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Abstract

The sleep sets technique is a path-dependent pruning method
for state space search. In the past, the combination of sleep
sets with graph search algorithms that perform duplicate
elimination has often shown to be error-prone. In this paper,
we provide the theoretical basis for the integration of sleep
sets with common search algorithms in AI that perform du-
plicate elimination. Specifically, we investigate approaches
to safely integrate sleep sets with optimal (best-first) search
algorithms. Based on this theory, we provide an initial step
towards integrating sleep sets within A∗ and additional state
pruning techniques like strong stubborn sets. Our experi-
ments show slight, yet consistent improvements on the num-
ber of generated search nodes across a large number of stan-
dard domains from the international planning competitions.

Introduction

State space search is a popular approach to solve search
and planning tasks. To tackle the state explosion prob-
lem, techniques like move pruning (Burch and Holte 2012;
Holte and Burch 2014) and sleep sets (Godefroid and
Wolper 1992; Godefroid 1996; Wehrle and Helmert 2012;
Holte, Alkhazraji, and Wehrle 2015) have been investigated.
Both move pruning and sleep sets are path-dependent prun-
ing techniques that preserve the reachability of all reachable
states. Such techniques can be beneficial to reduce the num-
ber of repeated explorations of equal states in tree search
algorithms like IDA∗. In addition, previous work in com-
puter aided verification (e.g., Godefroid 1996) showed that
the combination with state reduction techniques can yield
synergy effects when applied with search algorithms that
perform duplicate elimination. Furthermore, for efficiency
reasons, some form of duplicate elimination (like cycle de-
tection) is often performed also for tree search algorithms.
Overall, the question arises to which extent duplicate elimi-
nation and path-dependent pruning can safely be integrated.

Generally, integrating path-dependent techniques with
graph search algorithms is non-trivial because subtle inter-
actions may occur that can render search algorithms subop-
timal or incomplete. For example, Holte (2013) has stud-
ied the interaction of duplicate elimination with move prun-
ing, showing that rather strict requirements are needed for
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a safe integration. In contrast, in their original form, sleep
sets have been proposed in several variants for depth-first
search with duplicate elimination, which turned out to be
incomplete later on, as shown by Koutny and Pietkiewicz-
Koutny (1995) as well as by Bosnacki et al. (2009). How-
ever, although corrected versions have been proposed, sleep
sets have hardly been investigated in combination with fur-
ther search algorithms that perform duplicate elimination. In
particular, the general question how they can be applied with
optimal (best-first) graph search algorithms has not yet been
answered so far. Although short counter-examples are usu-
ally preferred in the area of computer aided verification for
the purpose of debugging faulty system models, approaches
that guarantee optimality have mostly not been considered
by the verification community. In contrast, optimal solutions
are often desired for search and planning problems.

In this paper, we develop the theoretical basis for the in-
tegration of sleep sets with common search algorithms in AI
that perform duplicate elimination. To prepare the ground
for this integration, we provide a literature analysis of four
main variants of sleep sets when combined with different
forms of duplicate elimination and graph search algorithms.
Based on this analysis, we provide the theoretical founda-
tions on the combination of sleep sets with common best-
first (optimal) search algorithms that perform duplicate elim-
ination. Furthermore, as a first step towards the application
of sleep sets for state pruning, we propose an integration
of A∗ with sleep sets and strong stubborn sets for search
and planning (e.g., Alkhazraji et al. 2012). Our implementa-
tion in the Fast Downward planning system (Helmert 2006)
shows slight, yet consistent improvements regarding the size
of the generated search space on a large class of domains
from the international planning competitions.

Background

We consider search and planning problems formalized in
the SAS+ formalism (Bäckström and Nebel 1995), which
is based on a finite set V of finite-domain state variables. A
partial state is defined as an assignment from a subset of
V , denoted with vars(s), to the corresponding domain of
the variables in vars(s). For a partial state s and variable
v ∈ vars(s), the value of v in s is denoted with s[v]. A state
s is a partial state with vars(s) = V . We assume a given
initial state s0 and a partial goal state s�. We will denote
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partial states as sets of mappings from variables to values.
States can be transformed with operators o =

〈pre(o), eff (o)〉, where both the precondition pre(o) and the
effect eff (o) are partial states. The set of operators is de-
noted with O. An operator o ∈ O is applicable in a state s iff
pre(o)[v] = s[v] for all v ∈ vars(pre(o)), and applying an
applicable operator o in s yields the successor state s′ = o[s]
by changing the values in s of the variables in eff (o) accord-
ingly. The set of all applicable operators in state s is denoted
with app(s). Operators o have a non-negative cost cost(o).
If all o ∈ O have the same cost, the operators in O are called
unit-cost operators. Sequences of operators σ = o1 . . . on
that are sequentially applicable in the initial state s0, i.e., if
the state σ(s0) := on[. . . o1[s0] . . . ] is defined, are called
paths. The cost of σ is the sum of the costs of the operators
in σ. The length of σ is the number of operators in σ, and
denoted with |σ|. Our objective is to find a path to a goal
state, i.e., a state that complies with s�. Paths that lead to
goal states are called solutions.

