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Abstract

Real-time heuristic search models an autonomous agent solv-
ing a search task. The agent operates in a real-time setting
by interleaving local planning, learning and move execution.
In this paper we propose a simple parametric algorithm that
combines weighting with learning from multiple neighbors.
Doing so breaks heuristic admissibility but allows the agent
to escape heuristic depressions more quickly. We prove com-
pleteness of the algorithm and empirically compare it to sev-
eral competitors more than twenty years apart. In a large-
scale evaluation the new algorithm found better solutions
than the recent algorithms, despite not learning additional in-
formation that they do. Finally, we study robustness of the
algorithms to noise in the heuristic function — a desirable
property in a physical implementation of real-time heuristic
search. The new algorithm outperforms its contemporaries.

1 Introduction and Related Work

Real-time heuristic search is a sub-area of heuristic search
which deals with agent-centered search under time con-
straints. It models an agent with locally limited sensing and
perception that is trying to reach a goal (Koenig 2001). The
real-time constraint forces the agent to produce each ac-
tion in a constant-bounded amount of time regardless of
the total number of states in the search problem. The con-
straint excludes classical algorithms such as A* (Hart, Nils-
son, and Raphael 1968) and its more recent variants such
as PRA* (Sturtevant and Buro 2005; Sturtevant 2007) but
allows for its real-time version TBA* (Björnsson, Bulitko,
and Sturtevant 2009).

Starting with the seminal work by Korf (1990) such
agents usually interleave three processes: local planning,
heuristic learning and move selection. Researchers have ex-
plored different methods for looking ahead during the plan-
ning stage of each cycle (Koenig and Sun 2009); differ-
ent heuristic learning rules (Bulitko 2004; Hernández and
Meseguer 2005; Bulitko and Lee 2006; Rayner et al. 2007;
Koenig and Sun 2009; Rivera, Baier, and Hernández 2015)
and different move selection mechanisms (Ishida 1992;
Shue and Zamani 1993a; 1993b; Shue, Li, and Zamani 2001;
Bulitko and Lee 2006; Hernández and Baier 2012). Fi-
nally, information in addition to the heuristic has been
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learned during (Bulitko et al. 2007; Sturtevant, Bulitko,
and Björnsson 2010; Sturtevant and Bulitko 2011; Sharon,
Sturtevant, and Felner 2013) and before (Bulitko et al. 2008;
Bulitko, Björnsson, and Lawrence 2010; Botea 2011; Bu-
litko, Rayner, and Lawrence 2012; Lawrence and Bulitko
2013) the search.

In this paper we focus on the learning rule for the heuristic
function and make the following contributions. First, we de-
scribe a simple parameterized algorithm that spans the space
between LRTA* (Korf 1990) and depression-avoiding algo-
rithms such as aLRTA* (Hernández and Baier 2012). It does
so in a principled way by using two continuous control pa-
rameters whose influence we study in this paper. Second, we
prove that for any valid parameter values, our algorithm will
indeed solve the problem despite learning an inadmissible
heuristic. Third, we conduct a large scale empirical evalua-
tion using the standard pathfinding benchmarks (Sturtevant
2012). We evaluate our algorithm against recent competi-
tors with two practically important performance measures:
first-trial solution cost and the amount of state revisitation.
The results show that the new algorithm produces better so-
lutions than its modern competitors despite not using addi-
tional information such as marking depressed states in aL-
RTA* (Hernández and Baier 2012) or expendable states in
daLRTA*+E (Sharon, Sturtevant, and Felner 2013) or using
the combination of heuristic weighting and heuristic update
magnitude in wdaLRTA* (Rivera, Baier, and Hernández
2015). Fourth, we measure how robust the high-performance
algorithms are to input/output errors in the heuristic function
and observe that our algorithm appears to be more robust
than its competitors.

While the combination of lateral learning and weighted
updates was briefly presented and evaluated in our re-
cent conference publication (Bulitko 2016a) and its follow-
up (Bulitko 2016b), this paper motivates both mechanisms
with examples, proves their theoretical properties and eval-
uates them in the presence of heuristic access errors. We do
re-use the problem definition and some of the experimental
set-up from (Bulitko 2016a). Accordingly, we reproduce the
relevant parts from that paper.

2 Problem Formulation

In line with previous research, we define a search problem
S as the tuple (S,E, c, s0, sg, h) where S is a finite set of
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states and E ⊂ S×S is a set of edges between them. S and
E jointly define the search graph which is assumed undi-
rected: ∀a, b ∈ S [(a, b) ∈ E =⇒ (b, a) ∈ E] and has no
self-loops: ∀s ∈ S [(s, s) �∈ E]. The graph is weighted by
the strictly positive edge costs c : E → R

+. Two states
a and b are immediate neighbors iff there is an edge be-
tween them: (a, b) ∈ E; we denote the set of immediate
neighbors of a state s by N(s). A path P is a sequence of
states (s0, s1, . . . , sn) such that for all i ∈ {0, . . . , n − 1},
(si, si+1) ∈ E. We assume that the search graph (S,E) is
connected (i.e., any two vertices have a path between them)
which makes it safely explorable. We also assume that the
search graph is stationary (e.g., the edge weights do not
change during search).

