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Abstract

We examine two policies for reopening of nodes: never re-
open (NR) and always reopen (AR). While there are circum-
stances where each policy is beneficial, we observed empiri-
cally that NR is usually faster. However, NR may fail to re-
turn a solution of the desired quality in two scenarios: (1) in a
bounded suboptimal search when inconsistent heuristics are
used and (2) in a bounded cost setting. To remedy this we
provide two repair policies for NR when the desired quality
was not obtained. The first policy is to restart AR. The second
policy is to repeatedly place the nodes that were not reopened
back in OPEN and continue with NR. Experimental results
show that both repair polices outperform the AR policy.

1 Introduction and Overview
It is well-known that A∗ with a consistent heuristic1 (≡ f -
cost is monotonically increasing along paths) expands a state
only after the lowest cost path to it was found. This is not
the case for non-monotonic f -functions (where f might de-
crease along paths) which may occur if h is inadmissible
or even if it is admissible but is inconsistent. In such cases,
a state n may be generated with a smaller g-value, after it
has already been expanded. At this point, n can be removed
from CLOSED and put back in OPEN – an action called re-
opening. Reopening is optional – we might choose not to
reopen. In this case the newly seen state remains in CLOSED
and not placed back in OPEN (it is a common practice to
update its g-value and its parent pointer when applicable).
Two baseline reopening polices are always reopen (AR) and
never reopen (NR).

If the optimal solution is required and the heuristic is ad-
missible then the A∗ algorithm (Hart, Nilsson, and Raphael
1968) is guaranteed to return the optimal solution. However,
in many cases obtaining the optimal solution is not feasi-
ble or is not needed. Some problems, especially those who
grow exponentially, require a large amount of computing re-
sources (i.e., both time and memory). In addition, some ap-
plications (e.g., video games, embedded systems or mobile
apps) significantly restrict the amount of time (sometimes
below 1ms (Bulitko et al. 2011)) or memory allowed for
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1h is consistent if ∀(u, v) : |h(u)− h(v)| ≤ cost(u, v)

problem solving. In such cases, one must settle for a subop-
timal solution by trading time/memory for solution quality.

In this paper we focus on two suboptimal search settings
where non-monotonic cost functions may occur:

• Bounded-suboptimal search (Thayer and Ruml 2011)
(denoted here as BSS). In BSS(B) we are given a bound
B and the task is to find a solution with cost ≤ B × C∗
where C∗ is the cost of the optimal solution (Popt).

• Bounded-cost search (Stern et al. 2014) (denoted here as
BCS). In BCS(C) we are given a cost C and the task is to
find a solution with cost ≤ C.

In both cases the aim is to quickly find a solution that is
within a given bound (either constant or relative to Popt).

At a first glance it seems that performing more reopening
will improve the quality of the solutions (as better paths to
the node in question are being considered) but increase the
number of node expansions (as the subtree below the node
might be expanded again). However, we classify 9 different
possible relations between AR and NR and present an exam-
ple graph where most of these cases exist by only varying
the weight for Weighted A∗ (WA∗). We then show that these
cases are evident on a variety of common testbed domains.

Nevertheless, our experiments show that on average NR
expands fewer nodes than AR. Therefore, NR should be
preferred if it is guaranteed to return a solution within the
bound. But, there are scenarios where NR may fail to return
a solution within the bound. We identify two such scenarios:
(1:) in BSS when h is inconsistent. (2:) in BCS even if h is
consistent.