Furthermore, we need the notion of commutativity
of operators. We say that o and o′ are commutative
if vars(eff (o)) ∩ vars(pre(o′)) = ∅, vars(eff (o′)) ∩
vars(pre(o)) = ∅, and there exists no v ∈ vars(eff (o)) ∩
vars(eff (o′)) such that eff (o)[v] �= eff (o′)[v]. We denote
commutative operators o and o′ with o �� o′. To define sleep
sets, we use the definition of Holte et al. (2015). Let <ss be
a total order on the set of operators O.
Definition 1. For a path σ = o1 . . . on, the sleep set ss(σ)
for σ is a set of operators that satisfies the following condi-
tions: For n = 0, i.e., for the empty path ε, ss(ε) := ∅ (the
empty set). For n > 0, ss(σ) := {o applicable in σ(s0) |
(on �� o) and (o <ss on or o ∈ ss(o1 . . . on−1))}.

Sleep sets can be used as an operator pruning technique:
for a state s reached by path σ, instead of applying all op-
erators that are applicable in s, only apply the applicable
operators in s that are not contained in ss(σ).
Example 1. Consider a planning problem with variables
V = {a, b} with dom(a) = dom(b) = {0, 1}, initial state
s0 = {a �→ 0, b �→ 0}, and goal s� = {a �→ 1, b �→ 1}.
The set of operators is given by O = {o1, o2}, where o1 =
〈{a �→ 0}; {a �→ 1}〉 and o2 = 〈{b �→ 0}; {b �→ 1}〉, and
cost(o1) = cost(o2) = 1. There are two solutions, namely
the operator sequences o1o2 and vice versa, o2o1. The state
space of the problem is depicted in Fig.1 on the left (where
we shortly denote states {a �→ i, b �→ j} as ij).
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Figure 1: State spaces without and with sleep sets pruning

When sleep set pruning is applied with the operator or-

dering o1 <ss o2, we observe that the sleep set of the
path σ = o2 is {o1}, because o1 is applicable in the state
s := {a �→ 0, b �→ 1}, o1 �� o2, and o1 <ss o2. Hence sleep
set pruning will not apply o1 in s, indicated with the dashed
arrow in Fig.1 on the right.

As the sleep sets pruning technique is path-dependent, it
cannot be directly applied to algorithms that perform du-
plicate elimination, because different paths to a state s can
cause different pruning decisions in s. To be able to describe
algorithms that apply sleep sets in combination with dupli-
cate elimination, we will use the notion of sleep sets defined
for several paths σ1, . . . , σn that all generate the same state
s. We will denote this set with ss(σ1, . . . , σn), which has
the intended meaning to carry the information which opera-
tors to prune in s when s has been reached by σ1, . . . , σn in
this particular order (i.e., σ1 first, σn last). The formal defi-
nition of the semantics of ss(σ1, . . . , σn) will depend on the
particular way sleep sets and duplicate elimination are inte-
grated. We will come back to this point in the next section.

As a basis for our further investigations, we provide an
analysis of several sleep set variants from the literature in
combination with graph search algorithms.

A Literature Analysis on Sleep Sets

In the literature (Godefroid and Wolper 1992; Godefroid,
Holzmann, and Pirottin 1993; 1995; Godefroid 1996; Holte,
Alkhazraji, and Wehrle 2015), four main variants of sleep
sets with duplicate elimination have been considered.

(A) Full duplicate elimination: Let s be a state first generated
by path σ. If s is revisited by path σ′, then s is immedi-
ately pruned as duplicate. Sleep sets are computed (only
once per state) as in Def. 1, and ss(σ, σ′) does not need to
be computed because s is pruned as duplicate in this case.
This variant has been applied in a first approach on sleep
sets (Godefroid and Wolper 1992), used within depth-first
search. However, as the sleep sets’ pruning decisions
are path-dependent, reaching a state s via different paths
can cause different operators to be pruned in s when s
is revisited. As a consequence, the above variant is in-
complete, as shown by counter-examples by Koutny and
Pietkiewicz-Koutny (1995)1 and Bosnacki et al. (2009).

(B) States that are revisited are pruned as duplicates as in (A),
but the definition of sleep sets is modified compared to
Def. 1. In a nutshell, in contrast to (A), operators that
close a cycle in the state space are treated in a special way
for the sleep sets computation. To describe this modifi-
cation in more detail, we must first provide some more
technical details how sleep sets are typically incremen-
tally computed. Firstly, (i) every time a successor path
σo is generated from path σ, all operators from the sleep
set ss(σ) of the parent path σ that are commutative with
o are propagated to ss(σo). Secondly, (ii) to accommo-
date for the ordering condition of sleep sets (i.e., for the
“o <ss on” part in Def. 1), after having generated the

1In the paper by Koutny and Pietkiewicz-Koutny (1995), a mod-
ified sleep set algorithm is considered, as discussed in (B). How-
ever, their counter-example applies to (A) as well.
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successor path σo, o is (locally) included in ss(σ) to be
propagated to the further successor paths σo′ of σ gener-
ated with operators o′ with o <ss o′.
To avoid operators to be propagated in case a cycle is
closed, the second step (ii) is restricted to be performed
only if σo does not yield a state that is already on the
search stack (Godefroid, Holzmann, and Pirottin 1993).
In other words, for a state s, assume that applying o in s
closes a cycle, i.e., assume that the application of o in s
yields a state that is on the search stack. Then o is ex-
cluded from the sleep sets of those successor states s′ of
s that are generated with operators o′ with o <ss o′.
However, the resulting algorithm is still incomplete,
as shown by the counter-example by Koutny and
Pietkiewicz-Koutny (1995). In an additional refinement,
the first step (i) is refined such that cycle-closing operators
are ruled out of sleep sets at the time a state is taken from
the stack, i.e., before the recursive depth-first search call
for the successors. The final algorithm (Godefroid, Holz-
mann, and Pirottin 1995) resolves the issue of incomplete-
ness, by guaranteeing that every time o closes a cycle, o
is not contained in the sleep set of the parent path.

