7

 1x10
8

 5 10 15 20 25 30

n
(x

)

LBD

VSIDS

TBVSIDS2

Figure 3: Comparison of LBD distribution between VSIDS
and TBVSIDS2. The n(x) indicates the number of learned
clauses found from benchmarks, where x is LBD.

Hybrid branching heuristic - static method

This section describes a static method using TBVSIDS and
a recently proposed CHB (Liang et al. 2016a). This method
is preliminary to constructing a hybrid model by random
forest. TBVSIDS and CHB use the same data structure as
VSIDS, so are easily implemented in a solver.

We propose a hybrid model because a single branching
heuristic cannot cover all instances. The most appropriate
heuristic for each instance depends on the traits of its for-
mula and the interplay among the algorithms such as the
currently learned clauses and the restart policy. Optimizing a
dynamic solution that switches among branching heuristics
is a difficult task. However, we can construct a model in ad-
vance, and apply it as a preprocessing method for selecting
a branching heuristic.

Difference between TBVSIDS and CHB

The performances of TBVSIDS and CHB were compared
for varying number of variables in the SAT formula. The

58

-4000

-2000

 0

 2000

 4000

 1 10 100 1000 10000 100000 1x10
6

S
p
e
e
d
u
p
 t

im
e
 (

s
)

Number of variables

TBVSIDS2

CHB

(a) SAT

-4000

-2000

 0

 2000

 4000

 1 10 100 1000 10000 100000 1x10
6

switch line

S
p
e
e
d
u
p
 t
im

e
 (

s
)

Number of variables

TBVSIDS2

CHB

(b) UNSAT

Figure 4: Speedup of CHB and TBVSIDS2 over VSIDS

speedups of CHB and TBVSIDS over VSIDS versus num-
ber of variables are presented in Figure 4. Panels (a) and (b)
of this figure plot the performances in SAT and UNSAT in-
stances, respectively.

The results show that CHB and TBVSIDS2 are relatively
distant from and close to VSIDS, respectively. In UNSAT,
CHB apparently performs well when the input formula has
a small number of variables. Therefore, we considered that
CHB and TBVSIDS2 can be substituted for VSIDS when
the number of variables is small and large, respectively.

Experimental results

We implemented CHB in Glucose and selected a branching
heuristic as a preprocessing method. This method counts the
number of variables, and selects CHB if the variables are
fewer than 9,000 (switch line in Figure 4.(b)); otherwise, it
selects TBVSIDS as the branching heuristic. The results are
shown in Table 1 and Figure 5. Both TBVSIDS2 and CHB
outperform VSIDS, but the differences are not large. The re-
sults were improved by applying a hybrid method with an
extremely simple policy. In fact, the results of the hybrid
method exceeded our expectations. TBVSIDS2 and CHB
solved 14 and 16 more instances than VSIDS, respectively.
Therefore, we considered the gap between VSIDS and hy-
brid heuristic would be 30 at most (the arithmetic sum of 14

 0

 1000

 2000

 3000

 4000

 5000

 100 200 300 400 500 600 700

T
im

e
 (

s
)

Instances

VSIDS

TBVSIDS2 + CHB

CHB

TBVSIDS2

VBS

Figure 5: Cactus plot of 900 instances from SAT competi-
tions

Table 1: Solved instances from 900 instances of SAT Com-
petitions. Column U, T2, C, and V denote unmodified origi-
nal VSIDS, TBVSIDS2, CHB, and VBS, respectively. Rows
C and A denote Crafted Track and Application Track, re-
spectively.

Solver U T2 C T2+C V

2014C
SAT 79 81 85 83 89

UNSAT 82 88 99 111 114
BOTH 161 169 184 194 203

2014A
SAT 100 102 102 103 108

UNSAT 115 112 102 115 123
BOTH 215 214 204 218 231

2015A
SAT 137 143 146 146 152

UNSAT 101 102 96 103 107
BOTH 238 245 242 249 259

TOTAL
SAT 316 326 333 332 349

UNSAT 298 302 297 329 344
BOTH 614 628 630 661 693

and 16). The actual gap was 47, indicating that TBVSIDS2
and CHB are complementary algorithms.

VBS in Figure 5 was constructed by a combination of
CHB and TBVSIDS2. In the following section, we improve
the VBS and the hybrid model by applying machine learn-
ing methods with several branching heuristics. to improve
the VBS and a hybrid model in the following section.

