Burnt Pancake Problem: New Lower Bounds on the Diameter and New Experimental Optimality Ratios

Bruno Bouzy
LIPADE, Université Paris Descartes, FRANCE,
bruno.bouzy@parisdescartes.fr

Abstract

For the burnt pancake problem, we provide new values of $g\left(-I_{N}\right)$, new hard positions and new experimental optimality ratios.

Introduction

The pancake problem is well-known in computer science (Gates and Papadimitriou 1979). p being a given problem, $g(p)$ is the length of optimal solutions of $p . N$ is the size of a pancake problem. $g(N)$ is the diameter of the graph corresponding to size N pancake problems. For the burnt pancake problem, $3 N / 2$ is a lower bound on $g(N)$ and $2(N-1)$ a upper bound (Cohen and Blum 1995). Beside, Cohen and Blum's algorithm (1995) is a 2-approximation algorithm. $-I_{N}$ is a known hard problem. (Cohen and Blum 1995) conjectured that $g\left(-I_{N}\right)=g(N)$.

First, while previous values on $g\left(-I_{N}\right)$ were known for $N \leq 20$ (Cibulka 2011), we provide new values for $N \leq$ 27. This result is obtained with IDA* (Korf 1985) and the number of breakpoints (Gates and Papadimitriou 1979) as heuristic function. Secondly, for $N \leq 22$, we used a new heuristic function to uncover some hard positions, different from $-I_{N}$. Thirdly, we give experimental optimality ratios obtained with Monte-Carlo Search (MCS) (Cazenave 2009) using Cohen and Blum's algorithm for $N \leq 256$.

Definitions

Let $s=[s(1), s(2), \ldots, s(N-1), s(N)]$ be a stack of burnt pancakes. A burnt pancake is burnt on one side. $|s(i)|$ is the size of the pancake situated at position i. The sign of $s(i)$ corresponds to the orientation of the burnt side of pancake i. The burnt pancake problem consists in reaching the identity stack I_{N} such that $I_{N}(i)=i$ by applying a sequence of flips. A flip transforms s into $[\underline{-s(i), \ldots,-s(1)}, s(i+$ $1), \ldots, s(N)]$. In the burnt pancake problem, a breakpoint is situated between i and $i-1$ when $s(i)-s(i-1) \neq 1$. $\# b p$ denotes the number of breakpoints. \#bp is a lower bound of the length of optimal solutions (Gates and Papadimitriou 1979), (Helmert 2010). -s denotes the stack obtained with the reverse sign for every pancakes of s.

[^0]Known stacks hard to solve are (Cohen and Blum 1995), (Cibulka 2011): $-I_{N}, J_{N}=[\mathbf{+ 1},-2, \ldots,-(N-1),-N]$, and $\left.Y_{N}=[-1,-2, \ldots,-(N-2), \mathbf{+} \mathbf{N}-\mathbf{1}),-N\right]$. We define other stacks $H_{N, M}$ where M is a non-negative integer with N bits. $H_{N, M}(i)=i \times \operatorname{sgn}(i, M)$ with $\operatorname{sgn}(i, M)=$ $-1+2 m s b(i, M) . m s b(i, M)$ is the ith most significant bit of M. We have $H_{6,0}=-I_{6}, H_{6,2}=Y_{6}, H_{6,32}=J_{6}$, and $H_{6,63}=I_{6}$.
$a(s)$ (respectively $a(-s)$) denotes the number of adjacencies (respectively anti-adjacencies). An adjacency (respectively anti-adjacency) occurs between two neighbouring pancakes when their size difference is 1 and when the burnt side of the smallest (respectively largest) pancake faces the unburnt side of the largest (respectively smallest) pancake (Cibulka 2011).

New Results on $g\left(-I_{N}\right)$

First, we use IDA* with \#bp. We use a Linux computer with one core Intel(R) Xeon(R) CPU X5690 running at 3.47 GHz . We compute $g\left(-I_{N}\right)$ for N as high as possible. The second leftmost column of Table 1 gives the values of $g\left(-I_{N}\right)$ for $N \leq 27$. Because $\# b p$ is an admissible heuristic, these values are exact. As another result, we have lower bounds of $g(N)$ for $N \leq 27$.

Secondly, we designed a heuristic function $h_{B}: h_{B}(s)=$ $\# b p+\lambda a(-s)$. We look for λ such that h_{B} remains admissible and speeds up the execution as much as possible. The features are computed in $O(1)$. For each $N \leq 15$, $\operatorname{TestSet}(N)$ is a set of stacks of size N with their exact values obtained with $\lambda=0$. TestSet (N) contains positions such that $-I_{N}, J_{N}, Y_{N}, H_{N},_{M}$ for specific values of M corresponding to stacks ordered in the unburnt version, but alternating positive pancakes and negative pancakes. $\lambda=0.44$ is our best value preserving optimality and maximizing speed. $\lambda=0.44$ enabled our program to uncover new upper bounds of $g\left(-I_{N}\right)$ for $N \leq 30$.

Seeking for Hard Positions

Our process seeking for hard positions starts with $B_{2}=$ $\left\{-I_{2}\right\}$. For $i>2$, for each stack s in B_{i}, it builds candidate stacks $s c$ by using observation O, it solves them and updates B_{i+1}. Observation O : considering a stack s of size $N-1$, (1) reverse the burnt side of one pancake in s or do

Table 1: Values of $g\left(-I_{N}\right)$ for $N \leq 30$ with running times for $\lambda=0.44$ and $\lambda=0$.