(C) Let s be a state first reached by σ1, and then revisited
by paths σ2, . . . , σn. The sleep set ss(σ1, . . . , σn) is in-
ductively defined as ss(σ1, . . . , σn−1) ∩ ss(σn). Infor-
mally, the sleep set after exploring σn is updated ac-
cording to ss(σn) such that all operators are applied
according to ss(σn) that have been pruned according
to ss(σ1, . . . , σn−1) in the corresponding state before.
States are pruned as duplicates if ss(σ1, . . . , σn) = ∅.
Informally, the intersection of sleep sets is needed in this
variant because the intersection ensures that the remaining
operators in the updated sleep set can still be pruned (ac-
cording to all the sleep sets computed for the state), corre-
sponding to the pruning information obtained on all paths
on which the state has been reached so far. This variant
of updating sleep sets has been proposed by Godefroid
(1996) – we will come back to it in the next section.

(D) Let s be a state revisited on a cycle, i.e., let s first be
generated by path σ = o1 . . . on and afterwards by path
σ′ = o1 . . . onon+1 . . . on+k for k ≥ 1. Then s is pruned
as duplicate, and as in case (A), ss(σ, σ′) does not need to
be computed. For all the remaining states reached by un-
cyclic paths σ1, . . . , σn, an entirely new sleep set is com-
puted according to Def. 1, i.e., ss(σ1, . . . , σn) := ss(σn).
This variant has been proposed for planning (Holte, Alk-
hazraji, and Wehrle 2015) within IDA∗ and cycle detec-
tion. Holte et al. provide a more general definition of
sleep sets that allows for more pruning. However, they
did not provide a proof that IDA∗ with sleep sets and cy-
cle detection is completeness and optimality preserving.
We will show that this is indeed the case.

In most of these related papers, there is no empirical ex-
perimental study of sleep sets in combination with duplicate
elimination. As an exception, Holte et al. provide an ex-
perimental study, focusing on a comparison of the pruning
power of sleep sets compared to their generalization.

Sleep Sets with Duplicate Elimination

We consider the combination of sleep sets with graph search
algorithms, with a focus on optimal search algorithms. For
our investigations, we need some more terminology. Fol-
lowing Holte et al. (2015), orderings <O on the set O of
operators induce a lexicographical ordering on the set of op-
erators sequences: for operator sequences σ = o1 . . . on and
σ′ = o′1 . . . o

′
m, if |σ| < |σ′|, then σ <O σ′; if |σ| = |σ′|,

then σ <O σ′ iff oi <O o′i, where i is the index such that
ok = o′k for all 1 ≤ k ≤ i − 1, and oi �= o′i. For an order-
ing defined on O, we will use the same symbol for the in-
duced lexicographical ordering on operator sequences when
the meaning is clear from the context.

For states s and s′ such that s′ is reachable from s, and for
the given sleep sets ordering <ss , let min(s, s′) denote the
least-cost operator sequence (among all operator sequences)
that is applicable in s and leads to s′ and that is minimal
according to <ss . Some of our investigations are based on
the following theorem by Holte et al. (2015).

Theorem 1 (Holte et al., 2015). Let s, s′ be states with s′
reachable from s. Let min(s, s′) := o1 . . . on. Then ok /∈
ss(o1 . . . ok−1) for all k with 1 ≤ k ≤ n.

In particular, the theorem states that for all states reach-
able from s0, the path min(s0, s) is preserved by sleep sets.
This result in turn provides us with a sufficient criterion for
complete and optimal graph search algorithm applied with
sleep sets: if min(s0, s) is preserved, then by Theorem 1
completeness and optimality are preserved as well.

For a search algorithm A that works on the operator set O,
we assume a total ordering <A on O in which A generates
its successor states. Furthermore, if A is applied with sleep
sets, we assume that <A and <ss are identical.

Breadth-First Search

We consider the combination of breadth-first search with
variant (A) discussed in the last section: for state s and path
σ that generates s for the first time, operators are pruned
in s according to ss(σ), and s is pruned when reached by
other paths later on. We call this combination BFS ss . The
following theorem shows that BFS ss inherits completeness
and optimality from standard breadth-first search.

Theorem 2. BFS ss is complete. When applied with unit-
cost operators, BFS ss is optimal.

The proof of Theorem 2 will rely on showing that BFS ss

preserves min(s0, s) for all reachable states s when <A is
equal to <ss . For the proof, we first observe in the following
lemma that prefixes of minimal paths are minimal as well.

Lemma 1. Let s be a reachable state, and let min(s0, s) =
o1 . . . on be the minimal path from s0 to s. Then for all i ∈
{1, . . . , n − 1} and si := oi[. . . o1[s0] . . . ]: min(s0, si) =
o1 . . . oi is the minimal path from s0 to si.

Proof. Observe that for paths σ and σ′, if σ <ss σ′, then
σX <ss σ′X for all operator sequences X . (*)

Consider σi := o1 . . . oi and si := oi[. . . o1[s0] . . . ] for
some i ∈ {1, . . . , n − 1}. First, we observe that cost(σi)
is minimal among all paths to si (otherwise, if there was a

4



cheaper path σ′ to si, then σ′oi+1 . . . on would be cheaper
than min(s0, s)). Second, consider a path σ′ to si with
cost(σ′) = cost(σi). If σ′ <ss σi, then by (*) for
X = oi+1 . . . on, σ′X <ss σiX = min(s0, s), which
again would imply that min(s0, s) is not the minimal path
to s.

