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Abstract

Memory-based heuristics are a popular and effective class of
admissible heuristic functions. However, corruptions to mem-
ory they use may cause these heuristics to become inadmis-
sible. Corruption can be caused by the physical environment
due to radiation and network errors, or it can be introduced
voluntarily in order to decrease energy consumption. We in-
troduce memory error correction schemes that do not require
additional memory and exploit knowledge about the behavior
of consistent heuristics. This is in contrast with error correct-
ing code approaches which can limit the amount of corruption
but at the cost of additional energy and memory consump-
tion. Search algorithms using our methods are guaranteed to
find a solution if one exists and its suboptimality is bounded.
Moreover, our methods are resilient to any number of mem-
ory errors that may occur. An experimental evaluation is also
provided to demonstrate the applicability of our approach.

Introduction

Memory-based heuristics such as pattern databases (Culber-
son and Schaeffer 1998; Edelkamp 2001) and differential
heuristics (Sturtevant et al. 2009) are a popular and effective
way of guiding search algorithms like A* (Hart, Nilsson, and
Raphael 1968) and Iterative-Deepening A* (IDA*) (Korf
1985) when solving state-space search problems.

For example, a pattern database (PDB) is a pre-computed
lookup table that contains the optimal solution costs for
states in an abstracted and smaller version of the original
state space. The entries of the lookup table serve as heuris-
tic estimates for states in the original state space. PDBs fre-
quently require a few GBs of memory which must be stored
in fast-access memories such as dynamic RAMs (DRAMs).
This is because search algorithms consult the PDB for every
node generated during search. And since memories play an
important role in the overall energy consumption of systems
(Vogelsang 2010), the means to store PDBs are not only cru-
cial for performance, but also for energy consumption.

Energy has become a major constraint not only for
embedded systems but also in clusters and server-
farms (Cameron, Ge, and Feng 2005). One prospective ap-
proach to reduce energy consumption is approximate com-
puting. Approximate computing comprises a broad set of
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mechanisms that generally trade precision for energy effi-
ciency. For example, computational precision can be traded
for energy efficiency by reducing the hardware supply volt-
age (Hegde and Shanbhag 2001) or by designing low-power
arithmetic circuits with approximate outputs (Gupta et al.
2011). These approaches can also reduce energy consump-
tion when using specific memory technology. For example,
SRAM cells can have their supply voltage reduced (Chang,
Mohapatra, and Roy 2011), while DRAM can have their re-
fresh frequency reduced (Liu et al. 2011).

The general tradeoff when using memory-based approxi-
mate computing schemes is that the larger the data and the
greater the acceptable degree of imprecision, the more en-
ergy can be saved. Since memory-based heuristics like PDBs
are typically very large, they are excellent candidates for ap-
proximation. However, errors in heuristic computation can
lead to severely suboptimal solutions, which can be catas-
trophic for some applications.

Memory corruption can also be caused by other phe-
nomena such as radioactive particles and electrical noise,
which are a concern in spaceborne applications (Wagstaff
and Bornstein 2009) and in large data centers (Meza et al.
2015). The standard mechanism to mitigate memory errors
in these scenarios are Error Correcting Codes (ECC), which
incur additional memory and energy costs. Memory corrup-
tions may also occur due to network errors in the case of a
distributed-memory architecture.

In this paper we introduce algorithms to handle memory
errors in memory-based heuristics. The proposed algorithms
are based on IDA* and novel error detection and correction
methods. Our algorithms are guaranteed to find a solution if
one exists and the cost of the solution they find is no more
than three times larger than the problem’s optimal solution
cost. In contrast with other algorithms that are resilient to
memory corruption (see Finocchi et al. (2007a) for exam-
ples), our methods do not assume an upper bound on the
number of memory errors that may occur during search.

Experiments on standard benchmarks show the advan-
tages of our correction methods in terms of suboptimality.
We also show the advantages of our methods over a variety
of ECC approaches with respect to memory and energy con-
sumption. For example, while our approaches increase the
energy and memory consumed by DRAMs by 5 %, ECCs
can have a memory and energy overhead of up to 40%.
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A Motivating Example

To the best of our knowledge, this is the first work on heuris-
tic search algorithms that are resilient to corrupted memory.
Hence, we begin by describing a possible scenario in which
such search algorithms are needed. DRAM is the most com-
mon technology used for main memories, mainly due to its
high density and performance. DRAM cells require periodic
refresh to maintain their stored values, which consists in
reading and rewriting the value in all cells. This operation
consumes substantial energy. To reduce this consumption,
one alternative is to use a technique known as Flikker (Liu
et al. 2011). This approach reduces the refresh frequency in
memory regions that hold non-critical data, while data that
cannot withstand corruption is kept in memory that is re-
freshed at the nominal frequency.

Substantial gains can be obtained when most of the mem-
ory can use the low refresh frequency. As existing search
techniques are not designed to handle corruption, they are
unable to take advantage of such potential savings. However,
consider using a linear-space algorithm, such as IDA* (Korf
1985) alongside a standard memory-based heuristic, e.g., a
PDB. On the standard search benchmarks considered in this
paper, the PDB corresponds to a great majority of the en-
tire program memory. By storing the PDB in a low-refresh
rate memory, an approximately 33% reduction in refresh en-
ergy consumption can be expected (Liu et al. 2011). How-
ever, storing the PDB in this memory would cause it to occa-
sionally be corrupted, thus requiring the corruption resilient
search algorithm we propose in this work.

