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Abstract

The typical objective of path planning is to find the
shortest feasible path. Many times, however, there may
be no solution given the existence of constraints, such
as obstacles. In these cases, the minimum constraint re-
moval problem asks for the minimum set of constraints
that need to be removed from the state space to find
a solution. Unfortunately, minimum constraint removal
paths do not exhibit dynamic programming properties,
i.e., subsets of optimum solutions are not necessarily
optimal. Thus, searching for such solutions is computa-
tionally expensive. This leads to approximate methods,
which balance the cost of computing a solution and its
quality. This work investigates alternatives in this con-
text and evaluates their performance in terms of such
tradeoffs. Solutions that follow a bounded-length ap-
proach, i.e., searching for paths up to a certain length,
seem to provide a good balance between minimizing
constraints, computational cost and path length.

Introduction
In path planning problems, there are frequently constraints
that cause no solution path to exist but it may possible to ap-
ply changes in the state space so that a solution is possible. In
particular, consider robot manipulation (Cohen, Chitta, and
Likhachev 2014; Krontiris and Bekris 2015) as in Fig. 1,
where a robot needs to transfer an object from the left side
of the shelf to the right one. This problem instance has no
collision-free solution given the placement of objects. The
manipulator, however, can change the workspace so as to
solve its task. Thus, a subproblem arises: what is the mini-
mum number of obstacles that must be evacuated to make
the problem feasible. This challenge is referred to as the
minimum constraint removal (MCR) problem (Hauser 2013a;
Erickson and LaValle 2013) and is related to navigation
among movable obstacles (NAMO), (Stilman and Kuffner
2004; 2006; Wilfong 1988) and manipulation under clut-
ter (Dogar and Srinivasa 2011). MCR (Hauser 2013a) does
not capture negative interactions between obstacles, which
needs to be dealt with in the context of rearranging multiple
objects (Krontiris et al. 2014; Krontiris and Bekris 2015).
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Figure 1: A minimum constraint removal challenge. Dashed
line: The shortest path that ignores obstacles is computed
quickly but returns many constraints. Solid line: It is more
expensive to compute the minimum constraint path.

NAMO challenges relate to Sokoban, for which search meth-
ods and abstractions have been developed (Botea, Muller,
and Schaffer 2002; Pereira, Ritt, and Buriol 2013).

There are also other domains that can benefit from MCR
solutions. It can provide humanly understood explanations
why a problem is not solvable (Gobelbecker et al. 2010).
In multi-agent path finding (Luna and Bekris 2011; Kron-
tiris, Luna, and Bekris 2013; Sharon et al. 2015), the MCR
path can provide the minimum set of agents that must evac-
uate a path. Block sliding puzzles can involve MCR sub-
problems (Hearn and Demaine 2005). But, MCR is harder
than the shortest path problem, since a subset of an op-
timal solution is not necessarily optimal, i.e., it does not
satisfy dynamic programming properties. Furthermore, MCR
is generalizing the task of determining path non-existence,
which is known to be hard (Zhang, Kim, and Manocha 2008;
McCarthy, Bretl, and Hutchinson 2012).

This paper first reviews existing solutions for the MCR
problem (Hauser 2013b): (i) a computationally infeasible
approach that searches for all paths, (ii) a faster greedy
strategy, which is incomplete, (iii) an exact approach,
which takes advantage of the problem structure to prop-
erly prune the state-space but is still slow. Then this pa-
per proposes bounded path length search, which bounds the
length of paths considered relatively to the shortest path in a
constraint-free workspace. The experiments show that with
this method there is significant computational benefit, while
the constraints found are close to those returned by the exact
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Figure 2: A graph embedded in a space with constraints.
Dark regions: regions with constraints, which if removed
they lead to a feasible path.

approach. This also suggests an anytime solution, where the
bound on path length incrementally increases.