Proof. (Theorem 2) Let s be a state reachable from s0. Let
min(s0, s) = o1 . . . on, and σ = o′1 . . . o

′
m be a path with

σ �= min(s0, s) that reaches s. We show that standard
breadth-first search using <A generates s with min(s0, s)
first, i.e., before it generates s with σ. To see this, consider
the following cases:

1. n < m: min(s0, s) is explored before σ because breadth-
first search explores shorter paths before longer ones.

2. n > m cannot occur because it would contradict the as-
sumption that min(s0, s) is minimal.

3. n = m: Let i be the left-most position where min(s0, s)
and σ differ, i.e., oi �= o′i and oj = o′j for j < i. By
assumption, <ss is equal to <A, and min(s0, s) <ss σ,
hence min(s0, s) <A σ and oi <A o′i. It follows
that breadth-first search explores the path o1 . . . oi before
o′1 . . . o

′
i, and hence (by exploring states in a first-in first-

out manner) also their completion min(s0, s) before σ.

By Lemma 1, the prefixes of min(s0, s) are minimal as
well, hence it follows that all states s1, . . . , sn generated on
the path from s0 to s are generated on the path min(s0, s)
first. It follows that s1, . . . , sn are not pruned by breadth-
first search as duplicate states. By Theorem 1, it follows
that additionally computing sleep sets for these prefix paths
that generate s1, . . . , sn, which yields BFS ss , preserves
min(s0, s), showing the claim.

As a general observation, to preserve optimality of graph
search algorithms when applied with sleep sets, it is suffi-
cient to guarantee that states on min(s0, s) are not pruned
as duplicates. The theorem shows that this is the case for
breadth-first search even with full duplicate elimination ac-
cording to variant (A), because the min(s0, s) paths are gen-
erated first. In general, we do not have this property, e.g.,
with Dijkstra’s algorithm or more generally, with A∗. There-
fore, sleep set updates will be needed.

A∗ Search

A∗ can be combined with sleep sets variant (C) described
in the literature review section, by a reduction to the sleep
set algorithm proposed by Godefroid (1996). In his mono-
graph, Godefroid proposes this algorithm directly in combi-
nation with the persistent sets pruning technique. For ease
of presentation, we will first discuss his algorithm and the
adaptation to A∗ for the special case without persistent sets,
which amounts to the “pure” combination of A∗ and sleep
sets. We will come back to the combination with additional
pruning techniques (based on strong stubborn sets, which is
a variant of persistent sets) in the next section.

We do not give pseudo code of Godefroid’s algorithm,
but only provide a short description of the main points (for

more details, the reader is referred to his monograph, Sec-
tion 5.2). Godefroid uses a stack as open list, and stores
expanded states (together with their associated sleep set) in
a hash table as closed list. States that are generated and rec-
ognized as duplicates are handled by updating the associated
sleep set: Consider a state s that has been generated by paths
σ1, . . . , σn, and is generated again by path σ. If s is con-
tained in closed, then all operators in ss(σ1, . . . , σn)\ ss(σ)
are additionally applied in s. In particular, states are pruned
as duplicates only in case the corresponding sleep set has
become empty.

We adapt Godefroid’s algorithm to emulate A∗ combined
with sleep sets, called A∗

ss in the following. For simplic-
ity, we assume consistent heuristics (for inconsistent heuris-
tics, some more cases on state reopening need to be dis-
tinguished). In a nutshell, compared to Godefroid’s algo-
rithm, A∗

ss differs in three main points: Firstly, although
Godefroid’s algorithm uses a stack as open list, the com-
pleteness proof that all states of the state space can still be
generated (Theorem 5.4 in the monograph) does not rely
on the stack behavior. Applying the algorithm with a pri-
ority queue retains the completeness property (we will for-
malize this claim below). Secondly, like A∗, we addition-
ally need to check in A∗

ss for the goal condition when states
are popped from open. These adaptations are trivial exten-
sions. In addition, assume a state s that has been gener-
ated by paths σ1, . . . , σn, and assume s is generated again
by path σ. If s is contained in open and not yet in closed,
then the sleep set of s in open is updated according to σ, i.e.,
ss(σ1, . . . , σn, σ) := ss(σ1, . . . , σn) ∩ ss(σ).

We will describe A∗
ss in more detail in the following.

To avoid confusion, we slightly extend the notation on
sleep sets ss(σ1, . . . , σn) for states s reached on several
paths σ1, . . . , σn: To make clear which state we are talking
about, we explicitly label the state s reached by path σ with
σs. Accordingly, the sleep set of state s reached by paths
σs
1, . . . , σ

s
n in this order is denoted with ss(σs

1, . . . , σ
s
n).

Compared to A∗, A∗
ss differs in the computation of suc-

cessor states. Assuming a state s that is subject to expansion,
A∗

ss computes successor states of s as follows.

Computation of operators to be applied Instead of con-
sidering all applicable operators in s (like A∗), the set of
operators applied in s by A∗

ss is defined as

app(s) \ ss(σs
1, . . . , σ

s
n),

where σs
1, . . . , σ

s
n are the paths by which s has been gener-

ated at the time when s is expanded.