Hybrid branching heuristic - random forest

In this section, we propose applying a random forest model
to build a hybrid branching heuristic. We first mention why
and how to apply a random forest. Next, we extract rela-
tively simple 13 features and evaluate its models. Then we
propose random sampling for SAT formulas to achive fast
feature calculations. Finally, we expand feature number to
23 by applying random sampling, and evaulate our model
experimentally.

Motivation & Approach

As mentioned above, a single algorithm cannot cover all
SAT problems. To integrate the algorithms and boost the per-

59

formance of SAT solvers, researchers have proposed several
algorithm selection strategies (Xu et al. 2007; Loreggia et al.
2016). Let us consider the integration of N SAT solvers (S1,
S2, ... , SN) with different strategies, such as restart, learn-
ing scheme, and learned clause evaluation, into a solver I .
We then optimize I .

To improve I with a new policy P , we must implement P
in each Si and evaluate each case. In addition, after updating
some Si with P , we must rebuild the model for I . Applying
and evaluating a new method seems to require much effort.
Our final goal is to propose a base solver I with high per-
formance and base-solver capability for other solvers such
as MiniSat (Sorensson 2010) or Glucose (Simon and Au-
demard 2009). Such a base solver would allow continuous
improvements of SAT solvers.

Existing algorithm selection strategies are only concen-
trated to improve their performances. They cannot be a base
solver for other solvers. We considered to improve the per-
formance of a solver by focusing on only a small part and
improving that part within a reasonable timeframe. The im-
proved solver can then be used as a base solver for other
solvers. Branching heuristics is an appropriate candidate for
this purpose. The recently proposed CHB and TBVSIDS can
be easily implemented by using the data structure of VSIDS.
This implies that these branching heuristics can be easily in-
tegrated into a solver. We constructed a random forest model
that allocates an appropriate branching heuristic by training
several features in an original formula.

Experimental results - 13 features

We trained our model on 1400 benchmarks of SAT Com-
petitions from 2014 to 2016 in both the Crafted and Ap-
plication Tracks. The random forest model was constructed
from 13 features: vars (number of variables), clauses (num-
ber of clauses), vars/clauses, and variable-clause graph fea-
tures (mean, variation coefficient, min, max, and entropy for
both variable and clause node degrees). These features can
be extracted within a short time without requiring a specific
algorithm. The calculation time of 1400 benchmarks was un-
der 1,000 s. This is important because when solving a for-
mula using a SAT solver, our model must extract features
as a preprocessing step. Therefore, time-consuming feature
extraction is undesirable. Total of eight diffrent branching
heuristics were used as classes, which are VSIDS, CHB, TB-
VSIDSs, and TBCHBs. We have two versions of TBVSIDS.
For TBVSIDS2, we assigned a different parameter for qual-
ity calculation at line 10 in Algorithm 1, yielding two dif-
ferent TBVSIDS2s. We also implemented three versions of
Tie-breaking of CHB (TBCHB) such as TBVSIDSs.

Our goal is to maximize the performance of the SAT
solver while minimizing the overfitting problem. To reduce
the overfitting, we limited the tree height in random forest to
5. We extracted 13 features for each instance, but more fea-
tures do not ensure better results. Features with no relations
will not improve the performance of SAT solvers. Therefore,
we constructed all possible combinations of 8192 models by
activating/inactivating the use of each feature in Glucose.
Partial results are illustrated in Tables 2, 3, and 4. Each ta-
ble shows the test results of several training data. For exam-

ple, in Row 7 of each table, the model was trained on all
benchmarks except those of Crafted Track in SAT Competi-
tion 2014, then tested on each track. The results in Table 2
were obtained using all 13 of the abovementioned features.
When the performances of classifiers were evaluated by k-
fold cross validation (Training data: ÂX | ĈX, Test data:
AX | CX, where X = 14 | 15 | 16), the classifier in Table
2 showed the best performance, but surprisingly, used only
one feature. The model in Table 3 was selected by our objec-
tive function f stated below, where X is one of the test data
(AX or CX) and N(X,Y) is the number of solved instances
in test dataset Y when the model was trained by dataset X.

f = minimize(A−B) (1)

A =
∑

(N(X,X)− α×N(X̂,X)) (2)