A simple solution for such cases would be to activate AR
and pay its overhead. However, in this paper we suggest an
alternative: NR with repair. First, NR is activated. If it turns
out that the desired quality was not obtained then the solu-
tion returned should be repaired. We discuss and study two
repair policies for NR: (1:) Fallback to AR. (2:) Move the
nodes that were not reopened back to OPEN and continue the
NR search repeatedly. These methods are general; they are
applicable across both search settings (BSS and BCS) and
for many search algorithms. Experimental results show that
both repair polices outperform AR on a variety of domains
on both search settings and with various search algorithms.
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Path returned Nodes Expansions
Range| W AR NR P Subrange Trend W Xi AR NR

1 1 ≤ W < 3.75 Popt Popt P= 1a P=N= 1 ≤ W < 3 both 11 11
1b P=NNR 3 ≤ W < 3.75 both 13 11

2 3.75 ≤ W < 4.25 P2 Popt PNR 2a PNRNNR 3.75 ≤ W < 4 both 12 11
2b PNRNAR 4 ≤ W < 4.25 NR 8 11

3 4.25 ≤ W < 5 P2 P3 PAR 3a PARNAR 4.25 ≤ W < 4.5 NR 8 10
3b PARNNR 4.5 ≤ W < 5 None 8 6

4 5 ≤ W P3 P3 P= 4 P=N= 5 ≤ W None 5 5

Table 1: The path and expansions for different values of W
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Figure 1: An Example Graph that shows the trends

2 A Case Study: Weighted A∗ for BSS
In this section we perform a case study of NR and AR in the
BSS setting when using Weighted A∗ (WA∗) (Pohl 1970).
WA∗ is perhaps the most famous and simple BSS(B) algo-
rithm. WA∗ prioritizes nodes in OPEN according to f(n) =
g(n)+W ·h(n), where g(n) is the cost of the lowest known
path from the start state to n, h(n) is an admissible heuristic
of reaching the goal from n and W ≥ 1 is a parameter which
may cause the f -function to be non-monotonic.

The notion of reopening (within the context of WA∗) has
been first introduced by (Pohl 1970) which proved that set-
ting W = B will satisfy the constraints of BSS(B) if AR
is used. Likhachev et al. (2004) proved that WA∗ with NR
(where W = B), is also guaranteed to find a solution within
the desired bound for BSS(B), given that h is consistent. A
major question to ask in this context is as follows:

What is the tradeoff between NR and AR in terms of num-
ber of nodes expanded and in the quality of the solution re-
turned?

2.1 A graph with different trends
Different possible relations between AR and NR can oc-
cur regarding the path returned and the number of expanded
nodes. In Figure 1 we show an example graph which demon-
strates this by only modifying the weight W but without
changing the structure of the graph.2

2A number of authors discussed the influence of AR and
of NR on the path returned and on the number of expanded
nodes (Thayer and Ruml 2010; Malima and Sabanovic 2007;
Valenzano, Sturtevant, and Schaeffer 2014). For example, (Hansen

Let P (AR) and P (NR) denote the length of the path
returned by the AR and NR policies, respectively. Let
PAR, P=, PNR denote a win for AR (P (AR) < P (NR)),
a tie (P (AR) = P (NR)) and a win for NR (P (NR) <
P (AR)), respectively. Similarly, let N(AR) and N(NR)
denote the number of nodes expanded by the AR and NR
policies, respectively. Finally, let NAR, N=, NNR denote
a win for AR (N(AR) < N(NR)), a tie (N(AR) =
N(NR)) and a win for NR (N(NR) < N(AR)), respec-
tively. There are 3 × 3 = 9 combinations and we use a four
character notation P ∗N∗ to denote these cases. For exam-
ple, PARNNR denotes the case where in the path aspect
(P ), AR is the winner, while in the nodes-expanded aspect
(N ), NR is the winner.

In the graph given in Figure 1(Left) the task is to go
from node S to node G (the number in each node is its
heuristic value). For now, assume that states E, X1, X2,
X3, X4 and their connecting edges (all colored in gray) do
not exist in the graph. The graph has four paths from S to
G: P1 = {S,A,C,G} of cost 24, P2 = {S,B,C,G} of
cost 22, P3 = {S,A,G} of cost 24 and the optimal path,
Popt = {S,A,D,G}, of cost 11. The exact step by step ex-
ecutions of AR and NR for different values of W are omitted
(they are provided in a technical report (Sepetnitsky, Felner,
and Stern 2014)) but we summarize them now.

