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k-Robust MAPF
In the multi-agent path-finding (MAPF) problem a plan is
needed to move a set of agents from their initial location to
their goals without collisions. In this paper we introduce and
study the k-robust MAPF problem, where we seek a plan
that is robust to k unexpected delays per agent.

Definition 1 (k-delay Conflict) A k-delay conflict
〈ai, aj , t〉 in a plan π occurs iff there exists Δ ∈ [0, k]
such that agents ai and aj are located in the same lo-
cation in time steps t and t + Δ, respectively, i.e, when
πi(t) = πj(t+Δ).

We say that a plan π is k-robust if it does not have any k-
delay conflicts. Informally, this means that no conflicts will
occur even if some of the agents are delayed by up to k time
steps. The problem we address in this paper is how to find
optimal sum-of-costs k-robust plans. Namely, the minimal
sum of all paths in which all agents can delay up to k times
without causing a collision.

Conflict-Based Search Solutions
This paper presents a planner that can solve the k-robust
MAPF planner which is based on the Conflict-based search
(CBS) (Sharon et al. 2015) MAPF solver. CBS does not ex-
plicitly search the n-agent state space. Instead, agents are as-
sociated with constraints of the form 〈ai, v, t〉, which would
prohibit agent ai from occupying vertex v at time step t. A
consistent path for agent ai is a path that satisfies all of ai’s
constraints, and a consistent plan is a plan composed only
of consistent paths. Note that a consistent plan can be in-
valid if it contains conflicts despite each path satisfying the
individual agent constraints.

CBS works by searching a constraint tree (CT) for a set of
constraints such that a consistent plan w.r.t. this set of con-
straints is optimal. The CT is a binary tree, in which each
node N contains: (1) a set of constraints imposed on the
agents (N.constraints), (2) a single plan (N.π) consistent
with these constraints, and (3) the cost of N.π (N.cost).The
root of the CT contains an empty set of constraints (thus, ev-
ery plan is consistent with the root). Each vertex N has two
successors, which are generated by first finding a conflict
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Figure 1: (a) The graph (b) CT using the original
time/location constraints (c) CT using range constraints

in N.π. Each successor is then generated by adding a new
constraint to N.constraints that prohibits one of the agents
involved in the collision from occupying the conflicting ver-
tex at the time of the conflict. A new plan consistent with
the augmented constraints is then computed for that agent.
A CT node N is a goal node when N.π is valid. To search
the CT for a goal node CBS runs a best-first search where
nodes are ordered by their costs.

k-Robust CBS
Next, we describe k-robust CBS (kR-CBS), an adaptation
of CBS designed to return optimal k-robust plans. kR-CBS
differs from CBS in that a valid path cannot contain any k-
delay conflicts and how constraints are added to avoid said
conflicts.

Resolving k-delay Conflicts. Let N be a non-goal node
in the CT selected to be expanded next by kR-CBS, and let
〈ai, aj , t〉 be a k-delay conflict in N . Note that there is no
k-robust plan in which ai is at v at time t while aj is at v at
time t+Δ. Therefore, kR-CBS generates two children for n,
adding the constraint 〈ai, v, t〉 to one child, and 〈aj , v, t+Δ〉
to the other.

Proving that kR-CBS is sound and complete is straight-
forward. It is sound because it only halts when generating a
CT node that has no k-delay conflicts. It is complete because
when splitting a CT node we do not lose any valid plans.
Similarly, kR-CBS returns optimal plans, as it searches the
CT in order of the nodes’ costs, and the cost of a node N is a
lower bound on the cost of any optimal plan consistent with
N.constraints.

Example. Consider a 2-robust MAPF problem on the
graph in Figure 1(a), with two agents whose start-goal pairs
are s1-g1 and s2-g2, respectively. Figure 1(b) shows the first
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Plan cost Plan time (ms)
k=0 k=1 k=2

m k=0 k=1 k=2 All KR IKR(A) IKR(S) KR IKR(A) IKR(S)
4 21 22 22 6 15 14 15 193 110 67
6 31 32 32 5 28 26 20 990 388 94
7 36 37 39 7 31 26 17 1,618 826 184
8 41 41 43 6 29 23 20 2,625 1,051 229
9 48 49 51 9 379 218 76 20,006 4,408 556
10 49 51 53 41 162 124 78 22,464 7,097 875

Table 1: Average plan cost and planning runtime for differ-
ent CBS-based k-robust solvers, on an 8x8 open grid

two levels of the CT generated by kR-CBS, where every
node N shows N.constraints (labeled Con), N.π1, N.π2,
and N.cost. Observe that the plan in the root is valid, but is
not 2-robust, having a 2-delay conflict 〈a2, a1, 2〉 at location
B for Δ = 1, since π1(3) = π2(2) = B. To try to re-
solve this conflict, kR-CBS adds the constraint 〈a2, B, 2〉 to
the left child and the constraint 〈a1, B, 3〉 to the right child.
Both children of the root node are also not goal nodes. In
fact, in this example we will need to generate a total of 7 CT
nodes before finding an optimal plan.

