
A Linear-Time and Linear-Space Algorithm for
the Minimum Vertex Cover Problem on Giant Graphs∗

Hong Xu, T. K. Satish Kumar, Sven Koenig
University of Southern California, Los Angeles, California 90089, the United States of America

hongx@usc.edu tkskwork@gmail.com skoenig@usc.edu

Abstract

In this paper, we develop the message passing based linear-
time and linear-space MVC algorithm (MVC-MPL) for solv-
ing the minimum vertex cover (MVC) problem. MVC-MPL is
based on heuristics derived from a theoretical analysis of mes-
sage passing algorithms in the context of belief propagation.
We show that MVC-MPL produces smaller vertex covers than
other linear-time and linear-space algorithms.

Introduction

Given an undirected graph G = 〈V,E〉, a vertex cover
(VC) of G is defined as a set of vertices S ⊆ V such
that every edge in E has at least one of its endpoint ver-
tices in S. A minimum vertex cover (MVC) of G is a ver-
tex cover of minimum cardinality. The MVC problem is
to find an MVC for a given graph. It is an NP-hard prob-
lem (Karp 1972) that has been used across a wide range of
application domains, such as crew scheduling, VLSI design,
nurse rostering and industrial machine assignments (Cai et
al. 2013). Many heuristics have been developed to tackle
the MVC problem and its generalizations (Cai et al. 2013;
Xu, Kumar, and Koenig 2016). However, none of these al-
gorithms are linear-time and linear-space in the number of
vertices and edges. (Henceforth, we use the term “linear” to
refer to being linear-time and linear-space in the number of
vertices and edges.) Therefore, they are difficult to apply to
giant graphs with billions of vertices and edges.

Belief propagation (BP) is a well-known technique used
for solving queries such as probability marginalization
and maximum-a-posteriori estimation in probabilistic mod-
els (Yedidia, Freeman, and Weiss 2003). Message passing
is a class of techniques that generalize BP. It, too, has been
applied to problems across various fields, including the Ising
model in statistical physics and error correcting codes in
information science (Yedidia, Freeman, and Weiss 2003).

In this paper, we develop the message passing based linear
MVC algorithm (MVC-MPL) that solves the problem heuris-
tically using the theory of message passing. Empirically, we
show that MVC-MPL produces smaller VCs than other linear
MVC algorithms.

∗The research at the University of Southern California was sup-
ported by NSF under grant numbers 1409987 and 1319966.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background

A Linear Factor-2 Approximation Algorithm

A well-known linear factor-2 approximation algorithm
(MVC-2) for solving the MVC problem works as fol-
lows (Vazirani 2003). In each iteration, the algorithm ar-
bitrarily selects an uncovered edge, then marks it as well
as the edges incident on its two endpoint vertices as being
covered, and adds its endpoint vertices into the vertex cover
V C. The algorithm then proceeds to the next iteration until
all edges are marked as being covered. This is the only exist-
ing well-known linear MVC algorithm that is known to the
authors.

The Warning Propagation Algorithm

The warning propagation algorithm is a special message pass-
ing algorithm where messages can only take one of two val-
ues, namely 0 or 1 (Weigt and Zhou 2006). (Weigt and Zhou
2006) developed an algorithm that uses warning propagation
to solve the MVC problem and analyzed it theoretically. In
their algorithm, messages are passed between adjacent ver-
tices. A message of 1 from vi ∈ V to vj ∈ V indicates that
vi is not in the MVC and thus it “warns” vj to be included
in the MVC. Their theoretical analysis mainly focused on
Erdős-Rényi (ER) random graphs, in which each edge is gen-
erated with a constant probability (Erdős and Rényi 1959).
They show that, on an infinitely large ER random graph, a
message has a probability of W (c)/c to be equal to 1, where
c is the average degree of vertices and W is the Lambert-W
function.

The Algorithm

MVC-MPL treats the input graph as if it were generated by
the ER model. It repeatedly selects an arbitrary vertex v and
decides whether it should be included in or excluded from
the VC. MVC-MPL does this by considering those vertices
adjacent to v which have not yet been included in the VC.
(No vertex adjacent to v has already been excluded from
the VC since otherwise v must necessarily be included in
the VC.) We use k(v) to denote the number of such adjacent
vertices. Each of these vertices sends a message of 1 to v with
probability W (c)/c under the warning propagation algorithm.
Vertex v must be included in the VC iff it receives at least
one message of 1. Assuming independence, the probability
that v is excluded from the VC is thus (1 − W (c)/c)k(v).
Consequently, MVC-MPL excludes v from the VC with this

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

173

Input Graph Solution Size Running Time (milliseconds)

