
Burnt Pancake Problem: New Lower Bounds on the
Diameter and New Experimental Optimality Ratios

Bruno Bouzy
LIPADE, Université Paris Descartes, FRANCE,

bruno.bouzy@parisdescartes.fr

Abstract

For the burnt pancake problem, we provide new values
of g(−IN), new hard positions and new experimental
optimality ratios.

Introduction
The pancake problem is well-known in computer science
(Gates and Papadimitriou 1979). p being a given problem,
g(p) is the length of optimal solutions of p. N is the size of
a pancake problem. g(N) is the diameter of the graph corre-
sponding to size N pancake problems. For the burnt pancake
problem, 3N/2 is a lower bound on g(N) and 2(N − 1) a
upper bound (Cohen and Blum 1995). Beside, Cohen and
Blum’s algorithm (1995) is a 2-approximation algorithm.
−IN is a known hard problem. (Cohen and Blum 1995) con-
jectured that g(−IN) = g(N).

First, while previous values on g(−IN) were known for
N ≤ 20 (Cibulka 2011), we provide new values for N ≤
27. This result is obtained with IDA* (Korf 1985) and the
number of breakpoints (Gates and Papadimitriou 1979) as
heuristic function. Secondly, for N ≤ 22, we used a new
heuristic function to uncover some hard positions, different
from −IN . Thirdly, we give experimental optimality ratios
obtained with Monte-Carlo Search (MCS) (Cazenave 2009)
using Cohen and Blum’s algorithm for N ≤ 256.

Definitions
Let s = [s(1), s(2), ..., s(N − 1), s(N)] be a stack of burnt
pancakes. A burnt pancake is burnt on one side. |s(i)| is the
size of the pancake situated at position i. The sign of s(i)
corresponds to the orientation of the burnt side of pancake
i. The burnt pancake problem consists in reaching the iden-
tity stack IN such that IN (i) = i by applying a sequence
of flips. A flip transforms s into [−s(i), ...,−s(1), s(i +
1), ..., s(N)]. In the burnt pancake problem, a breakpoint is
situated between i and i − 1 when s(i) − s(i − 1) �= 1.
#bp denotes the number of breakpoints. #bp is a lower
bound of the length of optimal solutions (Gates and Pa-
padimitriou 1979), (Helmert 2010). −s denotes the stack
obtained with the reverse sign for every pancakes of s.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Known stacks hard to solve are (Cohen and Blum 1995),
(Cibulka 2011): −IN , JN = [+1,−2, ...,−(N − 1),−N],
and YN = [−1,−2, ...,−(N − 2),+(N-1),−N]. We de-
fine other stacks HN,M where M is a non-negative integer
with N bits. HN,M (i) = i × sgn(i,M) with sgn(i,M) =
−1 + 2msb(i,M). msb(i,M) is the ith most significant bit
of M . We have H6,0 = −I6, H6,2 = Y6, H6,32 = J6, and
H6,63 = I6.

a(s) (respectively a(−s)) denotes the number of adja-
cencies (respectively anti-adjacencies). An adjacency (re-
spectively anti-adjacency) occurs between two neighbouring
pancakes when their size difference is 1 and when the burnt
side of the smallest (respectively largest) pancake faces the
unburnt side of the largest (respectively smallest) pancake
(Cibulka 2011).

New Results on g(−IN)
First, we use IDA* with #bp. We use a Linux computer with
one core Intel(R) Xeon(R) CPU X5690 running at 3.47GHz.
We compute g(−IN) for N as high as possible. The second
leftmost column of Table 1 gives the values of g(−IN) for
N ≤ 27. Because #bp is an admissible heuristic, these val-
ues are exact. As another result, we have lower bounds of
g(N) for N ≤ 27.

Secondly, we designed a heuristic function hB : hB(s) =
#bp + λa(−s). We look for λ such that hB remains ad-
missible and speeds up the execution as much as possible.
The features are computed in O(1). For each N ≤ 15,
TestSet(N) is a set of stacks of size N with their exact
values obtained with λ = 0. TestSet(N) contains posi-
tions such that −IN , JN , YN , HN ,M for specific values
of M corresponding to stacks ordered in the unburnt ver-
sion, but alternating positive pancakes and negative pan-
cakes. λ = 0.44 is our best value preserving optimality and
maximizing speed. λ = 0.44 enabled our program to un-
cover new upper bounds of g(−IN) for N ≤ 30.

