
Solving Graph Optimization Problems
in a Framework for Monte-Carlo Search

Stefan Edelkamp, Eike Externest, Sebastian Kühl, Sabine Kuske
Universität Bremen

Abstract

In this paper we solve fundamental graph optimization prob-
lems like Maximum Clique and Minimum Coloring with
recent advances of Monte-Carlo Search. The optimization
problems are implemented as single-agent games in a generic
state-space search framework, roughly comparable to what is
encoded in PDDL for an action planner.

Introduction
In this paper we propose Nested Monte-Carlo Search for
solving hard graph problems and chose a search frame-
work that —in analogy to domain-independent planning—
links a domain-specific combinatorial problem to a domain-
independent search algorithm.

As Clique, Independent Set, Vertex Cover, and Hitting Set
are widely known (Karp 1972), for the sake of brevity from
Karp’s set we take Graph Coloring as an example. In the
encoding as a single-player game the player starts at an arbi-
trary graph node and chooses in each step a next node until
all nodes are selected. The components of the game induce
a tree in the natural way with the color assignment as nodes,
and the final coloring as leaves. The input graph is stored in
an adjacency matrix. A game is a path in the tree from the
root to some leaf. A move (play) corresponds to a selection
of a graph node. The game is ended by a Boolean condition
(terminal). The length and score are recorded and the score
is either minimized or maximized. Finding the potential set
of successors (legalMoves), finalizes the encoding.

Monte Carlo Search Framework
The randomized optimization scheme we consider be-
longs to the wider class of Monte-Carlo search algo-
rithms (Browne et al. 2004). The main concept is the ran-
dom playout (or rollout) of a position, whose outcome, in
turn, changes the likelihood of generating successors in sub-
sequent trials.

Beam-NRPA (Cazenave and Teytaud 2012) is an exten-
sion of NRPA that maintains B instead of one best solution
in each level of its recursion. The motivation is to warrant
search progress by an increased diversity of existing solu-
tions to prevent the algorithm from getting stuck in local

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

class Game {
int length, colors, rollout[V], used[V];
Game() { colors = length = 0; }
bool terminal() { return length == V; }
double score () { return colors; }
void play(int m) { if (m==colors) colors++; rollout[length++] = m; }
int legalMoves (int moves[]) {
int successors = 0;
for (int j=0;j<colors;j++) used[j] = 0;
for (int j=0;j<length;j++)

if (adjacent[length][j]) used[rollout[j]] = 1;
for (int j = 0; j < colors; j++)

if (!used[j]) moves[successors++] = j;
moves[successors++] = colors;
return successors; }};

Figure 1: Framework Code for Graph Coloring.

optima. High-Diversity NPRA (HD-NRPA) (Edelkamp and
Cazenave 2016) elaborates on this observation to increase
the diversity of the beam, so that according to some speci-
fication of distance solutions too close to existing ones are
removed from the beam. HD-NRPA provides seveal further
algorithmic advances that prevent us from revisiting its en-
tire implementation. E.g., instead of the moves executed in
a rollout the policy table address of the chosen move and
the code of its successors is stored. Additionally, the length
of the rollout and its score is stored for each bucket in the
beam.

Fig. 1 shows the framework implementation for Graph
Coloring. The code has been slightly extended to opti-
mize the permutation order based on a greedy coloring al-
gorithm. It is well known that the chromatic number can
be determined exactly if the best possible order of nodes
for this algorithm has been found. We may also compute
the maximum clique for initializing the coloring process.
First, because the size of any clique is –of course– a nat-
ural lower bound on χ. Then, because it turns out that a
maximum clique to be a good point for starting the color-
ing process. The resulting clique is stored into a file, which
is included as a solution prefix in the Graph Coloring solver.
We also adapted a selective policy (Cazenave 2016) based on
maintaining the remaining degree of uncolored nodes, with
a preference given to the ones, whose number of colored
neighbors are maximal.

Experiments
For the evaluation we used a single core of a desktop PC
(Intel Core i7-4500U, 1.8 GHz, 16 GB), and chose a known

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

163



Instance χ SATχ UCTχ NRPAχ NMCSχ SATω

anna 11 11 11 11 11 11–31
david 11 11 11 11 11 11–29

games120 9 9 9 9 9 9–14
homer 13 13 13
huck 11 11 11 11 11 10–25
jean 10 10 10 10 10 21–23

fpsol2.i.1 65 8–66 65 65 –
fpsol2.i.2 30 13–30 30 30 –
fpsol2.i.3 30 11–30 30 30 –
inithx.i.1 54 9–54 54 54 –
inithx.i.2 31 10–31 31–32 31 –
inithx.i.3 31 9–31 31 31 –
le450_5a 5 5 5–10 5–8 5–43
le450_5b 5 5 5–10 5–8 5–43
le450_5c 5 5 5–8 5–8 ..
le450_5d 5 5 5–8 5–7 –
miles250 8 8 8 8 8 8–17
miles500 20 20 20 20 20–39
miles750 31 12–31 31.6 31 31 31–65

miles1000 42 11–42 42.3 42 42 40–80
miles1500 73 10–73 73 73 73 60-102
mulsol.i.1 49 18–49 49 49 27–89
mulsol.i.2 31 26–31 31 31 22–88
mulsol.i.3 31 25–31 31 31 24–89
mulsol.i.4 31 27–31 31 31 17–89
myciel3 4 4 4 2–4 2–4 2
myciel4 5 5 5 2–5 2–5 2
myciel5 6 5–6 6 2–6 2–6 2
myciel6 7 5–7 7 2–7 2–7 2
myciel7 8 5–8 2–8 2–8 2

queens_5_5 5 5 5 5 5 5
queens_6_6 7 7 9 6–7 6–7 6
queens_7_7 7 7 9.4 7 7 7–25
queens_8_8 9 8–9 10.7 8–10 8–9 8–28
queens_8_12 12 12 13.6 12 12 12–33
queens_9_9 10 8–10 12 9–11 9–11 9–33

school1 ? 9–14 14–15 14–16 –
school1_nsh ? 7–14 14–17 14–17 –

zeroin.i.1 49 15–49 49 49 26–92
zeroin.i.2 30 22–30 30 30 28–85
zeroin.i.3 30 21–30 30 30 24–85