Operator application and sleep set updates A∗
ss applies

the operators in app(s) \ ss(σs
1, . . . , σ

s
n) and computes (or

updates, respectively) the corresponding sleep set of the
successor states. The pseudo code of this expansion step,
called EXPAND(s, app(s), ss(σs

1, . . . , σ
s
n)) in the following,

is given in Fig. 2.
Assuming that σs is the path on which s has been

reached last, EXPAND(s, app(s), ss(σs
1, . . . , σ

s
n)) computes

the sleep set of the successor state s′ reached on the path
σso (Line 5–6). The sleep set of s′ is updated according to
variant (C) as described in the sleep sets literature analysis
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1: function EXPAND(s, app(s), ss(σs
1, . . . , σ

s
n))

2: for o ∈ app(s) \ ss(σs
1, . . . , σ

s
n) do

3: s′ ← o(s)
4: σs ← minimal cost generating path of s
5: X ← ss(σs

1, . . . , σ
s
n)∪{o′ | o′ <ss o∧o′ ∈ app(s)}

6: ss(σso) ← {o′ | o′ ∈ X and o′ �� o}
7: ss(σs′

1 , . . . , σs′
m, σso) ← ss(σs′

1 , . . . , σs′
m) ∩ ss(σso)

8: if s′ ∈ Closed then
9: applicable sleep ← ss(σs′

1 , . . . , σs′
m) \ ss(σso)

10: EXPAND (s′, applicable sleep, ∅)
11: else
12: n′ ← make node(s′)
13: Open ← Open ∪ {n′}
14: end if
15: end for
16: end function

Figure 2: Successor generation and sleep set updates of A∗
ss

section (Line 7). If s′ is closed, then s′ is further expanded
by generating all successors that are not pruned according
to the most recently computed sleep set (Line 8–10). Recall
that σs′

1 , . . . , σs′
m are the paths by which s′ has been reached

before reaching s′ on σso. At this point, we also observe that
the particular function signature (which includes app(s) and
the sleep set of s) is convenient for the recursive call in Line
10. Finally, in Line 11–13, we cover the case where s′ is ei-
ther generated for the first time, or previously generated but
not expanded yet, i.e. s′ is already in open.

Theorem 3. For admissible and consistent heuristics, A∗
ss

is complete and optimal.

Proof. The proof is a special case of the proof of Theorem 6,
which shows the claim for A∗

ss with additional state pruning
based on strong stubborn sets.

IDA∗ With Cycle Detection

Sleep sets have already been applied with a limited form of
duplicate elimination: Holte et al. (2015) combine IDA∗

with sleep sets and cycle detection as described in part (D)
of the literature analysis section: States that are revisited on
a cycle are pruned as duplicates, and for all other states s that
are revisited, a sleep set is re-computed according to the last
path that generated s. We call this algorithm IDA∗

cyc . Holte
et al. did not provide a formal correctness proof in their pa-
per that IDA∗

cyc preserves the completeness and optimality
of IDA∗. The following theorem shows that this is indeed
the case. For an operator sequence X applicable in state s,
we shortly denote the state obtained by applying X in s by
X[s].

Theorem 4. IDA∗
cyc is complete. For admissible heuristics,

IDA∗
cyc is optimal.

The proof closely follows the structure of the proof by
Holte and Burch (2014) that move pruning can safely be
used with cycle detection.

Proof. Let s be a state that is reachable from s0. We show
that cycle detection does not eliminate min(s0, s). Assume

that cycle detection eliminates min(s0, s). This means that
min(s0, s) must contain a cycle, i.e., min(s0, s) = PCQ for
operator sequences P , C, Q, with |C| > 0 and PC[s0] =
P [s0]. This implies that PQ is a path from s0 to s with
cost(PQ) ≤ cost(min(s0, s)) and PQ <ss min(s0, s),
which contradicts the definition of min(s0, s), hence show-
ing that min(s0, s) is not eliminated. From Theorem 1, it
follows that min(s0, s) is preserved by sleep sets as well.
Together with the properties that IDA∗ is complete (and op-
timal for admissible heuristics), this shows the claim.

IDA∗ With Heuristic Cutoffs

With the same reasoning of Holte and Burch (2014) that
move pruning can safely be used with heuristic cutoffs, sleep
sets can safely be applied with IDA∗ and heuristic cutoffs:
For the cost C∗ of a cheapest path to a goal state, heuris-
tic cutoffs use a bound B ≥ C∗, and prune all paths with
strictly larger costs than B. Let IDA∗

hc denote IDA∗ with
bound B ≥ C∗ combined with sleep sets.

Theorem 5. IDA∗
hc with admissible heuristics is complete

and optimal.

Proof. Let h be an admissible heuristic, and let s be a
state that is reachable from s0. We show that heuristic cut-
offs do not eliminate min(s0, s). Let operator sequence
P be a prefix of min(s0, s). As h is admissible, we have
cost(P ) + h(P [s0]) ≤ cost(min(s0, s)) since P is a pre-
fix of min(s0, s). As cost(min(s0, s)) = C∗, we have
cost(P ) + h(P [s0]) ≤ C∗. Heuristic cutoffs can only
prune paths with costs strictly larger than C∗, hence P is
not pruned. Since P has been chosen as an arbitrary prefix
of min(s0, s) (including min(s0, s) itself), this shows that
heuristic cutoffs do not prune min(s0, s).

Combining Sleep Sets With State Pruning

When applying sleep sets within a search algorithm, the set
of generated states is equal to the set of generated states
without sleep sets pruning. Hence, a natural question is
whether sleep sets can be applied in graph search algo-
rithms in combination with further pruning techniques that
also prune states. Following Godefroid (1996), we provide
an initial step of integrating sleep sets with strong stubborn
sets, where we particularly investigate optimality of the re-
maining pruning technique.