Node C is first generated by path P1 but C is seen again
when B is chosen for expansion. For different ranges of W
different paths are returned as shown in the left part of the
table in Table 1. For very large values (Range 4), reopen-
ing of C will never happen as B will never be chosen for
expansion, hence both policies tie. For very small values
(Range 1), reopening will make no difference as Popt will
be returned anyway – again a tie. Range 3 is the intuitive
case where AR is expected to result in a better path that NR.
With AR, C is reopened and P2 is returned, while with NR,
C is not reopened and P3 is returned. A somewhat counter-
intuitive case is Range 2, where AR finds a better path (P2)
and halts, but NR continues to search and eventually finds
Popt.

Adding the grayed states and edges to the graph enriches
the ranges of W to also have different tendencies in node
expansions. These additions split the four ranges into sub-

and Zhou 2007) discuss some reasons for why AR may require
fewer node expansions than NR in some cases, but did not discuss
the case where AR finds worse solutions than NR as we now show.
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ranges (based on which algorithm expands the Xi nodes)
depicted in the right part of the table in Table 1. Thus, in
this example graph we have 6 out of the 9 possible cases of
P ∗N∗ (see the Trend column) by only changing the values
of W .

2.2 Experimental results
We experimented with AR and NR on a number of do-
mains. For each domain we generated 100 random instances
and used a range of values for W . We experimented with
WA∗ and with Explicit Estimation Search (EES) (Thayer
and Ruml 2011). EES is a special case of focal search.
EES uses a FOCAL list of nodes which includes all nodes
n ∈OPEN with f(n) ≤ B × fmin, where fmin is the mini-
mal f -value in OPEN. EES also uses two other inadmissible
estimates ĥ and d̂ which are learned throughout the search
execution. EES has specific rules based on ĥ and d̂ as to
which node from FOCAL to expand next. EES was shown
to perform very well on many domains for the BSS set-
ting (Thayer and Ruml 2011).

Figure 2 shows results on the 15-puzzle (Manhattan dis-
tance heuristic), on the map den400d from (Sturtevant
2012)3 and on a dock robot planning domain (Nau, Ghal-
lab, and Traverso 2004) (with distances at most 2 and at
most 30% of boxes out of places) for WA∗ (top) and EES
(bottom). The figure shows the percentage of instances, par-
titioned into five disjoint groups according to the cost of the
found path. The bottom three slices (below the black line)
highlight the “anomalies” which contain the counter intu-
itive cases – when NR finds a strictly better path than AR
(PNR) and when AR expands strictly less nodes than NR
(NAR). The two bottom slices (below the dotted line) are
the (NAR) cases where AR expands fewer nodes.

2.3 Which policy to choose?
The above discussion revealed that there are particular in-
stances where each of the policies is better in one or in
two of the measurements. However, when focusing only on
the number of nodes expanded, Figure 2 shows strong ten-
dency that in nearly 90% of the cases, the number of nodes
expanded by NR is less than or equal to the number of
nodes that AR expands (both guarantee a solution within the
bound). In fact, even for the case of W = 2 for the 15-
puzzle (the best situation for AR across all our experiments)
in nearly 70% of the cases NR won in the nodes expanded
count.

In problems like BSS and BCS, which are the focus of
this paper, solutions are acceptable as long as they are guar-
anteed to be within the bound (their exact length is of less
importance). Based our results, if NR is guaranteed to return
a solution within the bound then it should be the policy of
choice as it is usually faster than AR and is easier to imple-
ment. The key question is what are the circumstances where
NR will fail to return a solution within the bound.

3Similar results (not shown) were obtained on other maps
namely on brc202d and ost003d

3 When NR Fails
There are two possible settings (BSS with an inconsistent
heuristic and BCS in general) where NR may fail to return
a solution within the desired quality while AR is guaranteed
to do so. We deal with each of these in turn.

