
Batch Repair with Heuristic Search

Hilla Shinitzky and Roni Stern and Meir Kalech
Ben Gurion University of the Negev

Beer Sheva, Israel

Troubleshooting is the task of fixing an abnormally be-
having system. Many troubleshooting algorithms employ a
diagnosis engine that returns a set of diagnoses Ω and their
likelihoods (p(·)), where a diagnosis ω ∈ Ω is a set of com-
ponents that may have been faulty and its likelihood p(ω)
is the probability that ω is all the faulty components in the
system. The Batch Repair Problem (BRP) is a recently in-
troduced troubleshooting problem in which Ω and p(·) are
given as input and the task is to minimize the total repair
costs incurred until the system is fixed (Stern, Kalech, and
Shinitzky 2016). Unlike traditional troubleshooting prob-
lems, the total repair costs considered in BRP includes (1)
the cost of repairing each faulty component (referred to as
the component repair cost) and (2) additional repair over-
head costs (denoted costrepair). When the repair overhead is
more expensive than the component repair cost then it may
be more efficient to repair a batch of components in a single
repair action.

BRP can be modeled as a Markov Decision Process
(MDP), where the actions are the possible repair actions and
the uncertainty is due to not knowing which components are
faulty (and thus, repairing a set of component may or may
not fix the system). However, the number of actions in each
state is exponential in the number of components, as any
batch of components may be considered.

As an alternative, prior work modeled BRP as a combi-
natorial optimization problem, searching in the combinato-
rial space of possible repair actions for the best repair action
to perform next (Stern, Kalech, and Shinitzky 2016), where
best is measured according to a utility function that estimates
current and future wasted repair costs. There are two chal-
lenges in implementing this approach: (1) how to define such
a utility function, and (2) how to efficiently search for the re-
pair action that maximizes this function.

Utility Functions
Stern et al. (2016) proposed the wasted cost BRP utility
functions. These functions consist (1) false positive costs
(costFP), which are the costs incurred by repairing compo-
nents that are not really faulty, and (2) False negative costs
(costFN), which are the overhead costs incurred by future

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

repair actions. The following general formula computes the
expected wasted costs of a repair action that repairs the set
of components γ
CWC = costFP (γ)+(1−SystemRepair(γ)) ·costFN (γ)

where SystemRepair(γ) is the probability that Repair(γ)
will fix the system (SystemRepair()can be derived au-
tomatically from Ω and p(·) (Stern et al. 2015)). The values
of costFP and costFN , however, are not known, and thus
one cannot compute CWC . Wasted cost utility functions es-
timate CWC by estimating costFP and costFN . It is rea-
sonable to estimate the false positive costs by ĉostFP (γ) =∑

C∈γ(1 − F (C)) · cost(C) where F (C) is the likelihood
that component C is faulty (computed from Ω and p(·)).

Estimating costFN requires considering the future actions
of the repair algorithm. Two approaches were suggested: (1)
Optimistic (Opt.), denoted costoFN , considers the best case,
where only one additional repair action would be needed, in-
curring a single additional overhead cost, and (2) Pessimistic
(Pess.), denoted costpFN , embodies the other extreme, in
which we assume that every faulty components will be re-
paired in the future in a single repair action, incurring one
costrepair per faulty component. Since we do not know the
number of faulty components, we use the expected number
of faulty components according to the health state, resulting
in costpFN (γ) = costrepair ·

∑
c/∈γ F (c).

Enhanced Wasted Cost Utility Function. Both opti-
mistic and pessimistic functions do not explicitly consider
future false positive costs, i.e., the cost that will be wasted
in the future when repairing component that should not have
been repaired. To account for the future false positive costs,
we added the same computation computed for the current
false positive costs, but over all the component not cho-
sen by the current repair action. So, for a batch repair ac-
tion γ, we estimated the future false positive costs, denoted
costFFP (γ), as follows:

costFFP (γ) =
∑
C/∈γ

(1− F (C)) · cost(C)

The resulting wasted cost utility function, which we refer to
as “FFP enhanced”, is given by:

CWC = costFP (γ) + (1− SystemRepair(γ))

· (costpFN (γ) + costFFP (γ) (1)

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

141

Search Algorithms
For a given utility function, we still need to solve the under-
lying search problem of finding the repair action that maxi-
mizes u(·). We call this the BRPS problem.

The search space for the BRPS problem, is a lattice of all
possible subsets of the components not repaired so far. Even
for systems with only hundreds of components this search
space becomes extremely very large. Since Ω contains all
diagnoses we limit the BRPS search space to only con-
sider unions of diagnoses. (this was found empirically to im-
prove the search in most cases). We considered three types
of search algorithms for solving the BRPS problem: (1)
a depth-limited breadth-first search (depth-limited to avoid
memory and time explosion), (2) a hill climbing (HC) vari-
ant in which a batch repair action iteratively, starting from
an empty set of components and adding in every iteration
the single component that reduces the most the used util-
ity function until there is no component left that reduces the
utility function, and (3) an A∗ (Hart, Nilsson, and Raphael
1968) variant that finds optimal solutions.1 Implementing
A∗ for BRPS is challenging since A∗ requires an admissi-
ble heuristic function and because the BRPS search space
it is not monotone, as the cost of nodes along a path in the
search space may decrease (Stern et al. 2014).