At all times t ∈ {0, 1, . . . } the agent occupies a single
state st ∈ S, called the current state. The state s0 is the
start state and is given as a part of the problem. The agent
can change its current state, that is, move to any immedi-
ately neighboring state in N(s). The traversal incurs a travel
cost of c(st, st+1). The agent is said to solve the search
problem at the earliest time T it arrives at the goal state:
sT = sg . The solution is a path P = (s0, . . . , sT ): a se-
quence of states visited by the agent from the start state un-
til the goal state. The cumulative cost of all edges in the
solution is called solution cost and is formally defined as:
cA(S) =

∑T−1
t=0 c(st, st+1) for algorithm A. The cost of the

shortest possible path between states a, b ∈ S is denoted by
h∗(a, b). We abbreviate h∗(s, sg) as h∗(s). We define subop-
timality of the agent on a problem as the ratio of the solution
cost the agent incurred to the cost of the shortest possible
solution: α(A,S) = cA(S)/h∗(s0). For instance, suboptimal-
ity α(LRTA*,S) = 2 means that the agent driven by the
LRTA* algorithm found a solution to S twice as long as op-
timal. Lower values are preferred; 1 indicates optimality.

The other performance measure we are concerned with in
this paper is the scrubbing complexity (Huntley and Bu-
litko 2013). It is defined as the average number of state
visits the agent makes while solving a problem. Formally,
let vSA : S → N ∪ {0} be the number of state visits the
agent driven by algorithm A made while solving a problem
S. The scrubbing complexity is then defined over the sub-
set of states that the agent visited at least once: Svisited =
{s′ ∈ S | vSA(s′) ≥ 1}: τ(A,S) = 1

|Svisited|
∑

s∈Svisited
vSA(s).

For instance, τ(LRTA*,S) = 7.5 means that while solving
problem S, on average the agent driven by the LRTA* algo-
rithm visited a state 7.5 times (states that were not visited at
all do not contribute to the average). Lower values of τ(S)
are preferred since re-visiting states tends to look irrational
to an external observer. This is a major reason why real-
time heuristic-search methods are hardly used for pathfind-
ing in actual video games. Instead, game developers prefer
non-real-time heuristic search algorithms such as variants of
path-refinement A* (Sturtevant 2007).

In its operation the agent has access to a heuristic h : S →
[0,∞). The heuristic function is a part of the search problem
specification and is meant to give the agent an estimate of
the remaining cost to go. Unlike much literature in the field,
we do not assume admissibility or consistency of the initial

heuristic but require that h(sg) = 0. The search agent can
modify the heuristic as it sees fit as long as it remains non-
negative and the heuristic of the goal state sg remains 0. The
heuristic at time t is denoted by ht; h0 = h.

We say that a search agent is real time iff its computation
time between its moves is upper-bounded by a constant inde-
pendent of the number of states in the search space. We will
additionally require our search algorithms to be agent cen-
tered insomuch as they have access to the heuristic, states
and edges only in a bounded vicinity of the agent’s cur-
rent state and the bound is independent of the number of
states (Koenig 2001). We say that a search agent is complete
iff it solves any search problem as defined above. That is, it
is required to terminate in the goal state sg at time T < ∞.

The problem we tackle in this paper is to develop a real-
time heuristic search algorithm that is complete and has low
suboptimality (α) and low scrubbing complexity (τ ).

3 Framework

As Section 1 presented, many ways of improving on LRTA*
towards the two measures have been proposed. In this pa-
per we specifically focus on heuristic learning rules. To iso-
late the problem, we fix the lookahead at 1 (i.e., allow the
agent to consider only the immediate neighbors of its cur-
rent state during the planning stage), set the move rule to
that of LRTA* (Korf 1990) and allow the agent to update its
heuristic only in its current state. In other words, our local
search space and the local learning spaces are limited to the
agent’s current state. With these limitations in place, LRTA*
can be described as Algorithm 1.

Algorithm 1: Basic Real-time Heuristic Search
input : search problem (S,E, c, s0, sg, h)
output: path (s0, s1, . . . , sT ), sT = sg

1 t ← 0
2 ht ← h
3 while st �= sg do
4 st+1 ← arg min

s∈N(st)
(c(st, s) + ht(s))

5 ht+1(st) ← max

{
ht(st), min

s∈N(st)
(c(st, s) + ht(s))

}

6 t ← t+ 1

7 T ← t

A search agent following the algorithm begins in the start
state s0. It then executes a fixed loop until it reaches the goal
sg (line 3). At each iteration of the loop, the agent expands
the current state st by generating its immediate neighbors
N(st) (local planning). It computes its action by selecting
the next state st+1 among the neighbors to minimize the es-
timated cost of traveling to the goal through that neighbor
(line 4). Ties among neighbors that have the same c+ h val-
ues are broken with a tie-breaking schema that is consistent
over state revisits. Then, in line 5, the agent updates (learns)
its heuristic in the current state from ht(st) to ht+1(st). Note
that the explicit maximum of the state’s old heuristic value
and the new value causes the heuristic to never decrease.
Such a maximum is unnecessary if the heuristic is consistent
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and is commonly omitted in the literature. We do not assume
our heuristic to be consistent and hence put the maximum in
explicitly. The agent then changes its state to the neighbor
(i.e., makes a move) and the cycle repeats.