3.1 BSS(B) with inconsistent h
The proof by Likhachev et al. (2004), that WA∗ with NR
will also meet the desired bound, explicitly assumes that h
is consistent. (See their sections A.2 and A.3.2) But, it does
not hold for inconsistent h.

The example in Figure 3 shows that WA∗ fails to return a
solution within the bound when h is inconsistent.4 The op-
timal path (denoted Popt) from S to G costs 4. Numbers
inside the nodes are their admissible h-values. h is incon-
sistent because h(A) − h(B) = 2 > cost(A,B) = 1.
Assume that the desired suboptimality bound is set to 1.1
and that we activate WA∗ with W = 1.1 and with NR.
First, S is expanded and three nodes are generated: A with
f(A) = 4.3, B (via P1) with f(B) = 3.7 and G (via
P2) with f(G) = 4.6. B is now expanded and G is gen-
erated again with f(G) = 4.6 (no need to update the parent
pointer). Next, A is expanded (f(A) = 4.3) and B is gener-
ated again, now with f(B) = 3.1. Since NR is applied B is
not reopened (we do, however, update the parent pointer of
B to A). Finally, G is expanded and path P2 is returned with
cost 4.6. But, since W = 1.1 the desired solution quality is
at most 4.4. By contrast, when applying AR, B is reopened
with f(B) = 3.1. B will now be expanded and G will be
generated via Popt with f(G) = 4. Finally, G is expanded
and Popt is returned.

Providing a similar example in which EES with an incon-
sistent heuristic and NR also fails to return a bounded solu-
tion is more involved, as it required defining all the auxil-
iary heuristics used by EES. Nevertheless, experimental ev-
idence that this occurs for EES too is provided later in the
paper.

3.2 BCS
Potential Search (PTS) (Stern et al. 2014) is an algorithm
specifically designed for BCS. PTS is a best-first search al-
gorithm which chooses to expand the node, n, from OPEN
with the largest ”potential”, u(n) which is defined as u(n) =
C−g(n)
h(n) . They showed that nodes with larger potential are

expected to lead to a goal with a solution cost within the
bound. In addition, for an admissible h, the algorithm prunes
any node n for which f(n) = g(n) + h(n) > C. u(·) is
not necessarily monotonic (u(·) may either increase or de-
crease when moving from a parent to a child). While Stern

4The example was inspired by the example graphs given
by (Valenzano, Sturtevant, and Schaeffer 2014). In addition, for
the case of inconsistent heuristic (Valenzano, Sturtevant, and Scha-
effer 2014) showed that when a best-first search is employed, the
solution returned by NR cannot be larger than the solution returned
by AR by more than the inconsistency along the optimal path de-
fined as

∑k−1
j=1 INCh(nj , nj+1). That analysis does not refer to

the bound B; NR with an inconsistent h may return a solution
larger than B.
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Figure 2: Percentage of instances per class (y-axis) as a function of different values of the bound B (x-axis) for WA∗ and EES
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Figure 3: Examples of NR failures on WA∗ and PTS

et al. (2014) do not specifically state this, the pseudo code
of PTS provided in that paper (page 6, Lines 6-7) clearly
reopens nodes. Furthermore, Stern et al. do not specifically
prove that PTS will find a desired solution if such exists.
But, this is a straightforward derivation of their pseudo code
as follows. PTS is a best-first search. In a finite state-space,
at some point it will generate the entire graph (and via all
paths if AR is activated). In particular, Popt will be found at
some point.

However, PTS with NR may fail to return a solution
within the bound C. For example, consider Figure 3 again.
In order to show that the phenomenon also occurs with a
consistent h we alter h(A) to be 2 (was h(A) = 3). Assume
that we set C = 4.5. After expanding S, G is revealed via
P2 with f(G) = 4.6. But since f(G) > C, G is discarded.
In addition, A (via Popt) and B (via P1) are generated with
u(A) = 1.75 and u(B) = 1.9. B is now expanded and,
again, G (with f(G) = 4.6) is generated and discarded.
Next, A is expanded (u(A) = 1.75) and B is generated
again, now with u(B) = 2.5 (larger than the previous value
of u(B) = 1.75). Since NR is applied, B is not reopened.
Finally, OPEN is empty and the algorithm returns no solu-
tion ≤ C = 4.5. By contrast, PTS with AR will reopen B
with u(B) = 2.5. B is now expanded and G via Popt is
revealed with a path of cost 4 which is within the required
bound C = 4.5.

