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Abstract

We compare five any-angle path-planning algorithms,
Theta*, Block A*, Field D*, ANYA, and Any-Angle Sub-
goal Graphs in terms of solution quality and runtime. Any-
angle path-planning is a fairly new research area, and no di-
rect comparison exists between these algorithms. We imple-
ment each algorithm from scratch and use similar implemen-
tations to provide a fair comparison.

Introduction
For path planning in video games and robotics, one usually
discretizes a continuous environment into a graph (such as a
grid) and searches this graph with an optimal path-planning
algorithm (such as A*) to find a shortest path on the graph.
The resulting path can be unrealistic looking and longer than
a shortest path on the continuous environment. This path can
be smoothed after the search by replacing local parts of the
path by straight lines (Botea, Müller, and Schaeffer 2004).
However, the smoothed path can still be long since its ho-
motopy often remains unchanged.

Any-angle path-planning algorithms interleave the
smoothing and search in order to find paths that are
shorter on the continuous environment. They propa-
gate information along the edges of the graph during
search, but the movements are no longer constrained to
the edges. There have been comparisons between any-
angle path-planning algorithms (Nash and Koenig 2013;
Daniel et al. 2010; Yap et al. 2011b; 2011a;
Uras and Koenig 2015), but these comparisons either
lack an experimental evaluation or provide results for
only a small number of any-angle path-planning algo-
rithms. Combining the results from different papers into
a larger comparison between the various algorithms is
tricky because different papers provide results for different
implementations of the algorithms and compare them using
different experimental setups.

In this paper, we therefore implement and compare five
state-of-the-art any-angle path-planning algorithms, namely
Theta* (Daniel et al. 2010), Block A* (Yap et al. 2011b;
2011a), Field D* (Ferguson and Stentz 2006), ANYA (Hara-
bor and Grastien 2013), and Any-Angle Subgoal Graphs
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(Uras and Koenig 2015) in terms of runtime and path length.
Of particular note among these algorithms is ANYA, which
has no published experimental results. The implementation
details can affect the performance of the algorithms, so we
implement these algorithms from scratch with similar im-
plementations to provide a fair comparison among them. We
make the code of our implementation publicly available. 1

Preliminaries
In our comparison, we use 2D grids with uniform traversal
costs where all blocked cells are known before the search
since most of the algorithms in our comparison can only
be used in this setting. We call a contiguous set of blocked
cells an obstacle. As all the algorithms in our comparison
typically do, we place the vertices of a grid graph at the
corners of grid cells, rather than their centers. A grid path
is a sequence of cell corners where consecutive pairs of
cell corners must lie on the same unblocked cell. An any-
angle path is a sequence of points (p0, . . . , pn) where pi and
pi+1 have line-of-sight for all i, that is, the straight line be-
tween them does not pass through any blocked cells. We al-
low the straight line to pass between two diagonally adja-
cent blocked cells, but not between two cardinally adjacent
blocked cells. pi is called a turning point iff the line seg-
ments (pi−1, pi) and (pi, pi+1) form an angle α 6= 180◦.
The Euclidean distance between two points is the length of
the straight line between them. The Octile distance between
two cell corners is the length of a shortest grid path between
them assuming that there are no blocked cells on the grid.

Algorithms and Implementation Details
The resulting path length is mostly determined by the al-
gorithms themselves but there may be various implemen-
tation tricks with different memory/runtime trade-offs. Be-
cause of this and because searching grids typically does not
require much memory, we have decided to exclude mem-
ory requirements from the comparison and implement the
algorithms as efficiently as we can, provided that the mem-
ory requirements scale linearly with the grid size (except for
Subgoal Graphs, see below). All algorithms use the same
implementation of a binary heap as the priority queue. All

1Source code and more detailed results can be found at
http://idm-lab.org/anyangle
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algorithms break ties towards larger g-values and use Eu-
clidean distance as heuristic (unless noted otherwise) since
Octile distance is not an admissible heuristic for any-angle
path-planning algorithms.

A*: A* is the only algorithm in our comparison that can
use the Octile distance as an admissible heuristic. We in-
clude two variants, A*-Euc and A*-Oct, that use Euclidean
distance and Octile distance as heuristic, respectively.