4 Our Approach

4.1 Heuristic Depressions

A major problem with real-time heuristic search algorithms
is getting caught in heuristic depressions – areas of the state
space where the heuristic values are inaccurately low. This
problem was identified early on (Ishida 1992) and linked
to state-revisitation and increased solution cost (Huntley
and Bulitko 2013). Since early days of the field the prob-
lem has been addressed in a variety of ways. Some algo-
rithms attempted to escape heuristic depressions via a deeper
lookahead (Korf 1990; Koenig and Sun 2009). Other re-
searchers suggested backtracking upon learning (Shue and
Zamani 1993a; 1993b; Shue, Li, and Zamani 2001; Bu-
litko and Lee 2006) or learning in states beyond the current
state (Hernández and Meseguer 2005; Rayner et al. 2007).
Yet other methods learned additional information during the
search (e.g., building a smaller abstracted search space (Bu-
litko et al. 2007) or marking certain states (Sturtevant, Bu-
litko, and Björnsson 2010; Sturtevant and Bulitko 2011;
Hernández and Baier 2012; Sharon, Sturtevant, and Felner
2013)). Our focus on the learning rule in this paper precludes
most of such depression-avoidance mechanisms and nearly
brings us to provably unavoidable state revisitation (Sturte-
vant and Bulitko 2014).

4.2 Scaling Edge Costs → Faster Learning

Fortunately, unlike Sturtevant and Bulitko (2014), our
framework does allow an agent to learn more aggressively
than consistency/admissibility of the heuristic would allow.
As argued by Rivera, Baier, and Hernández (2015), rapidly
increasing the heuristic in the visited states discourages the
agent from state-revisitation even without explicitly tracking
previously visited states (Hernández and Baier 2012) or at-
tempting to eliminate expendable states (Sharon, Sturtevant,
and Felner 2013). In our framework, the weighting mech-
anism of Rivera, Baier, and Hernández (2015) reduces to
replacing the update rule

ht+1(st) ← max

{
ht(st), min

s∈N(st)
(c(st, s) + ht(s))

}
(1)

in line 5 of Algorithm 1 with

ht+1(st) ← max

{
ht(st), min

s∈N(st)
(w · c(st, s) + ht(s))

}
(2)

where the weight w ≥ 1 is the control parameter. For w > 1,
the heuristic update can break consistency and admissibility
of the heuristic.

Note that this is a different approach than scaling up the
initial heuristic (Shimbo and Ishida 2003) or scaling down
the costs (Bulitko 2004; Bulitko and Lee 2006). Indeed, mul-
tiplying the initial heuristic h0 by an appropriately chosen
weight w > 1 will bring it closer to the optimal heuristic h∗
in some states, thereby possibly reducing the volume of the
heuristic depressions. Likewise, scaling down the edge costs

effectively lowers h∗, therefore bringing the initial heuristic
h0 closer to it and producing a similar effect. These tech-
niques can reduce convergence travel at the cost of increas-
ing the first-trial solution cost. In contrast, scaling up the
edge costs in the learning rule raises the heuristic in the
visited states (possibly substantially above h∗) thereby dis-
couraging the agent from revisiting those states. This has
been shown to reduce the (first-trial) solution cost in prac-
tice (Rivera, Baier, and Hernández 2015).

sg

sX sZ

heuristic depression

sY

9 → 11 10

10 → 11
sg

sX

heuristic depression

sY

109 → 15

sZ

10 → 15

Figure 1: Left: LRTA* first updates h(sX) from 9 to 1 +
10 = 11 and moves from sX to sY . It then updates h(sY )
from 10 to 1 + 10 = 11. Right: wLRTA* with w = 5 first
updates h(sX) from 9 to 5 · 1 + 10 = 15 and moves from
sX to sY . It then updates h(sY ) from 10 to 5 · 1 + 10 = 15.
All edge costs are 1.

To illustrate, consider the agent in a heuristic depression
that is about to update the heuristic of its current state sX
(Figure 1, left). If it uses the regular consistency-preserving
learning rule then h(sX) can only be raised to lowest f =
c + h of the immediate neighbors (sZ in the figure). This is
a modest raise and since the heuristic is raised only in the
current state, many state revisits are necessary to “fill in”
the heuristic depression (assume that the state on the other
end of the dashed edge has a high h). Scaling the update
by w > 1 (i.e., raising the heuristic of sX to the minimum
w · c + h among the neighbors) will speed up filling the
heuristic depression and reduce the number of state re-visits
(Figure 1, right).

4.3 Lateral Learning → Even Faster Learning

Note that when the agent arrives at sY , the raise to h(sY )
will not be affected by the previously raised h(sX) due to
sZ being a neighbor of both sX and sY . This is because the
update rule used by Rivera, Baier, and Hernández (2015)
still uses the min operator and thus will link h(sY ) to the
lowest of the neighbors (i.e., sZ), ignoring already raised
h(sX). The min operator is necessary to make sure ht →
w · h∗ over time. However, as shown in this example, it can
slow down the propagation of heuristic raises and thus slow
down escaping a heuristic depression.