Problem Definition and Background

The state-space search task is to find a sequence of oper-
ators that transform a given initial state sinit into a goal
state. Such tasks can be viewed as graph-search problems,
where each vertex in the graph G = (V,E) is a state, and
any edge (s, s′) ∈ E corresponds to having a single op-
erator transform s to s′. A solution is a path in G from
sinit to one of a set of goal states Vgoals ⊆ V . We use
children(s) to denote the set of nodes adjacent to s, i.e.,
children(s) = {s′|(s, s′) ∈ E}. When the set children(s)
of a parent state s is constructed, s is said to be expanded
and any s′ ∈ children(s) is said to be generated.

Operators, and consequently edges, have a cost, denoted
by κ(s, s′). We assume that κ(s, s′) is non-negative and that
the cost of a path of states π in G is the sum of the edges
along π. An optimal solution is a least-cost path from sinit to
a goal state and the cost of an optimal solution is denoted by
C∗. For a given state s, h∗(s) and g∗(s) denote the cost of an
optimal path from s to a goal node and the cost of an optimal
path from sinit to s, respectively. We also assume that all
operators are reversible (i.e., the edges are undirected) and
that they have the same cost in both directions.

IDA* (Korf 1985) uses an evaluation function on nodes
to guide its search. The evaluation function used by IDA* is
g(n)+h(n), where g(n) is the cost of the path from sinit to
n, and the heuristic function h(n) is an estimate of the cost
of the path from n to the nearest goal node. Many heuris-
tic functions — including the PDB heuristics — are state-
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Figure 1: An example of a corrupted heuristic.

based. This means that where n represents path [s0, ..., sk],
the heuristic only takes sk into account and so will always
return the same value for any node that ends in sk. In con-
trast, path-based heuristics may return different values de-
pending on the path found to sk. The error correction heuris-
tics we introduce below are path-based.

A key property of IDA* is that any solution found is
guaranteed to be optimal if h is admissible (Korf 1985). A
heuristic function is called admissible if ∀n, h(n) ≤ h∗(n).

The error detection and correction methods we introduce
in this paper use the consistency property of a heuristic func-
tion, defined as follows.

Definition 1 (Consistency) A heuristic h is said to be con-
sistent on edge (n, n′) iff |h(n) − h(n′)| ≤ κ(n, n′), and
consistent on a state-space problem iff it is consistent on ev-
ery edge in the graph.

Notice that this definition corresponds to consistency on
undirected graphs. The standard definition, which more gen-
erally applies to directed graphs, is a weaker condition.

In this work we use the following setting. The memory-
based heuristic is pre-computed and safely stored in a slow-
access reliable memory and is loaded into DRAM prior to
the search, during which errors may occur and accumulate.

Error Detection

In this section, we introduce several methods for detecting
that a consistent heuristic has been corrupted. To help intro-
duce these concepts, we will use the unit-cost graph shown
in Figure 1 as a running example. In the example, the heuris-
tic values of each state are stored using 3 bits. The values
of some of these bits have been flipped due to some form
of corruption. In the figure, the uncorrupted heuristic values
are shown below each vertex, with the binary representation
included in parentheses. The heuristic values found after the
corruption are shown inside each vertex.

Sufficient Detection of Error

The basic error detection method we will use is based on
identifying edges which break the consistency of the heuris-
tic. If we know the heuristic was initially consistent before
corruption occurred, then the existence of an edge (n, n′) on
which the heuristic is inconsistent (i.e., not consistent) is a
clear indication that the heuristic value of either n or n′ must
have been corrupted. For example, the corrupted heuristic is
inconsistent on edge (n0, n1) in Figure 1, while the original
uncorrupted heuristic is consistent on that edge. By simply
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watching for inconsistent edges, we therefore have a simple
and sufficient way to detect errors.

Unfortunately, this approach will not necessarily identify
all errors. For example, consider the edge (n0, n

′
1) in Fig-

ure 1. The heuristic value of n′1 has been corrupted from a
value of 4 to the inadmissible value of 5. However, the cor-
rupted heuristic remains consistent on this edge and so this
approach will not identify this error.

Inadmissibility Detection

When the heuristic value of a state is decreased, it may in-
crease the time needed to find a solution, but it will not cause
suboptimal solutions to be found. It is only when corruption
makes a heuristic function inadmissible that we may find
suboptimal solutions. Therefore, we may wish to consider
techniques that detect when a heuristic value may have be-
come inadmissible. In this section, we consider a lookahead
based approach for doing so, prove the correctness of the
approach, and consider the issues with this technique. We
begin with the following lemma:
Lemma 1 If a heuristic h is consistent on edge (n, c) where
h(n) > h∗(n), then h(c) > h∗(c) if c is on the optimal path
from n to a goal.
Proof. Let c be a node on an optimal path from n to a goal.
Thus, h∗(n) = h∗(c) + κ(n, c). Since h is consistent on the
edge (n, c), then h(n) ≤ h(c) + κ(n, c). Together with the
inadmissibility of h(n) this means the following:

h∗(c) + κ(n, c) = h∗(n) < h(n) ≤ h(c) + κ(n, c)

Therefore h∗(c) < h(c) and so the statement is true. �
This lemma shows consistency on the edge between n and

any child c along an optimal path from n means that if h is
inadmissible on n, then that inadmissibility must have prop-
agated to n. Conversely, if h(c) is admissible, h(n) must
also be admissible.

