
Search Reduction Through Conservative
Abstract-Space Based Heuristic

Ishani Chatterjee, Maxim Likhachev, Manuela Veloso
Carnegie Mellon University

Abstract

The efficiency of heuristic search depends dramatically on the
quality of the heuristic function used. For an optimal heuris-
tic search, heuristics that estimate cost-to-goal better typically
lead to faster search times. For a sub-optimal heuristic search
such as weighted A* on the other hand, the search speed de-
pends more on the correlation between the heuristic func-
tion and the true cost-to-goal function. In this extended ab-
stract, we discuss our preliminary work on computing heuris-
tic functions that exploit this fact and aim to reduce the num-
ber of states expanded by weighted A* search before it finds
a path to the goal.

Introduction and Problem Description

It is desired to have a heuristic function that leads the search
to the goal with minimum number of expansions possible.
To achieve this, it is common for a heuristic function to
be computed on a graph derived by abstracting the origi-
nal graph. Cases have been shown (Wilt and Ruml 2015)
where heuristics designed for optimal searches may not be
suited for sub-optimal searches and a strong correlation of
the heuristic with the true cost-to-goal or the node-distance-
to-goal (Wilt and Ruml 2012) can result in a quicker search
by reducing inefficient expansions, defined as the expan-
sion of nodes that do not appear in the final path given by
the search. A weak correlation may lead to a local min-
ima and a lot of inefficient expansions. This motivates us to
come up with a heuristic function that serves the aforemen-
tioned purpose. Our contribution is in defining the notion of
conservative and non − conservative edges. Two abstract
states are connected by a conservative edge in the abstract
space, only if all corresponding pairs of states in the origi-
nal state space are also connected via a direct edge. In the
context of weighted A* with a sufficiently large inflation of
heuristic, a heuristic function that leads the search along the
paths in the abstract space that maximize the usage of the
conservative edges results in the search that is more likely to
find a path to the goal without getting stuck in local minima.

The planning problem is defined as searching a graph G
= (S,E) where S is the set of states, and E is the set of
edges in the graph. (s, s′) denotes an edge in E connecting

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

states s, s′ ∈ S. We assume all edge costs are finite. The
objective of the search is to find a path from state sstart to
the goal state sg in G. To illustrate some concepts, we will
use the 3D navigation planning domain with the robot hav-
ing three degrees of freedom,i.e, S = {(x, y, θ(heading)) |
x ∈ {1, ..., n}, y ∈ {1, ...,m}, θ ∈ {1, ..., 8}}, where n =
width and m = height of the environment represented as an
8-connected grid. We assume that the robot can turn in place
and can move in any direction on the 8-connected grid. Let
λ : S → S̃ be the many-to-one mapping representing the ab-
straction of each state in S to the abstract space S̃, defined
by:λ(s) = s̃, where s ∈ S, s̃ ∈ S̃ s.t |S̃| ≤ |S|. λ−1 is
the inverse one-to-many mapping from S̃ to S defined by:
λ−1(s̃) = {s ∈ S | λ(s) = s̃} For example, in the 3D navi-
gation domain we use the mapping λ((x, y, θ)) = (x, y), by
dropping the third degree of freedom θ.
The abstract space is also a graph G̃ = {S̃, Ẽ}. Each edge
has a flag indicating if it is conservative or not. An edge
(s̃, s̃′) for s̃, s̃′ ∈ S̃ is conservative if the following can
be guaranteed: ∀s ∈ λ−1(s̃), ∃ at least one (s, s′) ∈ E s.t
s′ ∈ λ−1(s̃′). For example, in 3D navigation domain, G̃ is
an 8-connected grid in which the obstacles in the map are
inflated by the inscribed radius of the robot footprint to ex-
clude those states where the robot center cannot physically
lie. The edges that are labeled as conservative on the other
hand are those that connect cells that remain to be valid for
all possible orientations of the robot. To determine which
edges are conservative, we construct a conservative repre-
sentation of the space, also a graph, as an 8-connected grid in
which we inflate the obstacles by the radius of the circle that
circumscribes the footprint. More generally, a conservative
graph is a subset of G̃ that consists purely of conservative
edges. Given G and G̃ with edges flagged as conservative,
we aim to compute a heuristic function h: S → N that re-
duces the efforts weighted A* performs to find a path to the
goal.