B =
∑∑

(N(X̂, Y)) (3)

We explain the concept of our formulas. When the train-
ing data are used as the test data, i.e.,N(X,X), the perfor-
mance is high, but the performance of N(X̂,X) is low be-
cause it is trained exactly without the test data. Therefore, we
seek to mimimize the gap between N(X,X) and N(X̂,X)
to achieve a good model. We also desire to reduce the gaps
between the VBS results and the sum of N(X̂,X). Because
the VBS results are fixed, they are excluded from the formu-
las. To combine these two ideas, a parameter α is added in
Formula 1. Here we set α = 2. In this subsection, VBS de-
notes a hypothetical solver selected from the eight branching
heuristics mentioned above.

We named the classifiers in Tables 2, 3, and 4 as all, k-
fold, and f, respectively. Let n be the number of solved in-
stances when all instances were used as the training data
and evaluated on themselves. The correlation coefficient of
the performances between f and n was -0.59. Therefore, the
performance of a single solver could be improved by min-
imizing f. The correlation coefficient between k-fold and n
was 0.11, too low to claim a relation between these perfor-
mances.

We further considered the expandability of our model. For
this purpose, we trained our model using the benchmarks
results on Glucose. If the model performs efficiently when
applied to another solver, the model has likely reduced the
overfitting problem and is satisfactorily robust. Therefore,
we tested our models with another SAT solver, abcdSAT
(Chen 2016), which won the Main Track in SAT-Race 2015.
The performances of Glucose and abcdSAT are proved quite
different; out of 1400 instances, 169 instances were solved
by one solver but not by the other. Thus, we can assess the
expandability of our model by applying it to abcdSAT.

Tables 5 and 6 compares the results of different models in
abcdSAT and Glucose respectively. Our models were trained
by the Glucose results and applied to both Glucose and abcd-
SAT. All of our models performed reasonably in abcdSAT,
although the improvements were smaller than in Glucose.
We also demonstrated a hypothetical model fr which is ro-
bust in both results. At this time, fr was found by a brute-
force approach, namely, by traversing all 8192 models. This

60

Table 2: Test results with several training datasets using all
13 features. Columns: Training data. Rows: Test data. C:
Crafted Track and A: Application Track. ÂX = all - AX.
ĈX = all - CX, where X = 14 | 15 | 16.

C14 A14 A15 C16 A16 all
(300) (300) (300) (200) (300) (1400)

C14 (214) 204 198 244 29 137 812
A14 (231) 174 215 244 39 139 811
A15 (261) 159 212 251 42 137 801
C16 (65) 152 204 224 65 130 775

A16 (157) 169 206 240 35 151 801
Ĉ14 (714) 167 217 249 61 143 837

Â14 (697) 198 211 247 62 143 861

Â15 (667) 201 213 245 63 145 867

Ĉ16 (863) 204 214 246 38 142 844

Â16 (771) 201 213 249 63 139 865

all (928) 202 213 247 63 143 868

Table 3: Test results with several training datasets using only
one feature in a variable-clause graph (variable nodes: max)

C14 A14 A15 C16 A16 all
(300) (300) (300) (200) (300) (1400)

C14 197 201 234 23 133 788
A14 159 214 241 43 136 793
A15 194 214 249 36 138 831
C16 139 180 199 63 125 706
A16 182 207 236 36 140 801
Ĉ14 180 218 247 56 142 843

Â14 196 211 245 56 139 847

Â15 196 215 246 56 142 855

Ĉ16 202 216 247 51 142 858

Â16 193 215 248 56 137 849

all 196 214 244 56 139 849

approach was justified because 13 features are rapidly ex-
tracted and traversing 8192 models consumes little time. In
the following subsections, we increase the number of fea-
tures and propose a more refined approach that finds a better
model than fr.

Random sampling

In previous section, we extracted only 13 features from each
SAT formula. Extracting more features by constructing a
variable graph or a clause graph is time-consuming and in-
feasible when the numbers of variables and clauses are very
large. We considered that several features, such as average
and entropy, will be conserved even when the computations
are reduced by random sampling. The present experiments
assess the possibility of random sampling of SAT formulas.