Now let us extend the definition of a heuristic being con-
sistent on an edge to define the concept of a heuristic being
consistent along a path:
Definition 2 (Path Consistency) A heuristic h is said to be
consistent along a path of nodes π = [n0, .., nk] iff h is
consistent on every edge along π.
This definition is weaker than consistency on a state-space,
as it simply requires that for every pair of consecutive nodes
on π, h never differs by more than the cost of the edge be-
tween them. For example, the corrupted heuristic in Figure
1 is consistent along [n0, n

′
1] as there are no restrictions on

how the heuristic value drops from parent to child. However,
notice that the heuristic is not consistent along [n0, n

′
1, n

′
2].

We can now use Lemma 1 to show the following theorem,
which will be the basis for a lookahead based method for
ensuring the admissibility of the heuristic value of a state.
Theorem 1 Let h be a heuristic function and U be an upper
bound on the number of states in the state space that have
inadmissible heuristic values. Suppose that for some node
n0, h is path consistent along all paths π = [n0, ..., nk],
where all nodes along π are unique, such that either of the
following is true:

• k = U .
• k < U , nk is a goal, and h(nk) = 0

Then h(n0) ≤ h∗(n0).

Proof. Let π∗ be an optimal path from n0 to a goal node.
This means that all nodes along π∗ are unique. There are
now two cases to consider.

First, suppose that there are fewer than U edges on π∗. By
the theorem’s assumptions, this means that h is path consis-
tent along π∗, and the last node on π∗ is a goal node with a
heuristic value of 0. Since this means that h(ni) can only be
at most κ(ni, ni+1) larger than h(ni+1) for any two consec-
utive nodes on this path, this clearly ensures that h(n0) is no
larger than the cost of π∗. Therefore, h(n0) is admissible.

Let us now assume that π∗ contains U edges. We prove
this case by contradiction, so assume that h(n0) is inadmis-
sible. Since π∗ is an optimal path and h is path consistent
along it, Lemma 1 states that the inadmissibility of h(n0)
ensures that h(n1) is also inadmissible. Similarly, the in-
admissibility of h(n1) means that h(n2) is inadmissible by
Lemma 1. Clearly, by induction this means that h is inad-
missible for all of the first U +1 states on π∗. However, this
contradicts the assumption that at most U states have inad-
missible heuristic values. As such, h(n0) is admissible. �

Theorem 1 shows that if the heuristic is consistent on
every edge in a large enough local space around a given
node n0, then we can ensure that the heuristic value of n0

is still admissible. This suggests that we can perform a U
step lookahead whenever evaluating a given node, we can
detect if that heuristic value may no longer be admissible.

However, there are several issues with this approach.
First, while the heuristic value of n0 can only be inadmis-
sible if an inconsistency is found during the lookahead (i.e.,
inconsistency during the lookahead is necessary for inadmis-
sibility), this approach is very pessimistic. In many cases,
h(n0) may still be admissible even if the edges nearby are
not consistent. Practically applying this method is problem-
atic since for a given branching factor b, it requires a looka-
head with an overhead of bU+1 per node. This is not feasible
for any non-trivial U for b > 1. Computing or approximat-
ing U for state space-search problems may also be challeng-
ing, especially when even small overestimates will have an
exponential impact on the overhead using this technique.

Error Correction

For the reasons given above, the sufficient error detection
method that only considers the inconsistency of h on edges
is more practically applicable than the complete condition
given in Theorem 1. In this section, we will identify a fam-
ily of simple error correction methods that can be applied
whenever an error is detected and which have a bound on
the suboptimality of the found solution. We begin by prov-
ing that the conditions identified lead to a quality bound.

Ensuring Bounded Suboptimality

Informally, the basis for the proposed correction methods
is that the inadmissibility of a path consistent heuristic is
necessarily bounded. Therefore, we can guarantee bounded
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suboptimality if we modify the corrupted heuristic during
search so that it is always path consistent. In this section, we
identify specific conditions for such correction methods that
will ensure that the solutions found are not too suboptimal.
This is done using the following theorems which state that
if the heuristic is always consistent along the path to a node
when it is evaluated, then any solution found by IDA* will
cost no more than 3 · C∗.

Theorem 2 (Valenzano et al. (2013)) IDA* using the g + h
evaluation function will find a solution with a cost of at most
M ·C∗ provided that g(n) + h(n) ≤M · (g(n) + h∗(n)) is
true for any node n on an optimal path to a goal node.

Theorem 3 Any solution found by IDA* will have a cost of
at most 3 · C∗ if the following are true:

1. h(ninit) ≤ h∗(ninit)

2. h is consistent along the path to any node n when n is
evaluated.

Proof. Let n be a node on an optimal path and let π be the
path of nodes to n. Notice that by our assumption that h is
consistent along π, the heuristic values can only increase by
the edge cost between each pair of consecutive nodes on π.
As the total of these heuristic increases can be at most the
sum of the edge costs (i.e., g(n)), this means that h(n) can
be at most h(ninit) + g(n).

Now since h(n) ≤ h(ninit) + g(n) it follows that g(n) +
h(n) ≤ 2 · g(n) + h(ninit). This also means that g(n) +
h(n) ≤ 2 · g(n) + h∗(ninit) by the assumption that h is
admissible on the initial node. It then follows that g(n) +
h(n) ≤ 2 · g(n) + g∗(n) + h∗(n) since both ninit and n
are on an optimal solution path. Since g(n) ≥ g∗(n), this
simplifies to g(n) + h(n) ≤ 3 · g(n) + h∗(n) which also
means that g(n)+h(n) ≤ 3·(g(n)+h∗(n)). This inequality,
along with Theorem 2 proves the desired result. �

Note that a similar argument can be used to show that the
same bound applies when such a corrected heuristic is used
to guide RBFS (Korf 1992).