Improved k-Robust CBS
Next, we introduce the Improved kR-CBS (I-kR-CBS) that
resolves conflicts in a CT node N by imposing range con-
straints on its successors. A range constraint is defined by
the tuple 〈ai, v, [t1, t2]〉 and represents the constraint that
agent ai must avoid vertex v from time t1 to time t2.

Definition 2 (Sound Range Constraints) A pair of range
constraints are called sound iff all k-robust plans satisfy at
least one of these constraints.

Corollary 1 A kR-CBS variant that uses range constraints
is sound, complete, and returns optimal k-robust plans if it
resolves conflicts only with sound pairs of range constraints.

Corollary 2 (Symmetric range constraints) For any time
step t, vertex v, and agents ai and aj , the range constraints
〈ai, v, [t, t+ k]〉, 〈aj , v, [t, t+ k]〉 are sound for solving a
k-robust MAPF problem.

A pair of sound range constraints can also be asymmetric,
i.e., constrain one agent to a longer time range than the other
agent. For example, consider a conflict 〈ai, aj , t〉 at vertex
v and pair of range constraints R1 = 〈ai, v, [t− k, t+ k]〉
and R2 = 〈aj , v, [t]〉. R1 and R2 are a sound pair of con-
straints, because a solution must satisfy either R1 or R2,
since violating both results in a k-delay conflict. R1 and R2

are extremely asymmetric, but one can imaging asymmetric
range constraints that are more balanced. An open question
for asymmetric range constraints is how to choose which
agent to impose the more restricted constraint upon.

Experimental Results
We experimented with kR-CBS and I-kR-CBS using sym-
metric and asymmetric pairs of range constraints. Asymmet-
ric constraints placed a constraint of one time step on one
arbitrarily chosen agent, and a constraint on a 2k + 1 time
range on the other agent. Random MAPF problem instances

were generated in an open 8x8 grid. The kR-MAPF solvers
were run with k ∈ {0, 1, 2} and the resulting plan cost and
the CPU runtime were measured.

Table 1 shows the average plan cost and average CPU
runtime when finding k-robust solutions using kR-CBS (la-
beled KR) and I-kR-CBS with the asymmetric and with the
symmetric range constrains (labeled IKR(A) and IKR(S), re-
spectively) for 4, 6, 7, 8, 9, and 10 agents (different rows).
Note that the plan cost was identical for all solvers, so we
only show this once. Note also that k = 0 is standard CBS.

First, consider the plan costs. As can be seen, the k ro-
bust plans are not much more costly than a plan for the ba-
sic definition of MAPF (i.e., for k = 0), which indicates
that k-robust solvers provide additional robustness at little
increase in cost. Next, as expected, both I-kR-CBS vari-
ants runs much faster than kR-CBS and this improvement
increases when increasing k and when more agents exist.
Symmetric constrains clearly outperform asymmetric con-
straints. We conjuncture that this is due to the arbitrary way
in which we choose which agent to constrain more when us-
ing the asymmetric range constraints. Future work will in-
vestigate a more intelligent way of doing so.

We also performed experiments on a larger map from
Dragon Age Origins (Sturtevant 2012). Specifically, we used
90 randomly generated instances with 30 agents on the
brc202d map, which has 43,151 vertices. This map con-
tains many possible optimal paths for each agent, allowing
the k-robust plan to often have the same cost as a plan that
is not robust. When averaging over 50 random instances, the
average plan cost was 3,818.35, 3,818.43, and 3,818.53 for
k = 0, 1, and 2, respectively. Indeed, the plan cost grows
with k, but negligibly. This emphasizes the usefulness of
finding a k-robust plan, as one can be found in such a do-
main without extensive cost increase. That being said, find-
ing k-robust plans is more time consuming. In the above ex-
periments, finding the k-robust plans required an average of
213, 284, and 381 seconds, for k = 0, 1, and 2, respectively.

Discussion and Conclusion
In this paper we studied how to modify MAPF planners to
cause them to generate multi-agent plans where each agent
can experience until k delays while still preserving the abil-
ity to follow the generated plan.

Another direction for future work is to develop MAPF
solvers that generate plans that can be followed with prob-
ability greater than a parameter (Wagner and Choset 2017),
and to study more reactive execution policies.
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