Figure 6 shows the correlation coefficients of feature ex-
traction between the original formula and a randomly sam-
pled formula. Three features (vars, clauses, and vars/clauses)
were excluded because they do not need computational
times. The sampling ratio was fixed at 0.1; meaning that
90% of the variables are removed from the original formula.
If a clause includes several of the removed variables, then it

Table 4: Test results with several training datasets using
seven features in a variable-clause graph (vars, clauses,
vars/clauses, variable nodes: variation coefficient, min, max,
and entropy)

C14 A14 A15 C16 A16 all
(300) (300) (300) (200) (300) (1400)

C14 202 199 244 37 132 814
A14 174 217 251 38 134 814
A15 157 211 252 39 139 798
C16 160 199 214 65 116 754
A16 178 204 239 39 144 804
Ĉ14 177 216 251 62 140 846

Â14 203 212 251 63 141 870

Â15 202 214 249 59 141 865

Ĉ16 204 215 249 37 142 847

Â16 204 215 250 63 141 873

all 203 216 249 63 143 874

Table 5: Solved instances from SAT Competitions using
abcdSAT. Row Average denotes the expected average per-
formance of abcdSAT when a branching heuristic is ran-
domly selected from 8 different branching heuristics.

Solver C14 A14 A15 C16 A16 all
VBS 180 237 267 46 153 883

Average 162.9 221.3 254.5 37.8 141 817.5
all 168 228 256 37 143 832

k-fold 170 229 259 35 146 839
f 169 227 254 34 143 827
fr 169 231 266 41 146 853

shrinks, and if all variables of a clause are removed, then the
clause is also removed. The sampling method was applied
when the formula included more than th variables, where th
is a pre-set threshold. The threshold was imposed to allevi-
ate concerns that several formulas are so small that sampling
may hide their features. Each point was calculated 10 times
and averaged.

Most of the coefficients were very high. The exception
was cvMin at th = 0, because the average value of cvMin
in the original formulas was very low (1.46). When apply-
ing the sampling method to all formulas, all of the cvMin
values become 1.0, so the coefficient vanishes. The coeffi-
cients at vcMax became low sometimes because very few
variables are connected to a large number of clauses, and if
these variables are removed by random sampling, then the

Table 6: Solved instances from SAT Competitions using
Glucose.

Solver C14 A14 A15 C16 A16 all
VBS 214 231 261 65 157 928

Average 158.4 196.4 227.1 41.4 128.9 752.2
all 202 213 249 63 143 868

k-fold 196 214 244 56 137 849
f 203 216 249 63 143 874
fr 205 215 249 62 139 870

61

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20000 40000 60000 80000 100000 120000

C
o
e
ff

ic
ie

n
t

w
it
h
 o

ri
g
in

a
l
d
a
ta

Threshold for sampling

vcMean

vcCovar

vcMin

vcMax

vcEnt

cvMean

cvCovar

cvMin

cvMax

cvEnt

Figure 6: Correlation of features between original and sam-
pled formulas

vcMax value becomes very small.
Overall, the performance of the sampling method was rea-

sonable. Further studies of this approach might strengthen
our intuition; in any case, the approach usefully reduces the
time of extracting extra features.

Experimental results - 23 features

Finally, we expanded the feature number from 13 to 23 and
applied the abovementioned random sampling method. The
additional 10 features were obtained from the variable graph
(mean, variation coefficient, min, max, and entropy of both
node degree and diameter). The most time consuming task
is extracting the diameters. For V nodes is V and E edges,
diameter extraction by linked list and BFS required O(V E)
of runtime. From the relation E = k × V derived from the
variable graph, the time of extracting the diameters is pro-
portional to k× V 2. By extracting only dt diameters, where
dt = N/(k × V 2) and N = 1010, we extracted 23 fea-
tures for 1,400 benchmarks in under 7 hours. The longest
time of each instance was 6 minutes, which is reasonable for
SAT solvers. Generally, these features cannot be computed
within a reasonable timeframe, because many instances have
a huge variable graph. When investing over 300 SAT for-
mulas from the SAT Competition 2014 Application Track,
116 instances contained over 105 variables, and 26 contained
over 106 variables.

The 23 features extracted by random sampling must then
be validated. For this purpose, we constructed random for-
est models from these features and benchmarks results on
Glucose. Figure 7 is a flow chart of the genetic algorithm
that finds a robust random forest model in both Glucose and
abcdSAT SAT solvers. The features for training and evalu-
ation were generated by different random seeds. Different
seeding produces different features because of the random
sampling. A good evaluation would experimentally demon-
strate the robustness of the random sampling method for
SAT formulas.