To meet this challenges, we define A∗ slightly differently
for BRPS . Instead of the path-based g(n) and h(n), we use
the following state-based values cost(n) and bL(n), where
cost(n) is the cost of n (according to the utility function
used), and bL(n) is a heuristic function that estimates the
cost of the lowest cost node in the subtree of the BRPS

search space rooted at n (including n). We say that bL(n)
is admissible if is a lower bound on the value it estimates,
i.e., bL(n) ≤ minn′{cost(n′)|n ⊆ n′}.

Running A∗ with cost(n) and an admissible bL(n) is done
as follows. In every iteration the node with the minimal
bL(n) is expanded. If cost(n) is smaller than the incumbent
solution then the incumbent solution is updated. The search
continues until the cost of the incumbent solution is lower
than or equal to the minimal bL(n) that is expanded.

We construct an admissible heuristic function for BRPS

by first proposing a function bL(n, i) that lower bounds the
cost of all sets of components that contain the components in
n and i additional components. We call this an i-level admis-
sible heuristic function. Then an admissible bL(n) takes the
minimum over the values of the i-level admissible heuris-
tic functions for any i. Constructing i-level admissible func-
tions can be done by lower bounding the false positive costs
and the false negative costs that can be added by i compo-
nents independently, and then summing these bounds up.

Experimental Results
We evaluated the different utility functions and search al-
gorithms on a diagnosis benchmark that consists Boolean
circuits systems (Hansen, Yalcin, and Hayes 1999; Brglez,
Bryan, and Kozminski 1989) and a random selection from

1Note that an optimal solution to BRPS is not necessarily an
optimal solution to the BRP problem.

Overhead = 10 Overhead = 25
Alg. A* HC B(1) B(2) A* HC B(1) B(2)

c4
32

Opt. 79 65 50 51 133 102 94 84
Pess. 80 63 51 51 128 95 84 65
FFP 57 55 52 42 85 72 99 68

74
18

2 Opt. 56 51 56 54 72 76 97 82
Pess. 57 51 58 56 75 68 97 73
FFP 48 54 58 48 67 69 97 74

c8
80

Opt. 93 80 117 114 163 128 220 207
Pess. 95 76 119 118 168 118 226 207
FFP 73 74 111 90 119 94 205 149

Table 1: Average cost incurred until the system is fixed

Feldman et al.’s (2010) observation set. The prior probabil-
ity of each gate to be faulty was set to 0.01 and a single
diagnosis for each observation served as the injected faults.
Component repair cost was set to 5, and we experimented
with repair overhead costs of 10 and 25. A timeout of 5 min-
utes was set in every iteration.

Table 1 shows the average cost incurred over all repair
actions until the system is fixed. The rows shows results for
the different utility functions and benchmark systems (c432,
74182, and C88). The columns are for the different search
algorithms, where A∗, HC, B(1), and B(2), correspond to
our variant of A∗, hill climbing, and breadth-first search with
one or two depth bound, respectively. Results are given for
overhead cost 10 and for 25, and the best result in every
configuration is bolded.

A clear trend that can be observed in the results is that
the FFP enhanced wasted cost function is in general bet-
ter than both Opt. and Pess. This result is relatively consis-
tent over all search algorithms. Regarding search algorithms,
we observe that A∗ is superior on the largest system (c880)
while BrFS worked surprisingly well for the smaller systems
(74182 and c432). Thus, in general, we did not observe any
universal winner, suggesting both room for future research
as well as demonstrate the potential of a heuristic search ap-
proach for this problem.

References
Brglez, F.; Bryan, D.; and Kozminski, K. 1989. Combinatorial
profiles of sequential benchmark circuits. In IEEE International
Symposium on Circuits and Systems, 1929–1934.
Feldman, A.; Provan, G.; and van Gemund, A. 2010. Approximate
model-based diagnosis using greedy stochastic search. Journal of
Artificial Intelligence Research (JAIR) 38:371.
Hansen, M. C.; Yalcin, H.; and Hayes, J. P. 1999. Unveiling the
ISCAS-85 benchmarks: A case study in reverse engineering. IEEE
Des. Test 16:72–80.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. Systems
Science and Cybernetics, IEEE Transactions on 4(2):100–107.
Stern, R. T.; Kiesel, S.; Puzis, R.; Felner, A.; and Ruml, W.
2014. Max is more than min: Solving maximization problems with
heuristic search. In Symposium on Combinatorial Search (SoCS).
Stern, R. T.; Kalech, M.; Rogov, S.; and Feldman, A. 2015. How
many diagnoses do we need? In AAAI, 1618–1624.
Stern, R.; Kalech, M.; and Shinitzky, H. 2016. Implementing trou-
bleshooting with batch repair. In AAAI.

142