The practical implications of Theorem 3 are that it iden-
tifies two conditions for our correction methods for guaran-
teeing any solution found will cost at most 3 · C∗. The first
requires that h is admissible for ninit. To ensure this, recall
that the PDB is stored in slow-access reliable memory before
search. We can therefore make a single access to this mem-
ory to get an admissible estimate for ninit and store it in our
limited pool of reliable DRAM to satisfy this condition. To
satisfy the condition that h is consistent along every path, we
simply need to design the correction methods appropriately.
This is done in the next section.

We emphasize that while algorithms like Weighted IDA*,
Weighted RBFS (Korf 1992), and RBFSktrht (Hatem,
Kiesel, and Ruml 2015) will find solutions that have a cost
of at most 3 · C∗ when parameterized with a weight of 3,
they require that the heuristic is admissible in order to do so.
These algorithms are not resilient to errors in their standard
form, and can return solutions that are arbitrarily suboptimal
when guided by PDBs stored in unreliable memory. As such,
we do not compare to these algorithms when parameterized

with a weight of 3 against our correction algorithms in the
empirical analysis below.

However, we do note that these weighted algorithms can
be used with our correction techniques to get a bounded sub-
optimal search. In particular, if these algorithms are used
with a weight of w ≥ 1, then these algorithms will find so-
lutions that have a cost of at most 3 · w · C∗. This follows
by the same argument as is given in the proof of Theorem
3. In particular, the fact that the heuristic is path consistent
ensures that it will never return values that are larger than 3
times the cost to the goal. The weight will then inflate the
evaluation function by a further factor of w. By again apply-
ing Theorem 2, we get the desired result.

Correction Methods

In this section, we introduce several error correction meth-
ods. To avoid confusion, we use PDB(n) to denote the pos-
sibly corrupted state-based heuristic value returned by the
PDB, and h(n) to denote the (possibly corrected) path-based
heuristic value used for evaluating nodes during search.
When referring to Figure 1, this means PDB(n) returns the
heuristic value shown inside each node.

The correction methods below use error detection as fol-
lows: when a node n is generated by the expansion of node
p, h(p) (which may have been previously corrected) is com-
pared with the value of PDB(n). If |h(p) − PDB(n)| >
κ(p, n), we will use our correction methods to select a value
for h(n) that is in the range [h(p)−κ(p, n), h(p)+κ(p, n)].
We will denote this range by Pp,n. By setting h(n) so it is
in Pp,n will ensure that if h is consistent along the path to
p (which it must be by an inductive argument), then h will
also be consistent along the path to n. Thus, any solution
found when using the correction methods described below
will cost at most 3 · C∗ by Theorem 3.

Parent-Based Corrections Parent-based correction meth-
ods will only consult the heuristic value of the parent p of a
node n when the heuristic value of n is being computed and
an inconsistency has been detected on edge (p, n). We con-
sider three such methods. The first two are the pessimistic
method, which sets h(n) as h(p) + κ(p, n) when an error
is detected, and the optimistic method, which sets h(n) as
h(p) − κ(p, n). For example, in Figure 1 if n0 is the parent
of n1, the pessimistic method would set h(n1) to 5, while
the optimistic method would set h(n1) to 3.

The third parent-based correction method we propose at-
tempts to use the value of h(p) to choose the value from Pp,n

that is most likely to have been the original uncorrupted PDB
value. To do so, we compute the Hamming distance between
each value in Pp,n and PDB(n). That is, we count the num-
ber of bits one would have to flip to transform each value
in Pp,n into PDB(n). This approach estimates the number
of times n’s PDB entry was corrupted. Then we set h(n)
to the value in Pp,n with the lowest count. This approach
is inspired by the popular “minimal cardinality” method of-
ten used in automated diagnosis, which states that when all
faults are equally likely, the most likely diagnosis is the one
which assumes the least amount of failures (De Kleer and
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Williams 1987). Formally, we set h(n) as follows:

h(n) = argmin
v∈Pp,n

H(v, PDB(n)) , (1)

where H(v, PDB(n)) is the Hamming distance between
the binary representations of v and PDB(n). Ties are bro-
ken in favor of the higher value. We call this method Parent
Minimum Cardinality Diagnosis Correction (PMCD).

As an example of PMCD, consider node n1 in Figure 1.
When the search arrives at this node from n0 it will detect
an error due to the inconsistency of the heuristic on edge
(n0, n1). Since h(n0) = 4, consistency requires that h(n1)
be set as either 3 (011), 4 (100), or 5 (101). The Hamming
distance from the corrupted PDB(n1) value of 0 (000) of
each of these are 2, 1, and 2, respectively. Therefore, PMCD
correction would set h(n1) correctly as 4.

Children-Based Corrections An alternative type of error
correction considers not only h(p) and PDB(n), but also
PDB(c) for all c ∈ children(n). We call this type of cor-
rection method a children-based correction method.

As in the parent-based correction methods, children-
based correction only considers a value other than PDB(n)
for h(n) if PDB(n) is not in Pp,n. When that occurs,
we use the following voting mechanism to take into con-
sideration the values of PDB(c) when setting h(n). Let
Cn,c = [PDB(c) − κ(n, c), PDB(c) + κ(n, c)], i.e., the
value expected for n in order h to be consistent along the
edge from n to c. In addition, let UCn be the union of all
possible heuristic values h(n) could assume according to n’s
children, i.e., UCn =

⋃
c∈children(n) Cn,c.