We selected the genetic algorithm for finding the random
forest because the search space of partial acvation of fea-

Figure 7: Flow chart for generic algorithm for searching ro-
bust random forest model

 800

 820

 840

 860

 880

 900

 0 5000 10000 15000 20000 25000 30000

S
o
lv

e
d
 i
n
s
ta

n
c
e
s

Time

GA - Glucose

GA - abcdSAT

Random search - Glucose

Random search - abcdSAT

Figure 8: Comparison of genetic algorithm and random se-
lection

tures can be represented by a boolean expression of size 223.
In Figure 7, N = 10 and K = 3. The constructed ran-
dom forest model is evaluated by a function g. Here, g is the
squared sum of the differences between VBS and the solved
instances in a model selected for Glucose and abcdSAT.

Within the feature space, we searched the optimum ran-
dom forest model through the above function g with the ge-
netic algorithm (GA). We then tested the random search by

62

constructing a point randomly in the feature space. The re-
sults are illustrated in Figure 8. The two lines at Y = 853
and Y = 870 indicate the performances of fr in Tables 5 and
6. The GA outperformed the random search and stabilized
after finding an optimal model within 8,000 s. These results
are superior to those of fr, confirming that expanding the
features and extracting them within a reasonable timeframe
improves the random forest model.

Concluding Remarks

First, we proposed a new branching heuristic focused on tie
breakage in VSIDS. The proposed TBVSIDS showed better
performance than VSIDS.

Second, we proposed a hybrid branching heuristic with
higher performance than a single branching heuristic. The
preliminary hybrid model used only one feature, but proved
its efficiency despite its simplicity. We then improved the
preliminary model by implementing random forest on the
hybrid branching heuristic with 13 features. We also showed
the possibility of applying a random sampling method that
reduces the time of feature extraction. Although further stud-
ies are required, this approach can assist the extraction of
approximate feature values that cannot be extracted from the
original formulas.

We then constructed hybrid models from 23 features ex-
tracted by the random sampling method. To demonstrate
the expandibility of our models, we found a robust model
for two solvers through the genetic algorithm. An efficient
model was identified within a reasonable timeframe.

Our method considers only branching heuristics; how-
ever, a SAT solver includes many different heuristics and
their parameters. Optimizing and then combining other
small parts, such as the restart policy or the evaluation of
learned clauses, might further boost the performance of SAT
solvers.

References

Biere, A., and Fröhlich, A. 2015. Evaluating cdcl vari-
able scoring schemes. In International Conference on
Theory and Applications of Satisfiability Testing, 405–422.
Springer.
Chen, J. 2016. Improving abcdsat by at-least-one recently
used clause management strategy. CoRR abs/1605.01622.
Dershowitz, N.; Hanna, Z.; and Nadel, A. 2005. A clause-
based heuristic for sat solvers. In International Conference
on Theory and Applications of Satisfiability Testing, 46–60.
Springer.
Goldberg, E., and Novikov, Y. 2007. Berkmin: A
fast and robust sat-solver. Discrete Applied Mathematics
155(12):1549–1561.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K.
2016a. Exponential recency weighted average branching
heuristic for sat solvers. In AAAI, 3434–3440.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K.
2016b. Learning rate based branching heuristic for sat
solvers. In International Conference on Theory and Appli-
cations of Satisfiability Testing, 123–140. Springer.

Loreggia, A.; Malitsky, Y.; Samulowitz, H.; and Saraswat,
V. A. 2016. Deep learning for algorithm portfolios. In
AAAI, 1280–1286.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Proceedings of the 38th annual Design Automation Con-
ference, 530–535. ACM.
Oh, C. 2015. Between sat and unsat: the fundamental differ-
ence in cdcl sat. In International Conference on Theory and
Applications of Satisfiability Testing, 307–323. Springer.
Simon, L., and Audemard, G. 2009. Predicting Learnt
Clauses Quality in Modern SAT Solver. In Twenty-first In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’09).
Sorensson, N. 2010. Minisat 2.2 and minisat++ 1.1. In A
short description in SAT Race 2010.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2007.
Satzilla-07: the design and analysis of an algorithm portfo-
lio for sat. In International Conference on Principles and
Practice of Constraint Programming, 712–727. Springer.

63