Seeking for Hard Positions
Our process seeking for hard positions starts with B2 =
{−I2}. For i > 2, for each stack s in Bi, it builds candi-
date stacks sc by using observation O, it solves them and
updates Bi+1. Observation O: considering a stack s of size
N − 1, (1) reverse the burnt side of one pancake in s or do

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

119

Table 1: Values of g(−IN) for N ≤ 30 with running times for
λ = 0.44 and λ = 0.

N g(−IN) hB T (λ = 0.44) T (λ = 0)

2 4 2 0.001s 0.002s
3 6 4 0.001s 0.002s
4 8 5 0.002s 0.004s
5 10 7 0.002s 0.004s
6 12 8 0.012s 0.03s
7 14 10 0.15s 0.3s
8 15 11 0.2s 0.5s
9 17 12 2.5s 5s
10 18 14 2.5s 5s
11 19 15 1.5s 5s
12 21 17 14s 1m
13 22 18 10s 40s
14 23 20 4s 15s
15 24 21 17s 30s
16 26 23 1m15s 5m
17 28 24 5m 15m
18 29 25 7m 20m
19 30 27 11m 1h
20 32 28 30m 30m
21 33 30 42m 1h30m
22 35 31 45m 1h30m
23 36 33 6h 14h
24 38 34 6h 15h
25 39 36 9h 28h
26 41 37 10h 20h
27 42 38 1d 2d
28 ≤ 44 40 2d
29 ≤ 45 41 5d
30 ≤ 47 43 5d

nothing, (2) add pancake +N or −N at the bottom of s.
Table 2 gives the set BN of hard stacks. dN is the distance
between BN and IN . T is the elapsed time. We interrupted
the process during iteration 22.

Experimental Optimality Ratios
For the burnt and unburnt pancake problems, 2-
approximation algorithms are known (Cohen and Blum
1995), (Fischer and Ginzinger 2005). For the unburnt ver-
sion, (Bouzy 2015) reaches a 1.04 Experimental Optimality
Ratio (EOR) defined as follows. LA(p) is the length of
a solution output of algorithm A on p. Since the optimal
length of solutions on p cannot be known for large stacks,
EOR(p) = LA(p)

#bp . Then EOR is the average value over a
randomly generated set of stacks. For a calibration purpose,
IDA* gives EOR ≥ 1.2 for N ≤ 15. Table 3 shows the
values of EOR in N for MCS with Cohen and Blum’s
algorithm.

References
Bouzy, B. 2015. An experimental investigation on the pan-
cake problem. In IJCAI Computer Game Workshop.

Table 2: Values of g(N), dN , T , and BN .
N dN T BN

2 4 0 −I2
3 6 0 −I3 J3

4 8 0 −I4 J4

5 10 0 −I5 J5

6 12 0 −I6
7 14 0 −I7
8 15 0 −I8
9 17 30s −I9
10 18 1m −I10
11 19 2m −I11 Y11 J11

12 21 4m −I12
13 22 6m −I13 Y13 J13

14 23 30m −I14 Y14 H14,4 J14

15 25 1h Y15 J15

16 26 1h20 −I16 H16,4 J16

17 28 3h −I17
18 29 5h −I18 Y18 H18,4 J18

19 30 16h −I19 Y19 J19 H19,4 H19,8 H19,10

H
19,218+2

H
19,218+4

H
19,218+8

20 32 4d −I20 H20,8 J20

21 33 8d −I21 H21,4 H21,16 H21,18 H21,20 J21

H
21,220+2

H
21,220+4

H
21,220+16

Y21

22 35 >25d −I22 Y22 J22

Table 3: EOR variations in N and Level l. Ll are the average
lengths. Ti are the average times in seconds.

N L0 EOR0 T0 L1 EOR1 T1

64 122 1.91 0 97.8 1.53 0.05
128 250 1.95 0 203 1.59 0.62
256 505 1.98 0.01

N L2 EOR2 T2 L3 EOR3 T3

8 10.0 1.33 0.01 10.0 1.33 0.02
16 20.3 1.31 0.03 19.9 1.28 2
32 40.7 1.29 1.2

Cazenave, T. 2009. Nested Monte-Carlo Search. In IJCAI,
456–461.
Cibulka, J. 2011. Average number of flips in pancake sort-
ing. TCS 412:822–834.
Cohen, D., and Blum, M. 1995. On the problem of sorting
burnt pancakes. DAM 105–120.
Fischer, J., and Ginzinger, S. 2005. A 2-approximation al-
gorithm for sorting by prefix reversals. In ESA, volume 3669
of LNCS, 415–425.
Gates, W., and Papadimitriou, C. 1979. Bounds for sorting
by prefix reversal. Discrete Math. 27:47–57.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In SoCS, 109–110.
Korf, R. 1985. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence 27:97–109.

120