For every value v ∈ UCn, let CC(v) be the number
of children of n such that if h(n) = v then h would be
consistent on those edges, where the children of n that are
mapped to the same PDB entry are counted only once. We
then set h(n) to be the value v that maximizes CC(v),
where ties are broken in favor of the value that is closest
to PDB(n) in terms of Hamming distance. If the value that
maximizes CC(v) is outside the range of Cp,c, h(n) is set to
h(p) + k(p, n) in order to preserve the 3 · C∗ suboptimality
bound. We call this children-based correction method Child
Minimum Cardinality Diagnosis Correction (CMCD).

The intuition behind CMCD is similar to PMCD: set h(n)
to be the value that assumes the least amount of failures in
the PDB entries, though in this case we consider the PDB
entries of its children. As an example, consider the path
[n0, n1, n2, n3] in Figure 1. As the reader can verify, CMCD
will correctly set h(n1) as 4, and so the next error discovered
will be on edge (n2, n3). Since h(n2) is 3 and PDB(n4)
is 2, UCn3 = {1, 2, 3, 4} and CC(1) = 1, CC(2) = 2,
CC(3) = 2, and CC(4) = 1. The tie between v = 2 and
v = 3 is broken by computing the Hamming distance be-
tween 2 (010), and 5 (101) and between 3 (011) and 5 (101).
Since 3 is closer to 5 in terms of Hamming distance, CMCD
correctly sets h(n3) to 3. This is unlike PMCD which will
incorrectly set h(n3) to 4.

Note that the children-based methods need a one-step
lookahead to obtain PDB(c) for all children of n, and thus
incurs more overhead than the parent-based methods. While

this could be generalized to allow for multi-step lookaheads
that consider further descendents, we focus on the one-step
CMCD approach in the results below.

Empirical Evaluation

Next, we empirically evaluate the proposed correction meth-
ods. Four benchmark domains were used: 4x4 Sliding-
Tile puzzle (15-puzzle), 15-Pancake puzzle (pancake), and
(17,4)-Topspin puzzle (topspin), all implemented using
PSVN (Holte, Arneson, and Burch 2014), and the 5x5
Sliding-Tile puzzle (24-puzzle). These domains were se-
lected because IDA* is the algorithm of choice for them
when using uncorrupted heuristics. In addition, two of
these domains have important real-world applications, as
the Sliding-Tile puzzle domain is a condensed version of
the multi-agent motion planning problem and the topspin
domain is a variant of the green-house automation prob-
lem (Helmert and Lasinger 2010). The pancake domain was
also included because it differs from the other domains in
properties such as its branching factor and the depth of its so-
lutions. Results are averaged over 30 instances per domain.

The PDB heuristics were created using domain abstrac-
tions. In the 15-puzzle domain, the abstraction maintains the
identity of the blank position and tiles 1 through 6. The re-
maining tiles are all treated as being of the same identity:
“don’t care”. The pancake abstraction similarly maintains
the identities of pancakes 9 through 15 and treats the others
as the same, while the topspin abstraction only maintains
the identities of pieces 11 through 17. For the 24-puzzle
we used the disjoint PDBs with reflection along the main
diagonal (Korf and Felner 2002), which is an inconsistent
heuristic. As a result of using an inconsistent heuristic, our
methods will attempt to correct values that are not necessar-
ily corrupted, but are inconsistent by definition. We note that
Theorem 3 still holds for the inconsistent disjoint PDBs.

Notice that the PDBs used in the 15-puzzle, pancake, and
topspin domains do not represent state-of-the-art heuristics.
As such, the runtimes reported below will often be larger
than those that appear in the literature. This approach was
taken for the sake of simplicity, and because our goal is
not to achieve state-of-the-art results on these puzzles, but
to demonstrate the impact of corruption on memory-based
heuristics and the effectiveness of the new correction tech-
niques. For similar reasons, we have not compared against
heuristics that do not require memory.

Error Simulation We simulate PDB errors by flipping
bits in randomly selected PDB entries after every x node
expansions, where x is a parameter. We call x the num-
ber of flips per node expansion (FPNE). Setting FPNE
to 10−3 means that one bit is flipped in the PDB every
103 node expansions. Setting FPNE to 0 means there is no
error. We experimented with the following FPNE values:
{10−1, 10−2, 10−3, 10−4, 10−5, 0}. Our corruption simula-
tion scheme is similar to others found in the literature; see
Wagstaff and Bornstein (2009) as an example.

Evaluation Every problem instance of the 15-puzzle, pan-
cake, and topspin was run with a 10-minute per-problem
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15-Pancake puzzle

FPNE IDA* Pessimistic Optimistic PMCD CMCD
Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub.

10−1 0.13 ± 0.35 1.10 ± 0.08 1.70 ± 1.29 1.06 0.00 ± 0.00 - 1.37 ± 0.61 1.00 2.40 ± 0.93 1.01
10−2 2.93 ± 1.20 1.03 ± 0.04 5.57 ± 1.41 1.04 0.00 ± 0.00 - 4.87 ± 0.35 1.00 4.00 ± 0.00 1.00
10−3 6.43 ± 1.25 1.01 ± 0.02 12.97 ± 2.81 1.02 0.00 ± 0.00 - 7.77 ± 0.77 1.00 5.00 ± 0.00 1.00
10−4 9.13 ± 1.01 1.00 ± 0.00 10.43 ± 1.01 1.00 0.80 ± 0.41 1.00 9.83 ± 0.46 1.00 7.50 ± 0.63 1.00
10−5 9.83 ± 0.38 1.00 ± 0.00 9.80 ± 0.55 1.00 1.50 ± 0.51 1.00 10.00 ± 0.00 1.00 9.83 ± 0.38 1.00

0 10.00 ± 0.00 1.00 ± 0.00 10.00 ± 0.00 1.00 10.00 ± 0.00 1.00 10.00 ± 0.00 1.00 10.00 ± 0.00 1.00
(17,4)-Topspin puzzle

FPNE IDA* Pessimistic Optimistic PMCD CMCD
Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub.

