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Abstract

The game of Sokoban is an interesting platform for algorithm
research. It is hard for humans and computers alike. Even
small levels can take a lot of computation for all known al-
gorithms. In this paper we will describe how a search based
Sokoban solver can be structured and which algorithms can
be used to realize each critical part. We implement a variety
of those, construct a number of different solvers and combine
them into an algorithm portfolio. The solver we construct this
way can outperform existing solvers when run in parallel, i.e.
our solver with 16 processors outperforms the previous se-
quential solvers.

Introduction

The game of Sokoban was first proven to be NP-hard (Dor
and Zwick 1996) and then PSPACE-complete (Culberson
1997). While the rules are simple, even small levels can re-
quire a lot of computation to be solved. To reduce the com-
putation time, parallelization seems necessary.

This work focuses on algorithm portfolios — a paralleliza-
tion concept in which each processor solves the whole prob-
lem instance, using a different algorithm, random seed or
other kind of diversification.

Preliminaries

Sokoban is a puzzle game where each level consists of a
two dimensional rectangular grid of squares that make up
the “warehouse”. If a square contains nothing it is called
a floor. Otherwise it is occupied by walls (static obstacle),
boxes (movable obstacle), goal locations or the player. The
goal of the game is to push each box into a goal location by
controlling the player which can move in four directions (up,
down, left and right). The player is only allowed to push a
single box at a time.

Our Solver: GroupEffort

Each critical part of our solver' is implemented using a mul-
titude of different algorithms. When executed, GroupEffort
will assemble a number of solvers using these parts. We use
the following graph search algorithms to find a path in the
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state space of the game: BFS, DFS, A* and Complete Best
First Search (CBFS), which is a variation of A* (Hart, Nils-
son, and Raphael 1968). The algorithm will always expand
the vertex with the lowest estimated distance to a final one.
Note that it is not an optimal search algorithm.

We use a heuristic to estimate the minimum number of
pushes necessary to solve a Sokoban level from a given state.
This is done by assigning a goal to each box and then sum-
ming up the distance of each box to its goal. We use multi-
ple different metrics to estimate the distance a box has to be
pushed in order to get from square A to square B: the Man-
hattan distance, the Pythagorean distance and the Goal Pull
Distance, which is the distance a box has to be pushed from
each square to a goal if no other boxes were present and the
player could reach every part of the level. In order to assign
a goal to each box we first compute the distance of each box
to each goal. Then we use one of the following assignment
procedures: Closest Assignment — each box is assigned to
the goal closest to it. The Hungarian Method (Kuhn 1955) —
minimizes sum of box goal distances. Greedy Assignment —
approximate a minimal perfect matching by choosing pairs
in ascending order by their cost.

A game state is deadlocked if the level can no longer be
solved. Our algorithm has two ways to recognize deadlocked
states: directly by the use of a deadlock detector or through
the recursive property — If all states that can be reached from
a state S are deadlocked, S is deadlocked as well. Our dead-
lock detectors expand on the idea of dead squares presented
by Junghanns and Schaeffer. We use a pulling algorithm
similar to the one used for the goal pull distance to compute
which goals can be reached from each square. With this we
then compute connected areas of the level from which the
same goals can be reached. We store the number of reach-
able goals as the maximum number of boxes allowed in each
area. During the search we need to check for every move if
a box left an area. If this is the case we decrease the number
of boxes in the old area and increase it in the new one. If the
number of boxes in the new area surpasses the maximum the
search can be pruned.

GroupEffort has two levels of parallelization: First we
have two threads per core. One is running the solving algo-
rithm and the other one manages communication with other
solvers in the portfolio. The two threads use the shared mem-
ory model to communicate with each other. While the solv-



ing thread runs uninterruptedly until a solution is found, the
communication thread will only run periodically and sleep
in between for a fixed amount of time (usually around one
second). The second level of parallelization is running mul-
tiple instances of the program on different CPUs. They com-
municate using the Message Passing Interface (MPI).

Experimental Evaluation

A lot of Sokoban levels have been published. A collection
of close to 40.000 levels can be found at www.sourcecode.
se/sokoban/levels. From those we select a number of level
collections from different authors. After removing a few du-
plicates this test set, called large test set in the following,
has a size of 2851 levels. For other tests we use a small
test set with a size of 200 levels. It is created from the
large test set by first removing all levels that are easy (solv-
able in under 3 seconds by all solvers) and then selecting
a fixed amount randomly. Both test sets can be found at
http://baldur.iti.kit.edu/groupeffort/.

To test the solver configurations we run a subset of all
possible configurations independently on the large test set.
This subset contains all combinations of search algorithm,
distance metric and assignment algorithm. The timeout for
each level is 300 seconds.

We want our solver configurations to be different from
each other, i.e. they should make different decisions while
searching for a solution and therefore solve different levels.
To analyze this we calculate how many levels each solver
solves significantly better than another one. A level is solved
significantly better by solver A than solver B if A solves it
at least 30 seconds (10% of the maximum run time) faster or
B does not succeed at all.

Our experiments showed that the choice of the search al-
gorithm has the biggest impact on the performance of the
solver. The depth first approaches do not perform exception-
ally well on a lot of levels. Even if all depth first searches
are taken out only 5 levels are solved worse. This can be ex-
plained by the big state space that has to be searched and
the comparatively small solution length that are usual for a
Sokoban level.

We construct our parellel portfolio by combining the
solvers with the best single core performance on the large
test set. We run the portfolio on a varying number of cores
(1,4,8 and 16) with an equal number of solvers in the portfo-
lio. We use the levels from the small test set and the timeout
is set to 300 seconds. The results are summarized in figure 1.

No existing Sokoban solver uses any kind of paralleliza-
tion. Therefore we can only compare the single core perfor-
mance of the existing solvers with GroupEffort. For the other
solvers we use their latest version® from the developers sites.
The results are presented in figure 1.

Since GroupEffort is currently missing a number of
important search enhancements it lacks behind the other
solvers in single core performance. However, due to the al-
gorithm portfolio it can, with the use of more resources,
catch up to the other and eventually surpass them.
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Figure 1: Comparison between GroupEffort and existing
solvers. The number after GroupEffort denotes the number
of cores available as well as the number of solvers in the
portfolio.

Conclusion

We have shown that the group of solvers we presented is
diverse and therefore the approach of algorithm portfolios
can be of value for solving Sokoban. The solver we de-
signed outperforms existing solvers but only with the use
of more resources. In order to take full advantage of algo-
rithm portfolios, we need search enhancements that speed
up the search to a higher degree, even if they might not suc-
ceed every time. In other words; in the context of an algo-
rithm portfolio we can tolerate an incomplete search. Most
research on Sokoban solvers until now has focused on more
conservative solving methods. Especially since a lot of algo-
rithms focus on finding the best solution, i.e. least amount of
box pushes. More aggressive search enhancements like rel-
evance cuts (Junghanns and Schaeffer 2001) have only been
considered by a few researchers. Expanding on these ideas
can be a way to tackle the hardest Sokoban levels.
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