Bounded-cost Explicit Estimation Search (BEES) (Thayer

et al. 2012) modifies EES to the BCS setting by modifying
FOCAL to be all nodes n in OPEN with f(n) ≤ C. BEES too
suffers from the problem that with NR it may fail to return a
solution within the bound (example is omitted, results below
support this).

An immediate solution for both these settings will be to
use the AR policy. However, as discussed above AR will
expand more nodes on most of the cases. In the next sec-
tions we provide an alternative that enjoys the complemen-
tary benefits of both AR (solution quality guarantee) and of
NR (fewer nodes expansions on average). It is called NR
with repair.

4 NR with Repair

While NR is not guaranteed to always return a solution
within the bound for the settings above, it might succeed in
doing this for many particular problem instances. Whether
the solution is within the bound is checked differently for
the two settings:

BCS: a solution P is within the bound if P ≤ C.

BSS: a solution P is within the bound if P ≤ B × L where
L is a lower bound on Popt. In many cases L is obtained
by setting L = fmin, where fmin is the minimal f -value in
OPEN (we use an extended version of this bound as elabo-
rated below).

For instances where NR was lucky to return a solution
within the bound it will, on most cases, be faster than AR.
Based on this, the main idea of NR with repair (NRR) is to
run NR until a solution is returned. Now, if the solution is
within the bound, the algorithm halts. Otherwise, we need
to ”repair” the solution and decrease it to fit the bound. We
provide two such repair strategies next. Importantly, both re-
pair strategies are general and may work on both BSS and
BCS. They can also be activated on top of different search
algorithms that are designed for BSS or BCS.
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Algorithm 1: NRR2 main procedure
1 NR-Repair(start state S)
2 OPEN ← {S}; CLOSED ← ∅; ICL ← ∅
3 while OPEN �= ∅ do
4 ICL ← Solve-with-NR(OPEN, CLOSED)
5 if Provable goal found then
6 Halt and return goal
7 else
8 OPEN ← OPEN ∪ ICL
9 CLOSED ← CLOSED \ ICL

10 end
11 end
12 Halt
13 end

4.1 NRR1: NR then AR
A simple repair mechanism is to first run NR. If it fails
to return a solution within the desired bound we resort to
restarting AR from scratch. We label it by NRR1. Restart-
ing is often used in anytime algorithms for different pur-
poses (Richter, Thayer, and Ruml 2010; Thayer and Ruml
2010). Let p be the percentage of cases where NR failed and
let Tnr and Tar denote the average running time of NR and
AR, respectively. The average running time of NRR1 will be

TNRR1 = Tnr + p× Tar

NRR1 will thus be faster than AR if p ≤ 1− Tnr

Tar
.

4.2 NRR2: Incremental Repair
A more complex repair strategy is called incremental repair
(denoted NRR2) given in Algorithm 1. In the main loop we
first try to solve the problem with NR (with any relevant
search algorithm that uses OPEN and CLOSED). During the
execution of NR (Line 4) we keep all nodes which were con-
sidered for re-expansion (but not re-expanded due to the NR
policy) in an inconsistency list (ICL). This list is returned to
the main loop when NR terminates (Line 4). If the solution
found cannot be proven to be within the bound (Line 5) we
add all the nodes from ICL into the existing OPEN and delete
them from CLOSED (Lines 8-9). Then, another iteration of
NR is executed. This is repeatedly done until we find a solu-
tion within the desired bound. The main advantage of NRR2
is that it reuses previous information of the ICL and thus
may refrain for restarting the search from scratch as NRR1.