In this paper we address this issue by replacing the min
operator with the avg operator which allows the agent to
learn not only from the lowest-f neighbor but from other
neighbors as well. To do so we simply replace the min with
the avg in the learning rule:

ht+1(st) ← max

{
ht(st), avg

s∈N(st)

(w · c(st, s) + ht(s))

}
. (3)
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In our running example, upon getting to state sY , the
agent will raise its heuristic to the average of h(sZ) (still
low) and h(sX) (already high) which will lead to a higher
new h than merely the weighted update. In other words, re-
placing the min operator with avg allows the agent to learn
laterally from non-minimum-f neighbors (Figure 2, left).∗

sg

sX

heuristic depression

sY

109 → 15

sZ

10 → 17.5
sg

sX

heuristic depression

sY

10

sZ

9 → 55

10 → 167.5

Figure 2: Left: wLRTA* with w = 5 and lateral learning
first updates h(sX) from 9 to avg{5 ·1+10, 5 ·1+10} = 15
and moves from sX to sY . It then updates h(sY ) from 10 to
avg{5 ·1+10, 5 ·1+15} = 17.5. Right: our new algorithm
with w = 5 first updates h(sX) from 9 to avg{5·(1+10), 5·
(1 + 10)} = 55 and moves from sX to sY . It then updates
h(sY ) from 10 to avg{5 · (1 + 10), 5 · (1 + 55)} = 167.5.

The learning rule (3) combines edge-cost weighting with
the lateral learning. We experimented with Algorithm 1
whose learning rule was replaced with the weighted lateral
rule (4) and found it to perform very similarly to the recently
proposed high-performance weighted depression-avoiding
wdaLRTA* of Rivera, Baier, and Hernández (2015). This
is interesting since wdaLRTA* has an explicit control mech-
anism in its move rule to attempt to get out of a heuristic
depression. To do so it must keep the magnitude of heuristic
updates (i.e., ht − h0) for all states. Our lateral learning ap-
pears to play an equivalent role in getting an agent to leave
heuristic depressions quickly.

4.4 Weighted Lateral LRTA*

Note that the weighted lateral learning rule (3) applies the
weight only to the edge cost. Even more aggressive learning
can be obtained if the weight applies to both the edge cost
and the heuristic. In other words, instead of raising h of the
current state to w · c+ h, we can raise it to w · (c+ h). This
is illustrated in Figure 2, right.

We implement this idea in our new Algorithm 2. To make
the new learning rule a generalization of existing rules, we
can take the average over a part of the neighborhood like so:

ht+1(st) ← max

⎧⎪⎨
⎪⎩ht(st), w · avg

s∈N
f
b

(st)

(c(st, s) + ht(s))

⎫⎪⎬
⎪⎭ . (4)

Here the partial neighborhood Nf
b of a state st is defined as

the b fraction of the neighborhood N(st) with the lowest f
values:

Nf
b (s) =

(
s1, . . . , s�b|N(st)|�

)
(5)

∗This may appear similar to bidirectional pathmax (BPMX)
of Felner et al. (2011) except we break admissibility by adding
costs and we average over neighbors’ weighted f costs.

where
{
s1, . . . , s�b|N(st)|�, . . . , s|N(st)|} is the immediate

neighborhood sorted† in the ascending order by their f =
c + h. For instance, s1 has the lowest f(s1) = c(st, s

1) +
h(s1) value in the set {f(s) | s ∈ N(st)} whereas s|N(st)|
has the highest f value in that set.

We also constrain all raises of the heuristic to be of at least
μ in magnitude (line 7) where μ ≥ 0 is a control parameter
(see Section 5 for the rationale).

Algorithm 2: Weighted Lateral LRTA* (wbLRTA*)
input : search problem (S,E, c, s0, sg, h), control

parameters: weight w, beam width b, minimum update
μ

output: path (s0, s1, . . . , sT ) such that sT = sg
1 t ← 0
2 ht ← h
3 while st �= sg do
4 st+1 ← arg min

s∈N(st)
(c(st, s) + ht(s))

5 ht+1(st) ←

max

⎧⎨
⎩ht(st), w · avg

s∈N
f
b
(st)

(c(st, s) + ht(s))

⎫⎬
⎭

6 if ht+1(st) > ht(st) then
7 ht+1(st) ← max {ht+1(st), ht(st) + μ}
8 t ← t+ 1

9 T ← t

Clearly, for b = 1 we get the full neighborhood:
Nf

1 (st) = N(st). For b = 0 we define Nf
0 (st) =

{
s1
}

.
We call b the beam width. Note that unlike the classic beam
search and its extensions (Furcy and Koenig 2005), our
beam width is used only in the learning rule, not to con-
trol the open list. Consequently, for b = 0, w = 1, line 5 in
Algorithm 2 becomes:

ht+1(st) ← max

{
ht(st), avg

s=s1
(c(st, s) + ht(s))

}
(6)

which is equivalent to line 5 in the original Algorithm 1:

ht+1(st) ← max

{
ht(st), min

s∈N(st)
(c(st, s) + ht(s))

}
. (7)

Thus we just proved:

Lemma 1 wbLRTA* with b = 0, w = 1, μ = 0 is equiva-
lent to LRTA* (with a lookahead of 1).

Everywhere below we will assume the control parameters
to be in their valid ranges: beam width b ∈ [0, 1], weight
w ∈ [1,∞) and the minimum update μ ∈ (0,∞).