DSJC125.1 ? 5 7 4–6 4–6 4
DSJC125.5 ? 10–20 21.9 10–21 10–19 10–76
DSJC125.9 ? 12–48 50 34–49 34–47 31–118
DSJC250.1 ? 6–9 4–10 4–10 4–39
DSJC250.5 ? 8–36 12–36 12–35 –
DSJC250.9 ? 8–88 43–87 43–84 –
DSJC500.1 ? 6–15 5–17 5–16 –
DSJC500.5 ? 8–64 12–65 12–63 –
DSJC500.9 ? 8–172 52–161 52–156 –
DSJC1000.1 ? 6–26 5–27 5–27 –
DSJC1000.5 ? – 14–116 14–114 –
DSJC1000.9 ? – 56–299 56–293 –
latin_square ? 90–121 90–138 90–132 –
le450_15a 15 9–15 15–17 15–16 –
le450_15b 15 9–15 15–17 15–16 –
le450_15c 15 9–23 15–25 15–24 –
le450_15d 15 9–23 15–25 15–24 –
le450_25a 25 9–25 25 25 –
le450_25b 25 9–25 25 25 –
le450_25c 25 9–27 25–30 25–29 –
le450_25d 25 9–27 25–30 25–29 –

flat300_20_0 20 11–40 11–39 –
flat300_26_0 26 11–40 11–39 –
flat300_28_0 28 9–40 11–31 11-31 –
flat1000_50_0 50 – 15–113 15–112 –
flat1000_60_0 60 – 15–114 15–113 –
flat1000_76_0 76 – 13–114 13–113 –
queens_10_10 ? 10–12 13.5 10–13 10–12 10–36
queens_11_11 11 10–13 14.4 11–14 11–13 11–41
queens_12_12 ? 12–14 15.9 12–15 12–15 12–44
queens_13_13 13 9–16 13–17 13–16 13–49
queens_14_14 ? 10–17 14–18 14–17 –

r_1000.1c ? – 80–111 80–120 –
r_1000.1 20 9–21 20–21 20–21 –
r_1000.5 234 – 234–246 234–271 –
r_250.1c 64 9–67 64–67 64–66 –
r_250.1 8 8 8 8 7–14
r_250.5 ? 8–66 65–67 65–66 –
r_125.1c 46 12–46 46 46 31–88
r_125.1 5 5 5 5 5
r_125.5 36 13–36 38 36 –

Table 1: Graph Coloring Results.

DIMACS benchmark. As competitors we choose UCT (av-
eraging leaf scores), NRPA (HD-NRPA, recursion level 5),
NMCS (for nested Monte-Carlo search, recursion level 5),
and SAT (calling Lingeling), while applying a binary search

on the solution cost value k.
Results are shown in Table 1. The SAT solving process

had a 1h timeout while UCT was stopped after a hundred
thousand rollouts. Solution qualities highlighted in bold are
optimal. A dash indicates that no solution has been found.
Solution with X-Y denote upper and lower bounds found
with the approach. Fractional solution in UCT are averaged
over 10 runs. The few results of UCTχ (the subscript refers
to finding the chromatic number, SATω solves Clique for
lower bound) show that NRPAχ, NMCSχ and SATχ are su-
perior.

Prior to its own search, the Monte-Carlo solver for Graph
Coloring calls the Clique solver NMCS+

ω to compute the
lower bound and to initialize the rollout with the enforced
coloring. Moreover, for the Clique part in Tables 1 NMCS+

ω
(with at most 100s CPU time) turn out to be much better
than the SAT solver (SATω , with 1h CPU time).

The CPU time bound for NRPAχ/NMCSχ was set to 100s
for clique finding and for 30m for coloring. The results were
close to optimal in many cases. For the harder results with
several exceptions, we may conclude that NMCSχ performs
slightly better than NRPAχ and SATχ .

Conclusion
We have seen a flexible framework for conducting ran-
domized search. A framework implementation of an opti-
mization problem at hand is often as simple as deriving a
PDDL or SAT encoding, and, with only a few lines of self-
containing code, the resulting performance can be signifi-
cantly better. (Porco, Machado, and Bonet 2011) generated
translations of several NP-hard graph problems to planning,
and demonstrated limitation of current technology. Whether
or not we will see Monte-Carlo search action planners com-
peting in the near future, thus, will largely depend on the
benchmark domains being used.

References
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis,
S.; and Colton, S. 2004. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence
and AI in Games 4(1):1–43.
Cazenave, T., and Teytaud, F. 2012. Beam nested rollout
policy adaptation. In ECAI-Workshop on Computer Games,
1–12.
Cazenave, T. 2016. Nested rollout policy adaptation with
selective policies. In IJCAI-Workshop on Computer Games
(CGW).
Edelkamp, S., and Cazenave, T. 2016. Improved diversity
in nested rollout policy adaptation. In KI.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations, 85–103.
Springer US.
Porco, A.; Machado, A.; and Bonet, B. 2011. Auto-
matic polytime reductions of NP problems into a fragment
of STRIPS. In ICAPS.

164