The general idea of maintaining ICL and adding it to
OPEN at a later stage was used before in the context of any-
time search algorithms. It was first proposed by Likhachev
et al. (2004) as part of their Anytime Repairing A∗ (ARA∗)
algorithm, where a series of WA∗ executions are performed
with NR. After every iteration, the W parameter is decreased
and the ICL is added to OPEN. Thayer and Ruml (2010)
studies using this idea as one of three frameworks that allow
to convert BSS algorithms into anytime search algorithms.

4.2.1 Correctness of NRR2
The correctness of NRR2 is a direct consequence of proving
that the found solution is within the desired bound (Line 5).
Proving this is algorithm dependent. As described above this

is trivial for BCS. We now elaborate on proving this for BSS.
Setting L = fmin (as usually done for AR) is not enough
when using NR and we use the following lower bound:

Let LB = minn∈{OPEN∪ICL}(g(n)+h(n)). LB is similar
to fmin but is defined on the union of OPEN and ICL.

Lemma 1 For any admissible h(n), at all times, LB is a
lower bound on Popt.

As a result, a solution P is within the bound if P ≤ B ×
LB and this is used in Line 5 of Algorithm 1 for BSS(B).

To prove Lemma 1 we need to first prove the following:

Lemma 2 There always exists a node z ∈ {OPEN ∪ ICL}
such that g(z) = g∗(z) and z is on Popt.

Proof: By induction. It is true initially when z is the start
state. We now prove that this property is kept when a node n
is expanded. Let z be the node that holds the property before
the expansion. If n �= z, z still keeps the property after the
expansion. If n = z then one of its children z′ must be on
the optimal path with g(z′) = g∗(z′). z′ is either added to
OPEN or, if z′ ∈ CLOSED, it is added to ICL.�

To complete the proof of Lemma 1 we note that LB ≤
f(z) by definition.

4.2.2 Completeness of NRR2
Lemma 3 In a finite domain, if we continue NRR2 long
enough (without halting) we will find Popt.

Proof: This is a direct consequence of Lemma 2. �
Completeness follows because Popt is surely within the

bound for BSS(B) for any B ≥ 1. For BCS we can halt the
algorithm at once. If Popt ≤ C a valid solution was found.
Otherwise, no solution can be found better than Popt.

5 Experimental Results
WA∗ and PTS are simpler and easier to implement than EES
and BEES. Nevertheless, Thayer et al. (2011; 2012) reported
that in many cases EES and BEES outperform WA∗ and
PTS, especially in domains with many different edge costs.
Which algorithm to use is up to the user and beyond the
scope of this paper. We intend to show that our repair strate-
gies outperform AR across both settings and for all four al-
gorithms across a number of domains.

We chose to experiment on the same variety of domains
that were reported above. We only excluded the dockyard
robot domain because we could not easily generate an in-
consistent heuristic for this domain. The domains we chose
allowed us to execute the different algorithms on all different
settings on 100 instances.5

5.1 Repair methods for BSS(B)

Our first experiment is with WA∗ on the brc202d,
ost003d and den400d maps (depicted in the leftmost
column of Table 2) from the movingai repository (Sturtevant
2012). 100 instances were randomized and solved for each
value of W . h was the deferential heuristic (Sturtevant et al.

5We refer the reader to the paper by (Ruml 2010) that discusses
what sizes of domains should be used. We followed his wisdom.
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WA∗ EES
W 1.01 1.04 1.10 1.30 1.50 2.0 1.01 1.04 1.10 1.30 1.50 2.0

brc202d (IRE = 39.88)
NR 7,272 6,707 5,920 4,653 4,068 3,398 11,894 12,155 12,333 12,198 12,294 11,556
FRt 68 43 17 4 0 0 70 64 58 23 4 0
FRe 68 47 23 4 0 0 91 94 91 77 61 21
AR 8,154 7,582 7,238 7,460 6,920 6,619 25,471 27,749 26,898 29,663 34,216 44,204