5 Theoretical Analysis

We will now show that wbLRTA* solves any search prob-
lem defined in Section 2. The original proof (Korf 1990) im-
plied that infinitely many updates to the heuristic value of a
state will lead to unbound heuristic growth. While this is true

†We abuse the set notation as elements in a set have no order.
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when the update rule is based on the minimum (line 5 in Al-
gorithm 1), our update rule is based on averaging over pos-
sibly partial neighborhoods (line 5 in Algorithm 2). Thus, it
is not immediately clear that the magnitude of the updates
is lower-bounded by a positive constant (i.e., the averaging
could cause magnitude of the updates tend to zero, break-
ing the unbounded growth of the heuristic). We constrain all
raises of the heuristic to be of at least μ > 0.

Another proof of completeness which covers a more gen-
eral algorithm LRTS (Bulitko and Lee 2006) relied on ad-
missibility of the heuristic at all times. This was also the case
for depression avoidance algorithms (Hernández and Baier
2012). Weighted admissibility was used by Rivera, Baier,
and Hernández (2015). Our algorithm hinges on aggressive
heuristic learning that breaks (weighted) admissibility and
hence their proofs may not apply. Thus we offer an alterna-
tive proof which also applies to the standard LRTA* (with a
lookahead of 1). Yet another proof of completeness covered
the case of inadmissible and inconsistent heuristics and even
moving goal but assumed the standard LRTA*-style learning
rule with the min operator (Shimbo and Ishida 2000).

We start with the following lemma (all proofs are found
in Section 9 and all control parameters are assumed to be in
the valid ranges specified above):

Lemma 2 Whenever an agent travels from state st to state
st+1, the arrival heuristic of the latter state is at least ε less
than the departing heuristic of the former state. Here ε > 0
does not depend on the state.

Furthermore, every raise to a heuristic value is lower
bounded by a finite constant:

Lemma 3 Whenever an agent moves from a state st to a
state st+1 the heuristic value of state st is either unchanged
or raised by at least μ.

We can now prove that revisiting states infinitely many times
leads to unbounded heuristic growth:

Lemma 4 For any b ∈ [0, 1], w ∈ [1,∞), wbLRTA*
will unboundedly raise heuristic values of all states in any
S′ ⊂ S if (i) the agent is only visiting the states in S′
after some initial time t′: ∀t > t′ [st ∈ S′] and (ii) each
of the states in S′ is visited infinitely many times: ∀s′ ∈
S′ [|{t | st = s′}| = ∞] .

We can now prove completeness of wbLRTA*.

Theorem 1 wbLRTA* is complete for any beam width b ∈
[0, 1] and any weight w ∈ [1,∞).

6 Empirical Evaluation

Following the tradition in the field, we evaluated wbLRTA*
in the de facto standard benchmark of real-time heuris-
tic search algorithms: grid-based pathfinding. The standard
way (Sturtevant 2012) of representing game maps is as a
two-dimensional discrete grid where each grid cell is either
available for the agent to pass through or blocked by an ob-
stacle. At each moment of time, the agent occupies a single
vacant cell of the map which determines the agent’s current
state. The agent changes its state by moving from its current
grid cell to one of its vacant neighbors, incurring a travel

cost. In this paper we use the standard eight-connected maps
where cardinal moves cost 1 and diagonal moves cost

√
2.

A problem is solved when the agent enters the goal cell. At
the beginning of each problem, the agent starts with the oc-
tile distance as the heuristic. Octile distance is the cost of
the shortest path between a given cell and the goal cell if no
cells are blocked by obstacles.

We downloaded the benchmark problems from the Mov-
ing AI set (Sturtevant 2012) and treated the water terrain
type as an obstacle. All problems that became unsolvable
(e.g., the start state is in a water cell) were excluded. This
gave us 493298 problems situated on 342 maps from the
video games StarCraft, WarCraft III, Baldur’s Gate II (maps
scaled up to 512×512) and Dragon Age: Origins. We evalu-
ated algorithms on sample sets of problems randomly drawn
from the overall set of 493298 MovingAI problems.

6.1 Algorithm and Parameter Selection

We selected the following three algorithms as competitors
to wbLRTA*: LRTA*, RTA* (Korf 1990) and the weighted
variant aLRTA* (Rivera, Baier, and Hernández 2015).
All of those conform to our framework by conducting a
lookahead of 1, learning only in the current state and using
the original rule for move selection. We tuned the algorithm
parameters by running preliminary experiments (Bulitko
2016a) which we re-describe below for the reader’s con-
venience. To select the weight in wLRTA*, we ran w ∈
{1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}
on 6000 problems each and found that w = 128 gave the
lowest suboptimality.

To select control parameters for our algo-
rithm wbLRTA* we tried the beam width b ∈
{0, 0.1, 0.2, 0, 3, 0.4, 0.5, 0.6, 0.7, 0.8} and the weight
w ∈ {1, 2, . . . , 8}. Each combination was run on 6000
problems. The lowest mean suboptimality of 24.68 was
achieved with b = 0.6, w = 4. The minimum update μ
appeared to have no significant effect on suboptimality and
was fixed at μ = 0.001.