Theta*: Theta* is a variant of A* that interleaves path
smoothing with A*. When expanding a vertex s, it checks
for each successor s′ of s whether s′ and the parent of s
have line-of-sight. If so, it sets the parent of s′ to the par-
ent of s and assigns the g-value of s′ accordingly. We also
include Lazy Theta* (L-Theta*), a variant of Theta*, in our
comparison. When expanding a vertex s, Lazy Theta* de-
lays visibility checks by assuming that s′ is visible from the
parent of s. When Lazy Theta* expands s′, it first checks
if s′ is actually visible from its parent. If not, it updates the
g-value of s′ by using the g-values of the predecessors of s′
and proceeds to expand s′.

Block A*: Block A* partitions the grid into equal-sized
blocks and uses an A* search that expands blocks, rather
than vertices. Before a search begins, Block A* finds short-
est paths from the start and goal vertices to the fringe ver-
tices (that is, vertices on the boundary of the block) of the
blocks that contain the start and the goal, respectively. When
a block is expanded, the g-values of its fringe vertices are up-
dated by querying a pre-computed Local Distance Database
(LDDB) that stores the (lengths of) shortest paths between
all fringe vertices of a block, for all possible blocks with dif-
ferent configurations of blocked cells. The memory required
to store the LDDB is exponential in the size of the blocks. In
our experiments, we use 5x5 blocks (that is, there are at most
5 vertices along each side of a block), which is the block size
used in (Yap et al. 2011a).

Field A*: Field D* is a variant of D* Lite (Koenig and
Likhachev 2005) that considers setting the parent of a ver-
tex to any point on the convex hull of all of its neighboring
vertices. The g-value of a non-vertex point p is computed by
linearly interpolating the g-values of the two vertices at the
ends of the edge that contains p. At the end of the search, a
path is extracted by moving between vertex or non-vertex
points on grid edges, by greedily following the (interpo-
lated) g-values. Field D* works on grids with non-uniform
traversal costs where some of the blocked cells might be un-
known in the beginning of a search. In our comparison, we
have simplified the g-value interpolation to work on grids
with uniform traversal costs and used A* expansions instead
of D* Lite expansions to improve runtime. We have also
changed the direction of the search from backward (that D*
Lite uses) to forward (that all the other algorithms in this
comparison use). We call the resulting algorithm Field A*.

ANYA: ANYA is an optimal any-angle path-planning al-
gorithm that works on 2D grids. Its state space consists of
tuples of the form (I, r), where I is an interval (a contigu-
ous set of points along a row of the grid), and r (root) is a cell
corner so that any point p ∈ I is visible from r. When a state
(I, r) is expanded, ANYA generates successors of the form
(I ′, r′), where I ′ is in the same row as I or in an adjacent

row and r′ ∈ {r} ∪ I . We omit the details of exactly how
the successors of a state are generated. Intuitively, ANYA
makes sure that, for any state (I, r), r is the most recent turn-
ing point on a taut path2 from the start point s to any point
p ∈ I . The search terminates when a state whose interval
contains the goal is expanded (goal state). The path is ex-
tracted by following the parent pointers from the goal state
to the start state. The root points of the encountered states
are the turning points on a shortest any-angle path from the
start to the goal. ANYA uses a heuristic that estimates for a
state (I, r) the shortest distance from r to the goal through
any point p ∈ I .

Subgoal Graphs: Simple Subgoal Graphs (SSGs) (Uras,
Koenig, and Hernández 2013) are constructed from grids
by placing subgoals at the convex corners of obstacles and
connecting pairs of subgoals that are direct-h-reachable (de-
scription omitted). Using SSGs, one can find shortest grid
paths by connecting the start and goal to their respective
direct-h-reachable subgoals, searching the resulting graph to
find a high-level path of subgoals, and following the shortest
grid paths between consecutive subgoals on this high-level
path. Intuitively, SSGs can be considered as an adaptation of
visibility graphs to grids. Any two vertices that are direct-
h-reachable also have line-of-sight (Uras and Koenig 2015).
This has two implications: 1) SSGs are sparser than visibil-
ity graphs and therefore searching them can be significantly
faster. 2) The high-level paths found by searching SSGs are
any-angle paths (although they are not necessarily optimal).
One can use Theta* instead of A* to search SSGs to find
shorter any-angle paths.