10−1 5.68 ± 1.09 1.00 ± 0.00 9.45 ± 1.88 1.00 0.00 ± 0.00 - 3.83 ± 0.46 1.00 3.03 ± 0.18 1.00
10−2 6.33 ± 0.80 1.00 ± 0.00 9.00 ± 1.49 1.00 0.43 ± 0.50 1.00 5.03 ± 0.18 1.00 4.83 ± 0.46 1.00
10−3 6.03 ± 0.18 1.00 ± 0.00 6.00 ± 0.00 1.00 1.80 ± 0.41 1.00 5.93 ± 0.25 1.00 5.23 ± 0.43 1.00
10−4 6.00 ± 0.00 1.00 ± 0.00 6.00 ± 0.00 1.00 2.00 ± 0.00 1.00 6.00 ± 0.00 1.00 6.00 ± 0.00 1.00
10−5 6.00 ± 0.00 1.00 ± 0.00 6.00 ± 0.00 1.00 3.80 ± 0.81 1.00 6.00 ± 0.00 1.00 6.00 ± 0.00 1.00

0 6.00 ± 0.00 1.00 ± 0.00 6.00 ± 0.00 1.00 6.00 ± 0.00 1.00 6.00 ± 0.00 1.00 6.00 ± 0.00 1.00
(4x4) Sliding-Tile puzzle

FPNE IDA* Pessimistic Optimistic PMCD CMCD
Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub.

10−1 9.33 ± 1.45 1.02 ± 0.05 8.87 ± 1.07 1.01 3.90 ± 0.66 1.00 12.93 ± 0.78 1.00 12.37 ± 1.07 1.00
10−2 15.07 ± 1.14 1.95 ± 19.40 14.13 ± 1.28 1.01 5.97 ± 0.18 1.00 19.13 ± 0.97 1.00 18.03 ± 1.27 1.00
10−3 22.00 ± 1.51 1.02 ± 0.04 20.97 ± 1.67 1.01 7.00 ± 0.69 1.00 21.50 ± 0.68 1.00 20.63 ± 0.61 1.00
10−4 22.10 ± 0.84 1.00 ± 0.01 21.80 ± 1.00 1.00 10.07 ± 0.37 1.00 21.93 ± 0.25 1.00 21.80 ± 0.41 1.00
10−5 22.10 ± 0.55 1.00 ± 0.00 22.13 ± 0.43 1.00 12.30 ± 0.75 1.00 22.00 ± 0.00 1.00 22.03 ± 0.18 1.00

0 22.38 ± 2.50 1.00 ± 0.00 23.00 ± 0.00 1.00 23.00 ± 0.00 1.00 23.00 ± 0.00 1.00 23.00 ± 0.00 1.00

Table 1: Results for different levels of simulated radiation when consistent heuristics are employed.

time limit, while instances of the 24-puzzle were run with
a 1-hour per-problem time limit. All experiments were run
on 2.6 GHz machines. The results of our experiments are
shown in Tables 1 and 2. We compare the performance of
IDA* with each of the error correction methods we intro-
duced: Pessimistic, Optimistic, PCMD, and CMCD. As a
baseline, we also ran IDA* without any error correction (de-
noted as IDA* in the tables) and IDA* with a h = 0 heuris-
tic (brute-force search). The results of IDA* with h = 0 are
omitted from the tables because the method did not solve
any of the instances within the time limit.

The different methods are evaluated according to two met-
rics: coverage and suboptimality. Coverage is the number
of problems solved within the time limit (denoted as “Cov.”).
Suboptimality is the cost of the found solution divided by
the optimal cost for that problem (denoted as “Sub.”). For
example, if an approach finds only optimal solutions, then it
has an average suboptimality of 1.00. Due to the stochastic
nature of these experiments, each experiment was repeated
30 times and we report the average results. Suboptimality is
the average suboptimality over the problems solved by each
approach. We also present the standard deviation of the cov-
erage of each approach tested (shown using the ± symbol).

Discussion of Results

Suboptimality In general, the average suboptimality was
near-optimal and much better than the 3 · C∗ guarantee.

While on average the cost of the solutions found by IDA*
without correction were near-optimal, we observed that
IDA* can also return solutions with much higher subopti-
mality. For example, IDA* with an FPNE of 10−2 found a
solution 410 times more costly than the optimal solution on
one of the 15-puzzle instances, while our correction meth-
ods found the optimal solution. This demonstrates the im-
portance of using corruption correction methods that guar-
antee bounded suboptimal solutions.

Compared to IDA* and Pessimistic, PMCD and CMCD
usually found higher quality solutions and were almost al-
ways able to return the optimal solution. See, for example,
the results on pancake and 15-puzzle with FPNE of 10−1,
10−2, and 10−3. These results are reasonable because, in
contrast to Pessimistic and IDA*, PMCD and CMCD aims
at correcting the PDB entries to their original values. The
performance of PMCD and CMCD were similar across all
domains. We explain this by comparing the benefits of each
method. PMCD requires lower overhead per generated node
since CMCD requires generating all the children of n. How-
ever, CMCD uses more information to correct h(n) and thus
one would expect CMCD to be more likely to correct h(n) to
its original value. The similar performance of these methods
suggests that CMCD’s more informed approach balances
with PMCD’s faster time per node.