We also included several existing algorithms that,
while breaking an assumption of our framework, all aim
to escape heuristic depressions quicker than LRTA*.
Specifically, we evaluated the myopic versions (looka-
head of 1) of aLRTA*, daLRTA* (Hernández and Baier
2012), its weighted version wdaLRTA* (Rivera, Baier,
and Hernández 2015) and its combination with expend-
able states, daLRTA*+E (Sharon, Sturtevant, and Felner
2013). We did not include f-LRTA* or f-LRTA*+E in
our evaluation since both versions were found inferior to
daLRTA* by Sharon, Sturtevant, and Felner (2013). To
select the weight parameter for wdaLRTA*, we run w ∈
{1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}
on 6000 problems each and found that w = 7 gave the
lowest suboptimality.

6.2 Results

We ran eight algorithms, each on 30000 problems randomly
selected from the benchmarks. For each algorithm we mea-
sured its suboptimality α and scrubbing τ . The means are
found in Table 1. Figure 3 zooms in on better algorithms.
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Table 1: Performance of the algorithms (sample mean ±
standard error of the mean).

Algorithm Suboptimality α Scrubbing τ

LRTA* 451.2± 7.157 16.28± 0.143

RTA* 353.9± 5.886 11.81± 0.101

aLRTA* 352.0± 6.329 11.19± 0.117

daLRTA* 45.6± 0.744 2.00± 0.011

wLRTA* 39.6± 0.534 1.84± 0.008

wdaLRTA* 30.7± 0.444 1.47± 0.005

daLRTA*+E 32.5± 0.906 1.21± 0.004

wbLRTA* 26.7± 0.431 1.28± 0.003
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Scrubbing
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Figure 3: Sample means and standard errors of the mean
shown as error boxes. LRTA*, RTA*, aLRTA* aren’t shown.

Our new algorithm wbLRTA* appears to produce shorter
solutions than the other algorithms, outperforming even aL-
RTA*, daLRTA*, wdaLRTA* and daLRTA*+E that go be-
yond our framework and learn information in addition to the
heuristic function. In terms of scrubbing, wbLRTA* takes
the second place, slightly behind daLRTA*+E.‡ These are
promising results for the new weighted lateral learning rule.

6.3 Robustness to Heuristic Access Errors

The new algorithm appears to produce shorter solutions than
its modern competitors in the standard pathfinding testbed
of real-time heuristic search algorithm. The fundamental as-
sumption of all such algorithms is that the heuristic can be
stored precisely and reliably. In order to do so, in a typi-
cal implementation the agent holds the entire heuristic in its
memory. So while real-time heuristic search assumes that
the agent’s response time does not scale up with the number
of states in the search graph, it tacitly requires the agent’s
memory capacity to grow indefinitely with the environment
size. In view of the recent trends towards infinitely scalable
computing (Ackley and Small 2014) such a requirement ap-
pears unrealistic.

An alternative is to either store the heuristic values in
the environments, similar to pheromone-laying ant-colony
optimization agents, or use a function approximation as
popular in the field of reinforcement learning and game-
playing. Early work on heuristic approximation in real-

‡This is possibly due to the fact that wbLRTA*’s parameters
w and b were optimized for the lowest suboptimality, ignoring the
corresponding scrubbing performance.

Figure 4: An iRobot implements the LRTA* algorithm by
storing its heuristic values in the environment. It writes them
down on the floor as a sequence of round strokes with a
whiteboard marker and reads them back with a down-facing
dark/light sensor. In the image the agent is writing down the
heuristic value of 8 for its current state.

time search encountered anomalies in the agent behavior
where deeper lookahead led to worse performance (Bulitko,
Levner, and Greiner 2002; Bulitko 2003). Our preliminary
work on implementing LRTA* on a Roomba-style robot
that writes down its heuristic values on the floor with a
dry-board marker (Figure 4) revealed LRTA*’s sensitivity
to faulty heuristic read/write operations. Memory access er-
rors become substantially more prominent as the semicon-
ductor industry explores low-voltage near-threshold com-
puting (Dreslinski et al. 2010). They are also important in
ad hoc wireless sensor networks where LRTA*-style algo-
rithms have been previously applied (Bulitko and Lee 2006).

These findings call for an investigation on how robust
real-time heuristic search algorithms are to computational
faults. We took a step in that direction by measuring how ro-
bust real-time heuristic search algorithms are to access (i.e.,
input/output) errors in their heuristic function. Note that
such errors are different from the inherent error of a heuris-
tic function relative to the perfect heuristic (i.e., h �= h∗).
Specifically, we approximate access errors by adding Gaus-
sian noise to each heuristic value read/written from/to the
memory. We fixed the mean of the Gaussian distribution at
zero and used the standard deviation σ ∈ {1, 5, 10}. To keep
the experiments tractable, we upper-bounded suboptimality
at 50 by terminating an agent as soon as its travel cost on a
problem exceeds 50 times its optimal solution cost. We then
measured the percentage of problems that the algorithm was
able to solve not exceeding the quota. The results for 10000
random problems are found in Table 2.

Robustness often requires redundancy and hence algo-
rithms can trade efficiency for robustness (Ackley 2013). In-
terestingly, this does not appear to be the case among the
algorithms considered here: it appears that wbLRTA* yields
the best suboptimality and is also most robust to the noise.
It is possible that wbLRTA* is more robust to the particular
type of heuristic access errors than other algorithms because
(i) it takes heuristic values of several neighbors to update
the heuristic of the current state and (ii) it raises the heuris-
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Table 2: Problems solved (%) with suboptimality α ≤ 50.