Problem Setup and Notation
In cases where a path is blocked by constraints, the mini-
mum constraint removal problem asks for the minimum set
of constraints, which if removed, a feasible solution arises.
A graph-based abstraction of the challenge is the following.
Minimum Constraint Removal Path: Consider a graph
G(V, E), where for each edge e ∈ E a set of constraints
ce is defined. Then, given a start-target vertex pair s, t ∈ V ,
compute the minimum constraint removal path π∗(s, t) =
{e1, . . . , en} on G, so that the number of unique constraints
on the path c(π) = ∪icei is minimized over all π(s, t).
The Case of Manipulation Consider the following 3D
setup: (a) A robotic manipulator, that acquires configura-
tions q ∈ Q; (b) A set of movable rigid-body objects O,
where each object oi ∈ O can acquire a pose pi ∈ SE(3);
(c) A set of grasping configurations q(pi) ∈ Qgrasp for
grasping an object at pose pi.

Given this setup define a graph structure G(V, E) in the
configuration space, using either sampling-based planners
(Kavraki et al. 1996; LaValle and Kuffner 2001), or by im-
plicitly considering a discretization of Q (Cohen, Chitta,
and Likhachev 2014). V are robot configurations, including
grasping configurations Qgrasp ⊂ Q, and an edge e ∈ E
connects two configurations. Furthermore, each object oi at
pose pi defines a subset of configurations Qoi

col ⊂ Q for
the manipulator that are in collision. Then the constraints ce
for an edge e are the objects oi colliding with the manip-
ulator while traversing this edge. These constraints need to
be avoided in the context of the MCR problem. Fig. 2 shows a
graph where the gray regions correspond to constraints. This
paper focuses on this manipulation version of the MCR prob-
lem. The solution path corresponds to the minimum number
of objectsO\oi that need to be removed for the manipulator
to grasp a target object oi at pi.

Search for MCR Paths
The basic framework for finding MCR paths corresponds to a
best-first search methodology over the graph G(V, E), which
makes use of a priority queue Q. The priority queue holds
search elements u = {v, π, c, f}, which correspond to:

Figure 3: Left: Two paths π1 and π2, from s to v. π2 has 2
constraints: o2, o3, while π1 has only 1: o1. At node v, the
optimum path is π1. Right: Two paths that extend π1 and π2
to the target. The optimum MCR solution is the extension of
π2, with only 2 constraints versus 3 for π1’s extension.

• u.v: The graph node u.v ∈ V for the search element.
• u.π: The path from start s ∈ V to u.v, with length |u.π|.
• u.c: The constraints along u.π.
• u.f : An evaluation function, which typically depends on
the path length |u.π| and a heuristic estimate h(u.v, t) for
reaching the target t. For uniform-cost search, it is u.f =
|u.π| but for A∗: u.f = |u.π|+ h(u.v, t).

Best-First Search for Finding the Shortest Path
Consider the shortest path on G that ignores the objects.
The priority queue is using only the evaluation function
u.f to order the search elements. During each iteration the
top element utop is removed from the queue and its neigh-
bors vneigh ∈ Adj(G, utop.v) are considered. If they have
not been visited before, a new search element uneigh is
added to the queue: uneigh = {vneigh, πneigh, utop.c ∪
ce, |uneigh.π|+ h(vneigh, t))}. If the node has been visited,
the queue is not affected, because a search node with shorter
path has already visited vneigh. This results in an efficient al-
gorithm due to the dynamic programming structure of short-
est length paths.

Exhaustive and Greedy Search for MCR
It may seem that the same process can be used to compute
MCR paths by replacing the ordering of the priority queue,
i.e., use first the number of constraints |utop.c| and then the
evaluation function utop.f . Furthermore, this “greedy” ap-
proach (Hauser 2013b) will prune a newly path π′ to vertex
v if |c(π′(s, v))| ≥ |c(π(s, v))|, where π is an already dis-
covered path to v.

The problem with this approach is depicted in Fig. 3. Con-
sider the paths from s to node v: π1 goes through constraint
o1 while π2 goes through o2 and o3. Evidently, the optimal
MCR path among the two is π1. This means, that once π2 is
considered it will be discarded by the greedy approach. All
paths, however, from node v to node t go through constraints
o2 and o3. As a result, the extension of π1 to t will have 3
constraints, while the extension of π2 will have only 2 con-
straints.

One naı̈ve solution that addresses this challenge is to ex-
haustively consider all simple paths in the space, i.e., those
without loops. This means that every time a neighbor vneigh
is discovered by the best-first procedure, a corresponding
search element is always added to the queue Q, unless
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vneigh is already included in the path to utop.v. Obviously,
this is a very expensive process that does not scale well.