Heuristic computation
Ideally, for a sufficiently large weight of the heuristic in
weighted A* search, if h(s) can make the weighted A*
search expand only those successors s ∈ S of state s′ ∈ S
for which it holds that (λ(s), λ(s′)) is a conservative edge
in the abstract space then the search would always be pro-

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

161

ceeding towards the goal without getting stuck in local min-
ima. However, sometimes such paths to the goal do not ex-
ist. We therefore want to compute h(s) such that it guides
the search in the original space along the paths that mini-
mize the number of non-conservative edges in the abstract
space. We first compute a heuristic cost-to-goal estimate
h̃(s̃)∀s̃ ∈ S̃ in the abstract space, and use h(s) = h̃(λ(s))

for all s in S. To compute h̃(s̃), we re-create the cost
of an edge between s̃ and s̃′, denoted by C(s̃, s̃′), such
that non − conservative edges are more expensive than
conservative ones. C(s̃, s̃′) is defined as: C(s̃, s̃′) = γ if
(s̃, s̃′) is conservative, mγ otherwise, where ∞ > γ > 0
and ∞ > m > 1.The heuristic function is then given
by: ∀s̃ ∈ S̃, h̃(s̃) = minπ̃(s̃,λ(sg))C(π̃(s̃, λ(sg))), where
π̃(s̃, λ(sg)) is a path from s̃ to a goal state in the abstract
space and C(π̃(s̃, λ(sg))) is the cost of this path using the
cost function described above. The heuristic function can be
computed using a single backward Djisktra’s search in the
abstract space starting at λ(sg), with edge costs set as γ for
conservative and mγ for non−conservative edges. Thus,
in our 3D navigation example, the heuristic is computed by
running a backward Dijktra’s search on 2D grid with the cost
of transitions set to γ whenever the edge connects two cells
that are both in the conservative representation (that is, valid
in the map after the obstacles are inflated by the radius of the
circle circumscribing the footprint of the robot) and mγ oth-
erwise. Assuming the abstract graph G̃ was constructed by
relaxing the original problem, it satisfies the property that
if state s ∈ G has a finite length path to the goal, then s̃
also has a finite length path to s̃g . Given this, it is obvious
that weighted A* search using our heuristic function is com-
plete. It is so, because every state s ∈ G with a finite cost
path to the goal will have a finite h(s) as long as γ and m
are finite. Unfortunately though, h(s) can be inadmissible,
and it is future work to analyze the degree to which it can be
inadmissible and how this inadmissibility can be controlled.

Experimental Setup, Results and Discussion

We used the 3D navigation domain for evaluations on 4 en-
vironments representing turns in corridors, wide and narrow
passages and doorways: Env1,Env2,Env3 had 301 × 299 ×
8(x×y×θ) states. Env4 had 2211×1947×8 states. A rectan-
gular robot footprint having 0.2m and 0.3m as inscribed and
circumscribed radii was used in Env4. For others 0.3m and
0.4m was used. The abstract state-space, conservative repre-
sentation and visualized heuristics are shown in Fig 1. We
set γ = 1 and m = 10. We used weighted A* in the orig-
inal space, with a weight of 10000. We compared the per-
formance of h(s) with another heuristic, h′(s), which com-
putes the optimal cost-to-goal in the abstract space without
the notion of conservative, using the usual transition costs
in the 8-connected 2D Grid. Results of the comparison are
shown in Figure1 and Table 1. The solution size and quality
is slightly sub-optimal, but there is a large reduction in ex-
pansions. The number of expansions using h(s) is linear in
solution size for Env1,2 and 3, because the search expands
solely through the conservative region. h′(s) enters the lo-
cal minima and therefore has more expansions. For Env4,

(a) (b)

(c) (d)

(e) (f)

Figure 1: Env1:(a) Final path using h′(s), (b) abstract space,
final path using h(s), (c) conservative rep. (d) visualized
heuristics. Env4: (e) path using h(s), (h) using h′(s).

environment heuristic no. of expansions solution size solution cost

env1 h(s) 392 274 23747
h′(s) 59533 250 22509

env2 h(s) 543 281 32922
h′(s) 179435 211 13150

env3 h(s) 489 270 32240
h′(s) 320613 244 22392

env4 h(s) 2990146 4436 206101
h′(s) 11569828 1491 55899

Table 1: Comparison between conservative and non-
conservative heuristics

that does not have a large number of conservative edges, the
number of expansions for h(s) is still reduced compared to
h′(s).

References

Wilt, C. M., and Ruml, W. 2012. When does weighted a*
fail? In SOCS, 137–144.
Wilt, C. M., and Ruml, W. 2015. Building a heuristic for
greedy search. In Eighth Annual Symposium on Combinato-
rial Search.

162