Algorithm σ = 1 σ = 5 σ = 10

LRTA* 49% 0% 0%
RTA* 58% 50% 36%

aLRTA* 49% 0% 0%
daLRTA* 26% 9% 7%
wLRTA* 81% 77% 64%

wdaLRTA* 8% 4% 11%
daLRTA*+E 7% 11% 10%

wbLRTA* 83% 78% 70%

tic values aggressively, thereby creating larger differences
between heuristic values of the neighbors.

To illustrate, suppose that the state on the other end of the
dashed edge in Figure 1 has h = 10.5. Without the noise, the
agent in state sZ would exit the depression since 11 > 10.5
(left plot) and 15 > 10.5 (right plot). However, when the
noise is present, the heuristic value of 11 can be misread
as, say, 11 − 1.5 = 9.5 which would cause the agent to
stay in the depression as 9.5 < 10.5. Larger differences be-
tween heuristic values are more robust: 15 − 1.5 = 13.5 is
still greater than 10.5 and the agent will still exit the de-
pression. This reasoning is supported by the fact that the
second best algorithm, wLRTA*, also uses a very aggres-
sive learning (w = 128). wbLRTA* can be more aggressive
than wLRTA* for the same w: there is a little chance that
the heuristic value of 55 (right plot of Figure 2) would drop
below 10.5 even with the Gaussian noise of σ = 10. Future
work will examine robustness of wbLRTA* to other types of
heuristic access errors.

7 Current Limitations and Future Work

While the simple combination of weighting the partial av-
erage of the f values appears to yield better first-trial solu-
tions, we do yet know to what extent this combination will
improve performance of more complex algorithms such as
LSS-LRTA* (Koenig and Sun 2009) or f-LRTA* (Sturtevant
and Bulitko 2011). Also, other types of computational faults
may be considered in the robustness experiments. For in-
stance, an agent may think it is in a different state than it is
actually in. Thus it may write down the heuristic value for a
wrong state. One can also simulate memory decay over time
by increasing the read noise for older heuristic values (cf.
pheromone evaporation in ant-colony algorithms).

8 Conclusions

We compared several heuristic learning rules in the stripped-
down settings of a real-time heuristic search agent. In a
large-scale empirical evaluation on the standard benchmark
set, we showed that weighted averaging f over a partial
neighborhood produces state-of-the-art results. Our new al-
gorithm is parameterized, generalizes some previous work
and is robust to heuristic noise. We theoretically proved it to
be complete for all valid parameter combinations.
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9 Proofs

Lemma 2 Whenever an agent travels from state st to state
st+1, the arrival heuristic of the latter state is at least ε less
than the departing heuristic of the former state. Here ε > 0
does not depend on the state.
Proof. Whenever the agent moves from a state st to a state
st+1, according to lines 5 and 7 in Algorithm 2 these in-
equalities hold:

ht+1(st) ≥ max

⎧⎨
⎩ht(st), w · avg

s∈N
f
b
(st)

(c(st, s) + ht(s))

⎫⎬
⎭

≥ w · avg
s∈N

f
b
(st)

(c(st, s) + ht(s)) (8)

≥ avg
s∈N

f
b
(st)

(c(st, s) + ht(s)) (9)

≥ min
s∈N(st)

(c(st, s) + ht(s)) (10)

= c(st, st+1) + ht(st+1) (11)
≥ ht(st+1) + ε (12)

where ε = min(x,y)∈E c(x, y). Since |E| < ∞ and all edge
costs are strictly positive, the minimum is well defined and
is positive itself. �
Lemma 3 Whenever an agent moves from a state st to a
state st+1 the heuristic value of state st is either unchanged
or raised by at least μ.
Proof. First, due to the max operator in line 5 of Algo-
rithms 1 and 2, any change to the heuristic (learning) im-
plies raising the heuristic. According to line 7, the amount
of raise is lower-bounded by μ. �
Lemma 4 For any b ∈ [0, 1], w ∈ [1,∞), wbLRTA* will
unboundedly raise heuristic values of all states in any S′ ⊂
S if (i) the agent is only visiting the states in S′ after some
initial time t′:

∀t > t′ [st ∈ S′] (13)

and (ii) each state in S′ is visited infinitely many times:

∀s′ ∈ S′ [|{t | st = s′}| = ∞] . (14)

Proof. Part I. We will first show that state re-visitation im-
plies learning (i.e., raising the heuristic). Suppose that is not
the case and no learning happened during re-visitation. Con-
sider a sequence of states X = (st, . . . , st+k) such that all
the states in the sequence except its ends are distinct. The
end states of X are the same: st = st+k, k > 1 and X ⊂ S′.
As we assumed that no learning took place while the agent
traversed X between the times t and t+ k, we have:

∀s ∈ X ∀t′, t′′ ∈ {t, . . . , t+ k} [ht′(s) = ht′′(s)] (15)

which allows us to omit the time index and denote ht′ , t ≤
t′ ≤ t+ k, by just h.
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From Lemma 2 we derive h(st′) > h(st′+1) for any
t′ ∈ {t, . . . , t + k − 1}. In other words, while traversing
X the heuristic values are monotonically decreasing. There-
fore, the heuristic value of the last state in X is strictly be-
low the heuristic value of the first state in X but they are the
same state which makes it impossible. This means that the
agent cannot revisit states without raising heuristic values
(i.e., learning) somewhere along the way. Since each heuris-
tic raise is lower bounded by μ (Lemma 3) and the number
of re-visits to states in S′ is unbounded (14), the heuristic of
at least some states in S′ will rise unboundedly (�).