Godefroid showed that sleep sets can safely be combined
with persistent sets (1996), in the sense that the combined
algorithm still preserves all deadlocks of the system. A per-
sistent set in a state s is a subset of the applicable oper-
ators in s, where the applicable operators that are not in-
cluded in the persistent set are pruned. Strong stubborn
sets are a variant of persistent sets, which have originally
been proposed for model checking Petri nets (Valmari 1989),
and recently been applied for domain-independent plan-
ning as search (Alkhazraji et al. 2012; Wehrle et al. 2013;
Wehrle and Helmert 2014). In contrast to sleep sets, strong
stubborn sets take goal states into account for their pruning
decision. In a nutshell, for a given state s, a strong stubborn
set Ts for s contains i) a disjunctive action landmark in s, ii)
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for all operators o in Ts that are applicable in s all interfer-
ing operators with o, and iii) for all operators o in Ts that are
not applicable in s a set N of operators such that all plans
starting in s that contain o also contain an operator o′ ∈ N
before the first occurrence of o (such sets N are called nec-
essary enabling sets). The set of applicable operators of Ts

is a subset of the applicable operators in s. For the follow-
ing investigations, it is not necessary to understand further
details of strong stubborn sets and how they can be com-
puted – the only important property that will be needed for
our discussions and proofs is the following: When applying
A∗ with strong stubborn sets, then for every state s and for
every solution π that starts in s, at least one permutation of π
is preserved. In more detail, among all permutations of π’s
operators that lead from s to a goal state, there is at least one
first operator of such a permutation that is not pruned in s.
Example 2. Consider again the problem in Fig. 1, consist-
ing of two independent operators o1 and o2, initial state 00
and goal state 11. The original state space is depicted on
the left in Fig. 3. In contrast to sleep sets, strong stubborn
sets can recognize that among the two solutions, only one
needs to be explored, and in particular, one of the “inter-
mediate” states 10 and 01 does not need to be generated.
The resulting reduced state space is depicted in Fig. 3 on the
right. Among the solutions π1 = o1o2 and π2 = o2o1, the
first operator of π1 is preserved in this example.

00

10 01

11

o1 o2

o2 o1

00

10

11

o1

o2

Figure 3: State spaces without and with strong stubborn sets

Along the lines of Godefroid, we show that strong stub-
born sets can be combined with sleep sets within A∗

ss in a
completeness and optimality preserving way. The resulting
algorithm, called A∗

sssss in the following, works exactly like
A∗

ss , except that the set of operators applied in a state s is
defined as the applicable operators from the set

Ts \ ss(σs
1, . . . , σ

s
n)

instead of app(s) \ ss(σs
1, . . . , σ

s
n) (see Line 2 in Fig. 2),

where Ts is a strong stubborn set, and σs
1, . . . , σ

s
n are the

paths that have generated s.
The following notation and correctness proofs closely fol-

low those given by Godefroid for deadlock detection in con-
current systems (1996). Let sg be a goal state reachable
from a state s, i.e., there is an operator sequence σ such
that applying σ in s leads to sg . The equivalence class of
permutation equivalent paths, consisting of all paths σ̄ that
are permutations of the operators in σ such that σ̄ still leads
from s to sg , is denoted with [σ]s. Formally, [σ]s := {σ̄ |
σ̄ is a permutation of σ leading from s to a goal state}.

For [σ]s, we denote the set Σs,σ := {oi1 | σ ∈ [σ]s, σ =
oi1o

i
2 . . . o

i
ni
} the set of initial operators of [σ]s, i.e., the set

that contains the first operators of all paths in [σ]s.

Theorem 6. Let s be a state, and let sg be a goal state reach-
able from s via operator sequence σ (i.e., σ(s) = sg). Let
σ1, . . . , σn be the paths explored by A∗

sssss that generated s
in this particular order before termination (i.e., s is gener-
ated by σ1 first, and by σn last).

If Σs,σ ∩ ss(σ1, . . . , σn) = ∅, then there is a permutation
σ̄ ∈ [σ]s that is preserved by A∗

sssss .

Before giving the proof, let us discuss the claim and its
implications in some more detail. Theorem 6 states that if
the (updated) sleep set of a state s eventually does not con-
tain any first operator of the sequences in [σ]s, then at least
one of these sequences is preserved. As discussed by Gode-
froid, this particularly implies the completeness of A∗

sssss
because the sleep set of the initial state is empty by defini-
tion. In addition, we observe that A∗

sssss remains optimal be-
cause for all solutions, at least one permutation is preserved.

Proof. (Theorem 6) Consider the permutation equivalent
paths [σ]s of σ, and the set of initial operators Σs,σ of [σ]s.
We show by induction on the length of σ that at least one
permutation sequence σ̄ ∈ [σ]s is preserved by A∗

sssss . If
|σ| = 0, the result is immediate.