Instance |V | |E| MVC-MPL MVC-L MVC-2 MVC-MPL MVC-L MVC-2

bn-human-BNU-1-0025864-session-1-bg 696,338 143,158,340 647,568 659,013 686,776 724 925 1,101
bn-human-BNU-1-0025864-session-2-bg 692,957 133,727,517 644,157 655,414 683,248 702 882 1,016

soc-livejournal 4,033,137 27,933,063 2,148,197 2,205,385 2,591,926 893 971 731
soc-ljournal-2008 5,363,201 79,023,143 3,127,083 3,623,388 4,908,058 1,200 1,363 1,492
soc-livejournal07 5,204,176 49,174,621 2,882,334 2,913,930 3,522,680 1,390 1,610 1,194

tech-as-skitter* 1,696,415 11,095,299 624,654 695,988 891,280 253 252 193
tech-ip 2,250,498 21,644,715 69,525 122,870 132,640 681 497 176

web-baidu-baike 2,141,330 17,794,839 745,685 784,284 1,063,178 527 528 300
web-hudong 1,984,484 14,869,484 713,449 743,685 1,061,712 406 390 248

web-wiki-ch-internal 1,930,275 9,359,108 323,142 351,770 418,946 336 309 130

* http://www.caida.org/tools/measurement/skitter/

Table 1: The “Instance” column shows the names of the input graphs; the “|V |” and “|E|” columns show the numbers of vertices
and edges in the graphs, respectively. The next 6 columns show the size of the VC and running time of each algorithm on each
instance, respectively. For each instance, the size of the VC and running time are averages over 20 repeated runs.

probability and includes it otherwise. If v is excluded, MVC-
MPL marks all its adjacent vertices as being included in V C.
Algorithm 1 shows the details of MVC-MPL, where ∂v is the
set of adjacent vertices of v and IS stands for the independent
set. Its time and space complexities are both O(|V |+ |E|).

Experimental Evaluation

We add another algorithm MVC-L for comparison purposes.
MVC-L works similar to MVC-MPL, except that it excludes
a vertex v with probability 1/(k(v) + 1) instead of pk(v)0 . In
other words, pk(v)0 in line 8 of Algorithm 1 is replaced by
1/(k(v)+ 1). The intuition is to include high-degree vertices
in the VC with higher probabilities.

In our experiments, since the average degrees of vertices
in all input graphs are larger than e, we approximated the
Lambert-W function using the first 3 terms of Equation 4.19
in (Corless et al. 1996), i.e., W (c) = L1 − L2 + L2/L1 +

O
(
(L2/L1)

2
)

, where L1 ≡ log c and L2 ≡ logL1.

All algorithms were implemented in C++, compiled by
GCC 6.3.0 with the “-O3” option and run on a GNU/Linux
workstation with Intel Xeon Processor E3-1240 v3 (8MB
Cache, 3.4GHz) and 16GB RAM. We fixed the vertex or
edge visitation orders to those given in the input files.

All input graphs are giant graphs selected from the Brain
Networks, Social Networks, Technological Networks and
Web Graphs categories in the Network Repository (http://

Algorithm 1: MVC-MPL
1 Function MVC-MPL(G = 〈V,E〉)

Input: G: The graph to find an MVC for.
Output: A VC of G.

2 Initialize V C = ∅ and IS = ∅;
3 c := average degree of vertices in G;
4 p0 := 1 − W (c)/c;
5 while ∃v ∈ V \ (V C ∪ IS) do

6 k(v) := |{u ∈ ∂v | u 	∈ V C}|;
7 Draw a random real number r uniformly at random from [0, 1];

8 if r < p
k(v)
0 then

9 Add v to IS;
10 Add all u ∈ ∂v to V C;
11 else

12 Add v to V C;

13 return V C;

networkrepository.com) (Rossi and Ahmed 2015; Mislove et
al. 2007; Niu et al. 2011). Table 1 shows our experimental
results. We see that all algorithms terminated quickly and
MVC-MPL produced significantly smaller VCs than MVC-L
and MVC-2.

Conclusion

We developed MVC-MPL, a new linear algorithm for solving
the MVC problem on giant graphs. Empirically, we showed
that MVC-MPL terminated fast and produced smaller VCs
than MVC-L and MVC-2.

References
Cai, S.; Su, K.; Luo, C.; and Sattar, A. 2013. NuMVC: An effi-
cient local search algorithm for minimum vertex cover. Journal of
Artificial Intelligence Research 46(1):687–716.
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; and
Knuth, D. E. 1996. On the LambertW function. Advances in
Computational Mathematics 5(1):329–359.
Erdős, P., and Rényi, A. 1959. On random graphs I. Publicationes
Mathematicae 6:290–297.
Karp, R. M. 1972. Reducibility among combinatorial problems. In
Complexity of Computer Computations. Plenum Press, New York.
85–103.
Mislove, A.; Marcon, M.; Gummadi, K. P.; Druschel, P.; and Bhat-
tacharjee, B. 2007. Measurement and analysis of online social
networks. In ACM Internet Measurement Conference, 29–42.
Niu, X.; Sun, X.; Wang, H.; Rong, S.; Qi, G.; and Yu, Y. 2011.
Zhishi.me - weaving Chinese linking open data. In the International
Semantic Web Conference, 205–220.
Rossi, R. A., and Ahmed, N. K. 2015. The network data repos-
itory with interactive graph analytics and visualization. In AAAI
Conference on Artificial Intelligence, 4292–4293.
Vazirani, V. V. 2003. Approximation Algorithms. Springer.
Weigt, M., and Zhou, H. 2006. Message passing for vertex covers.
Physical Review E 74(4):046110.
Xu, H.; Kumar, T. K. S.; and Koenig, S. 2016. A new solver for
the minimum weighted vertex cover problem. In the International
Conference on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming, 392–405.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Understanding
belief propagation and its generalizations. Exploring Artificial
Intelligence in the New Millennium 8:239–269.

174