Part II. We will now show that heuristic values of all
states in S′ will be raised unboundedly. Suppose that is not
the case. Then there is a non-empty subset S′′ ⊂ S′ com-
prised of all states that despite being re-visited infinitely
many times (14), have their h values upper bounded:

S′′ = {s′ ∈ S′ | ∃us′ < ∞∀t [ht(s
′) ≤ us′ ]} . (16)

Since |S′′| ≤ |S| < ∞, there exists a single finite upper
bound for all of them:

∃u < ∞∀s′ ∈ S′′∀t [ht(s
′) ≤ u] . (17)

Since each update raises the heuristic by at least μ, there
must exist a time t′ after which the agent will not raise the
heuristic of any state in S′′, despite continuing to visit them
(��). Furthermore, the set S′′ includes at least two connected
states which are immediate neighbors (i.e., connected by a
single edge). Indeed, whenever the state s′′ ∈ S′′ is visited
by the agent, its heuristic value is updated in such a way that:

ht+1(s
′′
) ≥ max

⎧⎪⎨
⎪⎩ht(s

′′
), w · avg

s∈N
f
b

(s′′)

(
c(s

′′
, s) + ht(s)

)
⎫⎪⎬
⎪⎭ . (18)

Since ht+1(s
′′) remains upper-bounded by u for any

t, it follows that: ∀t
[
w · avg

s∈Nf
b (s′′)

(c(s′′, s) + ht(s)) ≤ u

]

which implies ∀t
[

min
s∈N(s′′)

(c(s′′, s) + ht(s)) ≤ u

]
. There-

fore, the state s′′ has an immediate neighbor s◦ whose
heuristic is upper bounded by u−min(x,y)∈E c(x, y). Thus
s◦ also belongs to S′′ (Figure 5).

S : all states

S′ : states updated infinitely often

S′′ : states with bounded h

s′′ s◦

Figure 5: To the proof of Lemma 4.

Now consider the set S′ \ S′′ comprised of the states that
are visited indefinitely (14) and have their heuristic values
rise unboundedly. At least one such state exists, according
to Part I of the proof (�). Once the heuristic values of all
states in S′ \ S′′ rise sufficiently above u and after time

t′, the agent will necessarily execute a cycle over the states
contained entirely in S′′ (such a cycle is possible over, for
instance, s′′ and s◦). This is so because whenever the agent
is in any state in S′′ whose immediate neighbors are both in
S′′ and S′ \ S′′, it would necessarily go to a neighbor in S′′
(whose heuristic is upper-bounded) and not to a neighbor in
S′ \ S′′ (whose heuristic can will be arbitrarily high at that
moment). Thus, by Part I of the proof, the agent will raise
the heuristic of at least one state on this cycle. This means
that the heuristic of a state in S′′ will be raised after time t′
— a contradiction to (��). We have now shown that unlim-
ited revisitation of states in S′ leads to unbounded rise of the
heuristic values in all states in S′. �
Theorem 1 wbLRTA* is complete for any beam width b ∈
[0, 1] and any weight w ∈ [1,∞).
Proof. We will prove that for any search problem S =
(S,E, c, s0, sg, h) the agent using Algorithm 2 is guaran-
teed to terminate in the goal state sg . The proof is by con-
tradiction. Suppose there exists a search problem S and the
control parameters w and b such that the agent, guided by
wbLRTA*, is incomplete on the problem. Since the agent
can terminate only in the goal state (line 3 in Algorithm 2),
incompleteness means that the agent never terminates. Since
the set of states S is finite there is necessarily a subset of
states S′ ⊂ S that satisfies conditions (13) and (14) from
Lemma 4. In other words, after time t′ the agent will visit
only states in S′ and visit each indefinitely many times.

s◦
s•

S′
sg

s•

Figure 6: To the proof of Theorem 1.

Consider frontier of S′: ∂S′ = {s ∈ S′ | ∃s◦ ∈ S \S′ &
(s, s◦) ∈ E}. Since the goal state sg �∈ S′ (for otherwise
the agent would terminate upon its first arrival in sg) and the
graph is connected the frontier is not empty: ∂S′ �= ∅. Fig-
ure 6 shows one such frontier state s• ∈ ∂S′. By Lemma 4,
the agent will increase the heuristic values of all states in ∂S′
indefinitely. Thus, at some point t, the c+h values of all S′-
contained neighbors of any state s• ∈ ∂S′ will necessarily
exceed any c+ h value of its S \ S′-contained neighbors:

∃t∀s• ∈ ∂S′
[

min
s∈N(s•)∩S′

(c(s•, s) + ht(s)) (19)

> max
s◦∈N(s•)\S′

c(s•, s◦) + ht(s
◦)
]
. (20)

Then line 4 in Algorithm 2 will cause the agent to take edge
(s•, s◦) thereby leaving S′ which contradicts the proposition
that the agent will be contained in S′ which was derived
from the assumption that the agent is incomplete on S. �
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