If |σ| > 0, then there is an operator sequence of length
|σ| from s to sg in the state space induced by A∗ and strong
stubborn sets. The proof will show that such an operator
sequence to reach sg still exists in the state space induced
by A∗

sssss .
First, we observe that there is o ∈ Σs,σ that is applied

by A∗
sssss in s: To see this, consider the first sequence σs

k
(1 ≤ k ≤ n) by which state s is generated such that
Σs,σ ∩ ss(σs

1, . . . , σ
s
k) = ∅ (i.e., Σs,σ ∩ ss(σs

1, . . . , σ
s
i ) �=

∅ for 1 ≤ i ≤ k − 1). Such σs
k must exist because

Σs,σ ∩ ss(σs
1, . . . , σ

s
n) = ∅ by assumption, and by defini-

tion, sleep sets can only reduce when a state is revisited.
Now consider the expansion process of s when s is

reached by σs
k. Let o be the operator in Σs,σ that is applied

in s and is smallest among the remaining operators in Σs,σ

(according to <ss ) that have not yet been applied in s. Such
an operator must exist because Σs,σ∩ss(σs

1, . . . , σ
s
k−1) �= ∅.

Let s′ := o[s]. As o ∈ Σs,σ , the goal state sg is reachable
from s′ with an operator sequence σ′ with |σ′| = |σ| − 1.

Consider the paths ρ1, . . . , ρt explored by A∗
sssss that gen-

erate s′. To conclude the inductive proof argument, we will
show (by contradiction) that Σs′,σ′ ∩ ss(ρs

′
1 , . . . , ρ

s′
t ) = ∅.

Assume Σs′,σ′ ∩ ss(ρs
′

1 , . . . , ρ
s′
t ) �= ∅. Then there exists

an operator ō ∈ Σs′,σ′
with ō ∈ ss(ρs

′
1 , . . . , ρ

s′
m) for all

1 ≤ m ≤ t. In particular, ō ∈ ss(ρs
′

1 , . . . , (σko)
s′), which

implies that o and ō are commutative. It follows that ō
is applicable in s (because ō is applicable in s′, and ō is
not disabled by o), and furthermore, ō is an initial opera-
tor of a permutation of σ which leads to sg , i.e., ō ∈ Σs,σ .
On the other hand, as ō ∈ ss(ρs

′
1 , . . . , (σko)

s′), it follows
that ō ∈ ss(σs

1, . . . , σ
s
k) already (and ō is propagated to

ss(ρs
′

1 , . . . , (σko)
s′) afterwards), or ō has been added to
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ss(ρs
′

1 , . . . , (σko)
s′) after applying o in s (meaning that ō is

applied before o in s, i.e., ō <ss o). However, both of these
cases cannot happen: The former case is a contradiction to
the fact that ō ∈ Σs,σ (because Σs,σ ∩ ss(σs

1, . . . , σ
s
k) = ∅),

and the latter case is a contradiction to the choice of o be-
ing the smallest operator according to <ss . The induction
continues from s′ until sg is reached.

Corollary 1. A∗
sssss inherits the completeness and optimal-

ity properties from A∗
ss .

Proof. Completeness follows because the sleep set of the
initial state is empty by definition. Optimality follows be-
cause for every solution π, a permutation of π is preserved,
hence in particular for every optimal solution.

Experimental Evaluation

We have implemented the combined approach in the Fast
Downward planning system (Helmert 2006) in order to ex-
perimentally evaluate the impact of sleep sets combined with
strong stubborn sets on the size of the generated state space.
The experiments are performed on a cluster with Intel Xeon
E5-2650v2 2.6 GHz CPUs, with a timeout of 30 minutes
and a memory bound of 3 GB per run. We consider the
STRIPS planning domains of the deterministic, sequential
optimal track of the recent international planning competi-
tions (IPC-08, IPC-11, and IPC-14), with an overall number
of 33 domains and 461 problems.

Figure 4 shows an overview of the generated search nodes
(i.e., the summed number each search node has been gener-
ated) per domain on the commonly solved problems. We
compare A∗ and strong stubborn sets (Alkhazraji et al.
2012), called A∗

sss in the following, with its sleep sets exten-
sion A∗

sssss , excluding the last f -layer to avoid tie-breaking
issues. The pruning techniques can be applied with arbitrary
heuristics – in our experiments, we have used the LM-cut
heuristic (Helmert and Domshlak 2009), which is a state-
of-the-art heuristic for optimal planning. The numbers of
commonly solved problems are given in parenthesis after the
domain names, best results are shown in bold.

As the overall picture, we observe a consistent improve-
ment regarding the number of generated nodes per domain.
Although the savings are slight, the results show that the
node generations can be further reduced compared to pure
strong stubborn set pruning. In addition to this “direct” com-
bination, which has already been proposed by Godefroid,
further research on such combinations could be beneficial to
obtain further reductions.

To get a more detailed overview, we provide the num-
ber of generated nodes on a per-problem basis for the do-
mains from the most recent competition (IPC-14) in Fig-
ure 5, again excluding the last f -layer to avoid tie-breaking
issues. Domains in which the same problems are solved with
the same number of node generations by A∗

sss and A∗
sssss are

left out. Figure 5 lists the generated search nodes as well as
the search time for all problems which at least one of A∗

sss
and A∗

sssss has solved within our resource limits.
The results show that for most problems, the number of