N-Level Subgoal Graphs (Uras and Koenig 2014) are con-
structed from SSGs by creating a hierarchy among its ver-
tices. This hierarchy is very similar to Contraction Hierar-
chies (Geisberger et al. 2008; Dibbelt, Strasser, and Wag-
ner 2014), and can be used to exclude many vertices from
the search (while maintaining optimality on grids), result-
ing in faster searches. During construction, one can add
new edges to the graph (which allow searches to ignore
even more vertices) to further improve runtime. Adding new
edges only between vertices that have line-of-sight guaran-
tees that the high-level paths found by searching N-Level
Subgoal Graphs are also any-angle paths.

In our comparison, we use a single any-angle variant of
Subgoal Graphs, namely, 2-Level Subgoal Graphs searched
with Theta* (Sub-2), although using SSGs or N-Level Sub-
goal Graphs instead of 2-Level Subgoal Graphs and/or A*
instead of Theta* may result in different runtime/path-length
trade-offs (Uras and Koenig 2015).

Experimental Results
The experiments are run on a PC with a dual-core 3.2GHz
Intel Xeon CPU and 2GB of RAM. We use game maps and
maps with randomly blocked cells in our comparison, which
are available at Nathan Sturtevant’s repository, along with
the instances used for each map.3 For each map type and al-

2A taut path is a path that cannot be made shorter without
changing its topology.

3http://movingai.com/benchmarks/
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Figure 1: Average path-length suboptimality. Chart is truncated at 1.50% suboptimality. A*-Euc and A*-Oct produce paths that
are more than 5% suboptimal on Starcraft maps and between 4-5% suboptimal on other maps, before smoothing.
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Figure 2: Average number of turning points on paths. Chart is truncated at 100 turning points. Paths found by Field A* have
around 450 turning points on Starcraft maps and between 200-300 turning points on other maps, before smoothing.
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Figure 4: Path-length suboptimality (y-axis) and runtime (x-
axis, in ms) after smoothing.

gorithm, we provide results on the suboptimality (Figure 1)
and number of turning points4 (Figure 2) for the paths found
by the algorithm and the runtime (Figure 3) of the algorithm.
We also smooth the paths found by all algorithms, using the
smoothing method described in (Botea, Müller, and Scha-
effer 2004), and provide results for the smoothed paths in
Figures 1 and 2. Smoothing paths usually takes less than 1%
of the runtime of the algorithm (up to 1.63% for Field A* on
bg512) and is thus not included in the results.

4We distinguish between turning points at convex corners of
obstacles that produce taut or non-taut turns and turning points in
freespace. Shortest any-angle paths only have taut turns at the con-
vex corners of obstacles.

Game maps: We use three different sets of game maps in
our comparison, namely, maps from the game Baldur’s Gate
II (bg512, resized to 512×512), maps from the game Dragon
Age: Origins (DAO, ranging from 22× 28 to 1260× 1104)
and maps from the game StarCraft (starcraft, ranging from
384 × 384 to 1024 × 1024). On game maps, Sub-2 is the
fastest algorithm in our comparison (17.9 times faster than
A*-Oct), followed by Block A* (2.52 times faster than A*-
Oct). The average solution time for A*-Oct on game maps
is 41.04ms. ANYA is the slowest algorithm on DAO but it
is 1.87 times faster than Block A* (and 4.67 times faster
than A*-Oct) on bg512 and 1.25 times faster than A*-Oct
on starcraft. The paths produced by all algorithms except
for A*-Euc and A*-Oct are very close to optimal, at most
0.43% longer than the shortest path before smoothing (Block
A* on DAO) and at most 0.12% longer after smoothing
(L-Theta* on DAO). Figure 4(a) shows that Sub-2 domi-
nates Block A*; ANYA and Block A* dominate Field A*,
Theta* and L-Theta*; and Field A* dominates Theta* in
terms of the runtime/path-length suboptimality trade-off af-
ter smoothing, on results averaged over all game maps.