NRR1 14,940 13,213 10,405 6,606 4,068 3,398 37,206 39,733 38,973 40,035 40,379 29,376
NRR2 7,410 6,792 5,965 4,664 4,068 3,398 12,384 12,729 13,046 14,304 15,300 13,703

ost003d (IRE = 21.52)
NR 1,393 1,284 1,151 907 782 656 1,505 1,641 1,754 1,972 2,076 2,231
FRt 27 9 4 1 0 0 19 9 4 0 0 0
FRe 29 19 11 8 13 5 35 50 50 35 28 18
AR 1,728 1,704 1,642 1,629 1,450 1,136 2,234 3,307 5,238 9,385 10,050 10,205

NRR1 2,840 2,733 2,538 1,987 1,420 786 3,630 4,766 6,802 10,781 10,992 9,730
NRR2 1,411 1,298 1,166 917 789 658 1,722 2,241 2,718 2,946 2,673 2,797

den400d (IRE = 2.71)
NR 1,018 959 838 716 677 648 983 957 1,013 1,013 1,133 1,378
FRt 5 4 2 0 0 0 5 3 0 0 0 0
FRe 7 7 7 3 0 0 9 16 13 7 1 0
AR 1,063 1,012 977 875 761 747 1,341 1,490 1,665 1,576 1,701 2,508

NRR1 1,427 1,376 1,245 840 677 648 1,812 1,945 1,948 1,786 1,422 1,378
NRR2 1,033 974 846 717 677 648 1,087 1,261 1,246 1,032 1,133 1,378

15-puzzle with 5-5-5 PDB heuristic (IRE = 1.1)
NR 228,638 228,638 112,395 12,185 2,494 608 315,509 245,480 231,342 231,168 117,425 34,488
FRr 1 1 0 0 0 0 3 0 0 0 0 0
FRe 4 3 1 0 0 0 5 2 1 0 0 0
AR 228,955 228,955 119,125 12,944 2,558 631 320,467 248,794 237,875 233,837 118,302 36,076

NRR1 334,388 334,388 141,815 12,185 2,494 608 449,641 466,485 233,780 231,168 117,425 34,488
NRR2 228,672 228,672 118,152 12,185 2,494 608 318,264 301,847 231,519 231,168 117,425 34,488

Table 2: Experimental results on BSS for WA∗ (Left) and EES (Right)

2009; Felner et al. 2011) over 10 pivots. To achieve incon-
sistency we used the randomized pivot mechanism described
in (Felner et al. 2011). While there were 10 pivots, in each
node we randomized one pivot and used its heuristic only.
This causes an inconsistent heuristic and it was shown to
significantly outperform a single fixed pivot. In addition, we
implemented BPMX(1) as described by (Felner et al. 2011).

Table 2(Left) shows the average number of nodes ex-
panded for the different policies. Columns represent differ-
ent values of W . As can be seen, NR (Line 1) is always
faster than AR (Line 4). The FRt row reports the true failing
rate of NR, i.e., the % of instances where NR failed to re-
turn a solution within the desired bound. The FRe row rep-
resents the estimated failing rate of NRR2 which is the %
of instances where the algorithm believes that the found so-
lution P is not within the bound. FRe can be larger than
FRt because FRe may have false negatives (as it is based
on a lower bound, LB, of the optimal solution), i.e., when
LB × B < P ≤ B × Popt. Both FRt and FRe can be
quite large (up to 68) as can be seen in the table. The last
three lines report results on the policies that are guaranteed
to never fail (AR, NRR1 and NRR2); bold fonts are given
when the repair method outperformed AR.

Consider brc202d (top part). NRR1 is worse than AR
for small values of W where FRe is large. The crossing point
is for W = 1.3 where NRR1 starts to outperform AR. By
contrast, NRR2 is only slightly worse than NR across all
values of W and is always much better than AR by up to a
factor of 2. For W ≥ 1.5 (as well as for other entries of other
domains) FRe and FRt are 0. As a result, NR succeeds to
find a solution within the bound. Nevertheless, these entries
reveal the robustness of NRR1 and NRR2. In such cases,

they converge to NR but unlike NR they always have the
general guarantee of being within the bound.

