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Abstract

In multi-agent path finding (MAPF) the task is to find
non-conflicting paths for multiple agents. Recently, a SAT-
based approach was developed to solve this problem and
proved beneficial in many cases when compared to other
search-based solvers. In this paper, we introduce SAT-based
unbounded- and bounded-suboptimal algorithms and com-
pare them to relevant search-based algorithms.

1 Introduction

The multi-agent path finding (MAPF) problem consists
of a graph G = (V,E) and a set A = {a1, a2, . . . ak} of k
agents. Time is discretized into time steps. The arrangement
of agents at time-step t is denoted as αt. Each agent ai has a
start position α0(ai) ∈ V and a goal position α+(ai) ∈ V .
At each time step an agent can either move to an adjacent
location or wait in its current location. The task is to find a
sequence of move/wait actions for each agent ai, moving it
from α0(ai) to α+(ai) such that agents do not conflict, i.e.,
do not occupy the same location at the same time.

MAPF is usually solved aiming to minimize one of the
two commonly-used global cumulative cost functions: (1)
Sum-of-costs (denoted ξ) is the summation, over all agents,
of the number of time steps required to reach the goal lo-
cation (Standley 2010; Sharon et al. 2015). (2) Makespan:
(denoted μ) is the time until the last agent reaches its desti-
nation (i.e., the maximum of the individual costs) (Surynek
2010).

Finding optimal solutions for both variants is difficult as
the state-space grows exponentially with k (# of agents).
Therefore, many suboptimal solvers were developed. Some
suboptimal solvers aim to to quickly find paths for all agents
while paying no attention to the quality of the solution, i.e.,
how far it is from the optimal solution (Silver 2005). These
algorithms - also called any solution - are usually used when
k is large and some of them are not complete.

In some cases, the user might ask for some guarantee on
the quality of the solution returned. A common type of such
a requirement is that the solution found is bounded subop-
timal, that its cost is ≤ (1 + ε) × copt where copt is the
cost of the optimal solution and ε is a parameter that sets
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the desired amount of suboptimality - sometimes called the
error. A solver that returns bounded-suboptimal solutions
is referred to as a bounded-suboptimal algorithm or more
specifically (1 + ε)-bounded suboptimal.

2 From Optimal to Suboptimal Solver
We introduce algorithms that are based on a SAT-based op-
timal MAPF algorithm (called MDD-SAT) for the sum-of-
costs variant (Surynek et al. 2016). The main idea in MDD-
SAT is to convert the optimization problem (finding minimal
sum-of-costs) to a sequence of decision problems – is there
a solution of a given sum-of-costs ξ. A formula Fξ has been
introduced such that Fξ is satisfiable if and only if there is a
solution of sum-of-costs ξ.

To verify that a solution to Fξ represents a solution with
sum of costs lower than ξ, a cardinality constraint is added
(Bailleux and Boufkhad 2003). Cardinality constraint allows
counting variables set to TRUE in a formula. By mapping
agents’ actions to propositional variables, cardinality con-
straint can be used to bound a numeric cost. More infor-
mation on this formula and its exact variables can be found
in (Surynek et al. 2016).

To convert MDD-SAT to a suboptimal any solution al-
gorithm, we simply remove the cardinality constraint from
the construction of Fξ. Let F denote the resulting formula.
Since F has all the constraints in Fξ except the cardinal-
ity constraint, then clearly a satisfying assignment to F still
represents a feasible solution (no collisions between agents
etc.). Since F is less constrained than Fξ, we expect it to
be solved faster. Indeed, we observed this in our preliminary
experiments. Using F in MDD-SAT algorithm instead of Fξ

looses, however sum-of-cost optimality. The solver without
cardinality constraint will be called uMDD-SAT.

The formula Fξ can be relaxed not only by complete re-
moval of the cardinality constraint but also by setting the
cardinality constraint to impose a less restrictive cost bound.
It can be shown that for any error ε we can set the cardinal-
ity constraint in the MDD-SAT algorithm so that the result-
ing solution will be (1+ ε)-bounded suboptimal. The solver
with this relaxation will be called eMDD-SAT.

3 Experimental Evaluation
We performed a set of experiments to evaluate uMDD-SAT
and eMDD-SAT. We used various 4-connected grids as the
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brc202d den520d ost003d 

Figure 1: Dragon Age maps include: narrow corridors in
brc202d, large open space in den520d, and open space
with almost isolated rooms in ost003d.

underlying graphs.
Instances for our tests were based on three structurally dif-

ferent large maps taken from Sturtevant’s repository (Sturte-
vant 2012). These are Dragon Age Origin (DAO) maps de-
noted as brc202d, den520d, and ost003d which are
a standard benchmark for MAPF (see Figure 1). The num-
ber of agents was varied from 1 to 256 to obtain instances
of various difficulties (the step ranged from 1 to 16) and 10
random instances were generated for each number of agents.

All tests were run on a machine with CPU Intel i7 3.2
Ghz, 8 GB RAM under Ubuntu Linux 15 and Windows 10
respectively. The timeout for all solvers has been set to 500
seconds.

We compared uMDD-SAT with two suboptimal algo-
rithms: PUSH-AND-SWAP (Luna and Bekris 2011), which is
a polynomial time rule-based algorithm unbounded by de-
sign, and ECBS (Barer et al. 2014) a bounded-suboptimal
algorithm that is based on the CBS MAPF solver (Sharon
et al. 2015) where we set the suboptimality bound to a very
large number.

Runtime results shown in Figure 2 (runtimes for individ-
ual instances are sorted) suggest that in the unbounded setup
ECBS is faster than other two algorithms with a minor ex-
ception on harder instances (requiring more runtime) where
PUSH-AND-SWAP wins.

Results for the bounded variant (with ε = 0.01) indi-
cate that in easier instances containing fewer agents ECBS
is faster. However with the increasing difficulty of instances
and density of agents the gap in performance is narrowed
until eMDD-SAT starts to perform better in harder instances.
This trend is best visible on the ost003d map.

4 Conclusions

We demonstrated how to modify a SAT-based optimal
MAPF solver to suboptimal variants both unbounded and
bounded. Especially promising results were obtained for a
bounded variant eMDD-SAT on harder instances where the
learning mechanism of underlying SAT solver gains advan-
tage over search-based solver ECBS.
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