Random maps: We use 512 ×512 maps with randomly
blocked cells, where the percentage of blocked cells vary
from 10% to 40%. The variance in the runtimes of the al-
gorithms is lower compared to game maps, with Block A*
being the fastest algorithm (2.05 times faster than A*-Oct),
followed closely by Sub-2 (2.02 times faster than A*-Oct).
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Figure 3: Average runtime (ms).

The average solution time for A*-Oct on random maps is
19.25ms. The paths produced by all algorithms are less opti-
mal compared to game maps. The paths produced by all al-
gorithms except for A*-Euc and A*-Oct are at most 1.28%
longer than the shortest path before smoothing (Field A*
on random20), and at most 0.61% longer after smoothing
(L-Theta* on random40). Figure 4(b) shows that Block A*
dominates Theta* and Sub-2; Theta* dominates L-Theta*
and Field A*; and Sub-2 dominates L-Theta* in terms of the
runtime/path-length suboptimality trade-off after smooth-
ing, on results averaged over all random maps.

Further observations: ANYA is the algorithm with the
highest variance in runtime between different types of maps.
This can be explained by ANYA using intervals as states,
rather than just vertices. Large, open spaces allow ANYA
to explore a map quickly, using long intervals to cover
space more quickly than most other algorithms. However,
in cluttered environments, such as random maps (and also
on Dragon Age: Origins maps, which have many tight corri-
dors, where ANYA is the slowest algorithm), its state space
can blow up (since similar intervals can be paired with dif-
ferent root points), requiring many expansions before reach-
ing the goal.

A*-Oct benefits the most from smoothing on game maps,
with an average of 3.6% reduction in path-length, whereas
A*-Euc benefits the most from smoothing on random maps,
with an average of 2.27% reduction in path-length. Since
Theta* performs a similar smoothing during its search, it
does not benefit much from the smoothing after the search,
with an average of 0.01% reduction in path-length on both
game and random maps. The paths produced by Field A*
have many small turns because of its interpolation-based ap-
proach. Smoothing removes most of these turns, but the re-
sulting paths still have the most number of turns among the
algorithms (except for A*-Euc and A*-Oct). Paths produced
by Sub-2 have no turns in freespace because Sub-2 uses con-
vex corners of obstacles as vertices.

It should be noted that even if some algorithms are domi-
nated by others in terms of the runtime/path-length subopti-
mality trade-off in our experiments, they have other qualities
that makes them suitable in different contexts. Theta* was
the simplest algorithm to implement (besides A*) and can
be applied to other graphs embedded in 2D or 3D environ-
ments, such as navigation meshes. Field D* is the only algo-
rithm that addresses non-uniform cost grids and can easily

be used for incremental path-planning. Even though Sub-2
is non-dominated on game maps, it requires time for prepro-
cessing (up to 35 seconds for starcraft).

Comparison with previous results: Our results mostly
match the results in (Yap et al. 2011b; 2011a), especially
on game maps that use the same scenarios. If we assume
that their implementation of A*-Euc is similar to ours, then
our Block A* and Theta* implementations are 1.17 and 2.84
times faster than theirs, respectively, on Dragon Age: Ori-
gins maps. The substantial difference in the Theta* imple-
mentations might be due to a more efficient implementation
of line-of-sight checks on our part. Our results confirm their
result that Block A* is faster than Theta* on both game and
random maps. Contrary to their results, in our experiments,
smoothed Block A* paths are slightly shorter than smoothed
Theta* paths (in both our and their experiments, the dif-
ference is very small). This is not necessarily a contradic-
tion, however, because they do not provide averaged results
over game maps, and the random maps used in their exper-
iment are significantly different from the ones that we use.
In our maps, after a given percentage of cells are randomly
blocked, only the cells in the largest connected component
are left unblocked in the map, increasing the actual percent-
age of blocked cells (Sturtevant 2012).5

Compared to (Daniel et al. 2010), if we assume that their
implementation of A*-Oct is similar to ours, then our Theta*
implementation is 1.32 times slower that theirs, but our Field
A* implementation is 1.78 times faster than theirs on maps
from Baldur’s Gate II.6 Our results confirm their result that
Theta* produces shorter paths than Field D*, A*, and A*
with smoothing.
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