The Optimistic approach found optimal solutions for all
problems it was able to solve within the time limit. This is
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(5x5) Sliding-Tile puzzle

FPNE IDA* Pessimistic PMCD CMCD
Cov. Sub. Cov. Sub. Cov. Sub. Cov. Sub.

10−1 2.60 ± 0.74 1.00 ± 0.01 2.93 ± 0.46 1.00 ± 0.01 3.13 ± 0.52 1.00 ± 0.00 3.07 ± 0.88 1.01 ± 0.01
10−2 4.33 ± 0.90 1.00 ± 0.00 4.80 ± 0.94 1.00 ± 0.00 3.93 ± 0.26 1.00 ± 0.00 4.13 ± 0.52 1.00 ± 0.01
10−3 4.93 ± 0.96 1.00 ± 0.00 4.40 ± 0.83 1.00 ± 0.00 4.47 ± 0.64 1.00 ± 0.00 5.07 ± 0.96 1.00 ± 0.00
10−4 5.53 ± 1.41 1.00 ± 0.00 5.93 ± 1.16 1.00 ± 0.00 5.47 ± 0.74 1.00 ± 0.00 5.33 ± 0.72 1.00 ± 0.00
10−5 5.13 ± 0.74 1.00 ± 0.00 5.33 ± 1.29 1.00 ± 0.00 5.47 ± 1.30 1.00 ± 0.00 5.87 ± 1.60 1.00 ± 0.00

0 8.33 ± 1.50 1.00 ± 0.00 7.13 ± 0.64 1.00 ± 0.00 7.00 ± 0.85 1.00 ± 0.00 6.87 ± 0.99 1.00 ± 0.00

Table 2: Results for different levels of simulated radiation when an inconsistent heuristic is employed.

because the Optimistic approach is conservative when try-
ing to correct corrupted values and always reduces the value
of h(n) when a corrupted -value is detected. The resulting
heuristic is thus highly likely to remain admissible, though
it also greatly decreases coverage as we show below.

Coverage Pessimistic correction is generally able to solve
the largest number of problems on the pancake and topspin
domains. In some cases this method has an even higher cov-
erage than an IDA* using an uncorrupted heuristic. For ex-
ample, on the pancake domain with FPNE of 10−3, Pes-
simistic solves approximately twice as many problems as
IDA* running with the same FPNE, and approximately two
problems more than IDA* with an uncorrupted heuristic
(FPNE of 0). Similar phenomenon is observed on topspin
with FPNE of 10−1 and 10−2, where IDA* using the Pes-
simistic approach is able to solve on average approximately
three more instances than the maximum number of instances
solved by any other approach. This phenomenon appears to
be related to similar behaviour seen in other work wherein
adding some randomness to a suboptimal search algorithm
improves performance (Valenzano et al. 2014). Investigating
this question further is left as future work.

For the 15-puzzle, PMCD and CMCD perform better than
Pessimistic and IDA*. For example, on the 15-puzzle with
FPNE of 10−2, IDA* solves 15.07 problems on average and
Pessimistic solves 14.13, while PMCD and CMCD solved
19.13 and 18.03, respectively.

The Optimistic approach is able to solve fewer problems
than the other approaches in all domains tested. As an exam-
ple, Optimistic did not solve any instances for FPNE values
of 10−1, 10−2, 10−3 in the pancake domain. Optimistic fails
to find a solution within the time limit because it reduces
the h-value of a node if a corruption is detected. As a result,
the heuristic becomes less informed and Optimistic has to
expand more nodes to find a solution.

We observed a small variance on the number of problems
solved without errors (FPNE of 0) on the 24-puzzle. This is
because several instances of the 24-puzzle are solved with
approximately 1 hour of processing time. Thus, small varia-
tions caused by the operating system or the hardware could
change the number of problems solved within the 1-hour
time limit. In contrast with the other domains, in the pres-
ence of no errors, the baseline approach performs slightly
better on the 24-puzzle. We conjecture that, since the heuris-
tic used in inconsistent, the correction methods will mod-

ify uncorrupted values possibly making the heuristic func-
tion less informative. Nevertheless, the experiment illus-
trates that the correction methods are only slightly worse
than the baseline when the heuristic is inconsistent, and that
they can outperform the baseline for some of the PFNE val-
ues tested—see for instance Pessimistic with FPNE of 10−5.

Effects of FPNE In general, excluding the phenomenon
mentioned before in which errors can actually increase cov-
erage, having less errors, i.e., smaller FPNE value, resulted
in higher coverage. This is reasonable, as having a more ac-
curate heuristic is expected to guide the search faster towards
the goal. For all methods, the extreme case of FPNE of 10−1

yielded the lowest coverage. We also observe that the correc-
tion methods performed substantially better than the base-
line in terms of both coverage and suboptimality for higher
levels of errors; see for example all correction methods on
pancake, Pessimistic on topspin, and PMCD and CMCD on
15-puzzle with FPNE of 10−1, 10−2, and 10−3.

Comparison with ECC Methods

In addition to approximate computing schemes such as
Flikker (Liu et al. 2011), memory errors can also occur due
to phenomena such as electrical noise and radioactive parti-
cles. In these scenarios, ECCs are the standard mechanism to
mitigate memory errors, but they introduce energy and stor-
age costs stemming from the need to store redundant data
and to encode and decode each accessed memory position.
These costs depend on the level of protection required. ECC
schemes with better protection guarantees consume more
energy by handling larger amounts of redundant memory.
Energy consumed with memory operations is proportional
to the amount of memory handled. For example, an appli-
cation that employs an ECC scheme that uses 32 redundant
bytes for each 64 data bytes requires 50% more memory and
consumes 50% more energy in memory-related operations.