N	$g\left(-I_{N}\right)$	h_{B}	$T(\lambda=0.44)$	$T(\lambda=0)$
2	4	2	0.001 s	0.002 s
3	6	4	0.001 s	0.002 s
4	8	5	0.002 s	0.004 s
5	10	7	0.002 s	0.004 s
6	12	8	0.012 s	0.03 s
7	14	10	0.15 s	0.3 s
8	15	11	0.2 s	0.5 s
9	17	12	2.5 s	5 s
10	18	14	2.5 s	5 s
11	19	15	1.5 s	5 s
12	21	17	14 s	1 m
13	22	18	10 s	40 s
14	23	20	4 s	15 s
15	24	21	17 s	30 s
16	26	23	1 m 15 s	5 m
17	28	24	5 m	15 m
18	29	25	7 m	20 m
19	30	27	11 m	1 h
20	32	28	30 m	30 m
21	33	30	42 m	1 h 30 m
22	35	31	45 m	1 h 30 m
23	36	33	6 h	14 h
24	38	34	6 h	15 h
25	39	36	9 h	28 h
26	41	37	10 h	20 h
27	42	38	1 d	2 d
28	≤ 44	40	2 d	
29	≤ 45	41	5 d	
30	≤ 47	43	5 d	

nothing, (2) add pancake $+N$ or $-N$ at the bottom of s. Table 2 gives the set B_{N} of hard stacks. d_{N} is the distance between B_{N} and $I_{N} . T$ is the elapsed time. We interrupted the process during iteration 22 .

Experimental Optimality Ratios

For the burnt and unburnt pancake problems, 2approximation algorithms are known (Cohen and Blum 1995), (Fischer and Ginzinger 2005). For the unburnt version, (Bouzy 2015) reaches a 1.04 Experimental Optimality Ratio (EOR) defined as follows. $L_{A}(p)$ is the length of a solution output of algorithm A on p. Since the optimal length of solutions on p cannot be known for large stacks, $E O R(p)=\frac{L_{A}(p)}{\# b p}$. Then $E O R$ is the average value over a randomly generated set of stacks. For a calibration purpose, IDA* gives $E O R \geq 1.2$ for $N \leq 15$. Table 3 shows the values of $E O R$ in N for MCS with Cohen and Blum's algorithm.

References

Bouzy, B. 2015. An experimental investigation on the pancake problem. In IJCAI Computer Game Workshop.

Table 2: Values of $g(N), d_{N}, T$, and B_{N}.

N	d_{N}	T	B_{N}
2	4	0	$-I_{2}$
3	6	0	$-I_{3} J_{3}$
4	8	0	$-I_{4} J_{4}$
5	10	0	$-I_{5} J_{5}$
6	12	0	$-I_{6}$
7	14	0	$-I_{7}$
8	15	0	$-I_{8}$
9	17	30 s	$-I_{9}$
10	18	1 m	$-I_{10}$
11	19	2 m	$-I_{11} Y_{11} J_{11}$
12	21	4 m	$-I_{12}$
13	22	6 m	$-I_{13} Y_{13} J_{13}$
14	23	30 m	$-I_{14} Y_{14} H_{14,4} J_{14}$
15	25	1 h	$Y_{15} J_{15}$
16	26	1 h 20	$-I_{16} H_{16,4} J_{16}$
17	28	3 h	$-I_{17}$
18	29	5 h	$-I_{18} Y_{18} H_{18,4} J_{18}$
19	30	16 h	$-I_{19} Y_{19} J_{19} H_{19,4} H_{19,8} H_{19,10}$
			$H_{19,2^{18}+2} H_{19,2^{18}+4} H_{19,2^{18}+8}$
20	32	4 d	$-I_{20} H_{20,8} J_{20}$
21	33	8 d	$-I_{21} H_{21,4} H_{21,16} H_{21,18} H_{21,20} J_{21}$
			$H_{21,2^{20+2}} H_{21,2^{20}+4} H_{21,2^{20}+16} Y_{21}$
22	35	$>25 \mathrm{~d}$	$-I_{22} Y_{22} J_{22}$

Table 3: $E O R$ variations in N and Level $l . L_{l}$ are the average lengths. T_{i} are the average times in seconds.

N	L_{0}	$E O R_{0}$	T_{0}	L_{1}	$E O R_{1}$	T_{1}
64	122	1.91	0	97.8	1.53	0.05
128	250	1.95	0	203	1.59	0.62
256	505	1.98	0.01			
N	L_{2}	$E O R_{2}$	T_{2}	L_{3}	$E O R_{3}$	T_{3}
8	10.0	1.33	0.01	10.0	1.33	0.02
16	20.3	1.31	0.03	19.9	1.28	2
32	40.7	1.29	1.2			

Cazenave, T. 2009. Nested Monte-Carlo Search. In IJCAI, 456-461.
Cibulka, J. 2011. Average number of flips in pancake sorting. TCS 412:822-834.
Cohen, D., and Blum, M. 1995. On the problem of sorting burnt pancakes. DAM 105-120.
Fischer, J., and Ginzinger, S. 2005. A 2-approximation algorithm for sorting by prefix reversals. In ESA, volume 3669 of $L N C S, 415-425$.
Gates, W., and Papadimitriou, C. 1979. Bounds for sorting by prefix reversal. Discrete Math. 27:47-57.
Helmert, M. 2010. Landmark heuristics for the pancake problem. In SoCS, 109-110.
Korf, R. 1985. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence 27:97-109.

[^0]: Copyright © \mathfrak{C} 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