node generations for A∗
sssss is at most as high as for A∗

sss

Generated nodes A∗
sssss A∗

sss

barman-opt11-strips (4) 22731591 22882501
elevators-opt08-strips (22) 38380306 48873617
elevators-opt11-strips (18) 36666539 46248291
floortile-opt11-strips (7) 29401436 34912718
floortile-opt14-strips (6) 52200140 61804871
ged-opt14-strips (15) 9064612 9064612
hiking-opt14-strips (9) 30638123 30742124
nomystery-opt11-strips (14) 387045 410776
openstacks-opt08-strips (20) 5777074 6129805
openstacks-opt11-strips (15) 5763904 6116635
openstacks-opt14-strips (3) 3866657 4138032
parcprinter-08-strips (30) 4877 4877
parcprinter-opt11-strips (20) 1884 1884
parking-opt11-strips (2) 555418 560427
parking-opt14-strips (3) 2253957 2274968
pegsol-08-strips (28) 54045223 54045223
pegsol-opt11-strips (18) 54408002 54408002
scanalyzer-08-strips (12) 13504754 13942542
scanalyzer-opt11-strips (9) 13504746 13942534
sokoban-opt08-strips (29) 38525983 38525983
sokoban-opt11-strips (20) 8310909 8310909
tetris-opt14-strips (5) 1150721 1280023
tidybot-opt11-strips (14) 299325 308515
tidybot-opt14-strips (8) 269184 269891
transport-opt08-strips (11) 302942 426271
transport-opt11-strips (6) 300508 423268
transport-opt14-strips (6) 2936311 3396159
visitall-opt11-strips (11) 23775034 23775034
visitall-opt14-strips (5) 2530507 2530507
woodworking-opt08-strips (27) 1722277 2583855
woodworking-opt11-strips (19) 976547 1431694

Sum (427) 454256536 493766548

Figure 4: Sum of generated search nodes per domain on
commonly solved problems (excluding the last f -layer)

(with the exception of three problems in the Hiking domain,
see below for a discussion on this). Again, we observe that
the node savings are mostly slight, yet some domains show
that more additional pruning can be gained – for example,
in the Transport domain, the number of generated nodes are
roughly cut in half in the largest commonly solved problem
(#14). We remark that inconsistent heuristics (like LM-cut)
can cause A∗

sssss to generate more nodes than A∗
sss . This

presumably happens in the three Hiking problems where
slightly more nodes are generated when sleep sets are ap-
plied in addition to stubborn set pruning.

We finally also remark that the savings in node genera-
tions do not pay off in terms of coverage (i.e., number of
solved problems) for the considered “direct” combination of
sleep sets and strong stubborn sets: The coverage of A∗

sss
and A∗

sssss with LM-cut is equal in all of the 33 domains.

Conclusions

The paper sheds light on sleep sets combined with duplicate
elimination. We have provided a literature analysis of sleep
sets with duplicate elimination from computer aided verifi-
cation and from artificial intelligence. Based on this analy-
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Generated nodes Search time

Problem A∗
sssss A∗

sss A∗
sssss A∗

sss

floortile-opt14-strips

p01-4-3-2 1242815 1510800 32.11 35.13
p01-4-4-2 29688755 35050715 1090.50 1186.70
p01-5-3-2 4724922 5612842 153.86 170.11
p02-5-3-2 7206855 8537779 226.70 245.06
p03-4-3-2 1784070 2141977 44.69 48.49
p03-5-3-2 7552723 8950758 238.01 257.55

hiking-opt14-strips

ptesting-1-2-3 1901 1901 0.01 0.01

ptesting-1-2-4 15294 15294 0.18 0.18

ptesting-1-2-5 69869 69749 1.26 1.23

ptesting-1-2-7 634939 634379 21.81 21.50

ptesting-1-2-8 1496276 1495364 67.06 66.22

ptesting-2-2-3 97479 98151 2.99 2.72

ptesting-2-2-4 4702120 4710935 273.92 265.36

ptesting-2-3-4 22911601 22969357 1590.73 1490.90

ptesting-2-4-3 708644 746994 33.43 28.86

openstacks-opt14-strips

p20 1 1710721 1764993 816.36 803.53

p20 2 1939861 2156773 608.38 596.98

p20 3 216075 216266 20.34 19.83

parking-opt14-strips

p 12 7-01 648718 653952 439.45 430.86

p 12 7-02 1305778 1318576 868.17 853.79

p 12 7-03 299461 302440 216.37 212.79

tetris-opt14-strips

p01-8 599145 645908 1530.18 1135.26

p02-4 71 140 0.09 0.08

p02-6 496359 568559 1208.25 893.27

p03-4 6442 7635 2.63 2.18

p05-6 48704 57781 36.93 33.32

tidybot-opt14-strips

p02 27104 27128 540.48 534.46

p03 31957 32420 532.31 534.35
p04 3202 3203 53.44 52.65

p08 9748 9822 152.59 153.74
p11 10775 10817 104.06 103.98

p12 153555 153583 1545.73 1526.25

p13 29865 29938 283.56 283.98
p14 2978 2980 50.51 50.58

transport-opt14-strips

p01 1916 3073 0.14 0.17
p02 210118 227350 23.25 24.41
p03 215554 268080 67.49 89.86
p07 2310840 2513397 236.03 233.54

p13 10979 19434 4.51 5.53
p14 186904 364825 164.77 230.93

Figure 5: Node generations (excluding the last f -layer) and
search time on a per-problem basis for IPC-14 domains

sis, we have provided approaches to combine sleep sets with
common optimal best-first graph search algorithms and with
strong stubborn sets. For the future, the paper motivates the
further investigation of sleep sets combined with state reduc-
tion techniques. As a proof of concept, the “direct” combi-
nation of sleep sets with strong stubborn sets has shown that
it is possible to further reduce the number of node genera-
tions compared to strong stubborn sets. It will be interest-
ing to investigate if sleep sets can be integrated more tightly
with state pruning techniques, and if further (and stronger)
synergy effects can be achieved.
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