In this section we compare the energy cost of our detec-
tion and correction approaches with that of ECCs. In par-
ticular, we evaluate a range of different ECC costs, ranging
from a hypothetical 0% cost, up to 40%, which is the cost of
Redundant Array of Independent Memory — 26 redundant
bytes for each 64 data bytes (Meaney et al. 2012).

In this experiment we call “Full ECC” the approach that
uses ECC to protect all memory used by the search system.
We compare Full ECC with versions of our approaches that
use an ECC scheme to protect all data stored in memory
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Figure 2: Energy consumption for different ECCs.

except the PDB, which is protected by our methods. We as-
sume that the ECCs are able to fully correct all errors that
occur during search. In this experiment we disregard the en-
ergy consumed in the ECC’s coding and decoding opera-
tions. This is because, for comparison purposes, we assume
the overhead of these operations to be equivalent to the en-
ergy overhead of our approaches. This assumption is un-
likely to hold for the CMCD because it performs a search
lookahead, which can be an expensive operation, to correct
a node’s h-value. Nevertheless, it is reasonable to assume the
ECC’s coding and decoding operations to be similar to the
overhead incurred by the lightweight Pessimistic and PMCD
methods with respect to energy consumption.

We present the results in terms of normalized energy, de-
fined as NE = Y × X + (1 - Y). Here, Y is the fraction
of times that the algorithm accesses ECC-protected mem-
ory during search, and X is the energy cost associated with
the ECC. For a full ECC approach, all memory is ECC pro-
tected and so Y = 1. The result is that NE = X . For our
approaches, Y is the fraction of accesses made to non-PDB
data. We therefore must empirically measure Y in order to
calculate NE values for these techniques. To do so, we used
the GEM5 system (Binkert et al. 2011) to simulate an IDA*
search in a single-core machine with the memory hierarchy
of a typical desktop processor. Specifically, we consider a
machine with 32 KB of data and instruction caches, 256 KB
of L2 cache per core, and a shared 8 MB L3 cache.

Figure 2 presents the obtained results for a representative
instance of topspin (the NE-values are similar in all do-
mains tested), assuming an FPNE of 10−3 (the results were
nearly identical for other FPNE rates). As explained, the Full
ECC energy cost grows at the same pace of the assumed
ECC overheads. The other three curves use the proposed de-
tection and correction techniques, and apply ECC only to
non-PDB regions. The three correction strategies presented
similar results. It becomes clear that the overall energy con-
sumption is much lower when using our techniques. For ex-
ample, assuming an ECC cost of 12.5% (typical of Double
Error Detection codes), the energy overhead of the proposed

approach is only 1.6%, while the Full ECC approach must
consume 12.5% more energy for all accesses.

Related Work

Finocchi et al. (2007a) present a survey on reliable algo-
rithms for unreliable memory. There are works describing
resilient sorting algorithms and resilient data structures such
as search trees (Finocchi, Grandoni, and Italiano 2007b),
priority queues (Jørgensen, Moruz, and Mølhave 2007),
and dictionaries (Brodal et al. 2007). In contrast with our
work which assumes an implicit representation of the state
space, these works assume explicit representations of the
data structures and of the elements stored in them. More-
over, previous works on reliable algorithms assume an upper
bound on the number of errors that occur during the algo-
rithm’s execution. Such an assumption is too strong for state-
space search problems. This is because one usually does not
know a priori how long the search will take (Knuth 1975).
Our correction methods do not assume an upper bound on
the number of errors that might occur during search.

Wagstaff and Bornstein (2009) studied the effects of
memory unreliability caused by radiation on the k-means
algorithm (McQueen 1967). They discovered that imple-
mentations of k-means using kd-trees (Kanungo et al. 2002)
tended to perform poorly under radiation. Later, Gieseke et
al. (2012) developed a version of the kd-tree which is re-
silient to errors caused by radiation.

Bidirectional pathmax (BPMX) (Felner et al. 2011) (and
also pathmax (Mero 1984)) is a technique for dealing with
heuristic imprecisions that occur in inconsistent heuristics.
BPMX propagates the largest f -value encountered during
search while keeping the heuristic admissible. If applied to
the approximate computing setting, BPMX would propa-
gate corrupted h-values to different parts of the tree. While
BPMX always tries to increase a node’s f -value, our meth-
ods try to fix a node’s h-value. BPMX is applied to inconsis-
tent but admissible heuristics, and our methods to corrupted
(and thus potentially inadmissible) heuristics.

Concluding Remarks

In this paper we presented bounded-suboptimal algorithms
for correcting memory errors in memory-based heuristics
such as PDBs. IDA* using memory-based heuristics and our
correction algorithms are guaranteed to find a solution if one
exists and the solutions are guaranteed to cost no more than
3 · C∗. Our correction algorithms do not make any assump-
tions on the number of corruptions that occur during search.
We showed empirically that if IDA* does not use any cor-
rection technique, the solutions it finds might be arbitrar-
ily suboptimal. By contrast, IDA* using our methods found
near-optimal solutions in all problem instances it was able to
solve within the time limit. We also showed empirically the
advantages of our methods over traditional methods for deal-
ing with memory errors. Namely, our methods can be much
more energy and memory efficient than ECC schemes.
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