Similar trends are reported for den400d and ost003d.
Zahavi et al. (2007) defined the inconsistency rate of (IRE)
of edge (u, v) as |h(u) − h(v)|. The average IRE for each
domain is shown in Table 2. There is a clear correlation be-
tween IRE and FRe/FRt. They are all smaller for these two
maps which have more open spaces and less corridors. Thus
the negative effect of NR is less severe for these maps. For
the 15-puzzle, we used the 5-5-5 PDB heuristic from (Fel-
ner, Korf, and Hanan 2004). This heuristic is only slightly
inconsistent (IRE=1.1) because the blank was compressed
away from the PDB. Still the same trends exit, but are more
minor.

We also measured CPU time (not shown), which corre-
lated very well with the number of nodes expanded. The rea-
son is that there is no additional overhead for performing the
repair besides the constant time of opening and expanding a
node and this is reflected in the nodes count.

Similar trends are reported for EES in Table 2(Right).
Here NRR2 outperforms AR by a factor of up to 4 (see
W = 2).

5.2 Repair methods for BCS(C)

For BCS we varied the desired bound C from the minimum
cost of the minimal optimal solution path (over all the 100
instances of the specific map) until the solution cost found
remains when increasing C. For the maps (4-connected), h
was Manhattan distance which is consistent. The results for
PTS and BEES are shown in Figure 4. The x-axis corre-
sponds to the bound C. The top curve shows the average
number of expanded nodes using AR (indicated in the left y-
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Figure 4: AR compared to NRR1 and NRR2 for PTS and BEES. Number of nodes (y-axis) as a function of C (x-axis).

axis). The dashed curve (at the bottom) shows FRt (indicated
in the right y-axis). FRe is not shown because it is identical
to FRt for BCS. Finally, the middle curves, show the average
number of expanded nodes using NRR1 and NRR2. Unlike
the case of BSS above, we did not include results of NR be-
cause here, NR may not even return a solution, i.e., OPEN
may become empty. It is worth noting that both curves of
NRR1 and NRR2 converge to NR exactly when FRt is 0. It
can be easily seen that NRR2 outperforms AR by up a fac-
tor of up to 4 and 2 for PTS and BEES, respectively (see
ost003d for C = 650).

The results on the 15-puzzle (here, with Manhattan Dis-
tance as h) are very interesting as there are a few cases where
AR outperforms NRR2. The reason was explained above in
Section 2. There are cases where AR is faster than NR for
WA∗ on BSS. The results we see now, suggest that despite
the fact that NR is usually faster than AR for BCS, there are
some opposite cases for BCS too. In addition, for the 15-
puzzle the curves for AR and NRR2 are very close to each
other. This is because cycles/transpositions are more rare in
this domain (the length of a cycle is at least 12 moves) than
in the grid domains (length of a cycle is 4 moves or more).

For BCS the difference between NRR1 and NRR2 is
small (the curves almost correlate) while for BSS they are
further apart. The reason is that in BSS NR may last for a
long time as it always halts with a solution, although not
necessarily within the required bound. The NR phase is the
main overhead for BSS (exhausting OPEN) and the extra
overhead of both repair methods is small compared to that.
By contrast, for BCS NR may halt fast without a solution
when OPEN is empty.

6 Conclusions and Future Work
We have shown that unlike NR our repair strategies always
guarantee to return a solution within the bound. They incur
extra overhead over NR only when necessary. NRR2 was
shown to be faster than AR on a number of domains across
different settings and algorithms by a factor of up to 4. For
BSS these trends are stronger when IRE is large.

Future work on repair strategies can include, for exam-

ple, a light version of incremental repair (NRR2) that only
performs the repair iterations up to a given constant num-
ber and then resorts to AR. Another repair strategy will start
with NR and then run AR on the entire CLOSED list.
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