Exact Search
There is an alternative to the naı̈ve solution, which prunes
some paths and can find the minimum constraint path, re-
ferred as “exact” approach (Hauser 2013a). The observation
is that if the set of constraints of a path is dominating the set
of constraints of another path to the same node, then the first
one cannot possibly be a subset to an optimal solution. This
means that a new path π′ approaching v will be pruned only
if ∃ π so that c(π(s, v)) ⊂ c(π′(s, v)) and |π′| > |π|. If the
constraints are exactly the same, then π′ will be pruned only
if |π′| > |π|. This algorithm will also expand multiple times
the same node, because paths with different combinations of
constraints can reach the same node.

Although the exact approach is slower than the “greedy”,
it is guaranteed to return the MCR solution and is faster than
the exhaustive search because it prunes sets of paths. For
example in Fig. 3 the algorithm will not prune away any
of the π1 and π2 paths. In most manipulation applications,
the full search space is significantly larger than the pruned
space considered by this method. The previously described
algorithms can waste a lot of time searching away from the
solution before they decide to move towards the target.

Bounded-Length Exact Search
This paper proposes an approximate method that it is faster
than both the exact and greedy algorithms, with some trade-
offs on the number of constraints computed. A Bounded-
length version of the EXACT MCR approach is shown in Al-
gorithm 1. This version also allows to incrementally increase
the length of the paths considered by the search until there
is convergence to the true optimal.

Algorithm 1: BL MCR(G(V, E), s, t, threshold)
1 Q← NEW ELEMENT(s, ∅, ∅, 0);
2 while Q not empty do
3 utop ← Q.pop();
4 if utop.v == t then
5 return utop.π;
6 for each vneigh ∈ Adj(G, utop.v) do
7 π ← utop.π | e(utop.v, vneigh);
8 if |π| < threshold then
9 c← utop.c ∪ e(utop.v, vneigh).c;

10 if IS NEW SET(vneigh.C, c) then
11 f ← |π|+ h(vneigh, t);
12 Q← NEW ELEMENT(vneigh, π, c, f);

13 return ∅;

Alg.1 works similar to the “exact” approach. The method
uses a priority queue, which prioritizes search elements that
have a low number of constraints |c|. Ties are broken in favor
of elements with a small evaluation function f . While there
are nodes in the queue (line 2), the algorithm will pop the

Figure 4: A case where the Bounded-length algorithm will
not waste time checking the collision free areas, before mov-
ing to the target.

highest priority search element utop (line 3) and check if the
corresponding graph node is equal to the target node t (line
4). If the nodes are equal then the algorithm will return the
path stored in the search element (line 5). Otherwise, all the
adjacent graph nodes vneigh of utop.v are considered (line
6). The main difference from the “exact” approach is that the
BL MCR approach first checks if the path has length greater
than the threshold (lines 7-8). If the path is within the thresh-
old, then the function IS NEW SET (line 10) will check if the
new set of constraints c is a subset of any of the constraints
of paths that have already been generated for vneigh. For
speed purposes, each graph node can keep track of the dif-
ferent sets of constraints, C, for each path that has reached
the node, and the corresponding evaluation functions f . The
operation of the approach is the following:
• If there is a constraint set c′ ∈ C, where c′ ⊂ c then the

algorithm returns false and the node is not added in Q.
• If there is a constraint set c′ ∈ C, where c ≡ c′, then the
algorithm will compare the f values. If the new f ′ value
is smaller than the existing one, IS NEW SET returns true.
• If there is a constraint set c′ ∈ C, where c ⊂ c′ then the
set c′ will be replaced by c and the method returns true.
• If none of the above is true, then the algorithm will return

true and c will be added in the C list of the graph node.
If IS NEW SET detects that the constraints set includes

new constraints, then the algorithm will create a new search
element and update the corresponding node, using the
NEW ELEMENT function (lines 11-12).

The proposed algorithm with a small threshold can search
through short length paths that violate constraints fast with-
out concentrating time searching through constraint-free
nodes far from the shortest paths. Te algorithm cannot guar-
antee the optimum solution but in practice it returns good
ones, close to those of the exact approach for MCR and with
paths that are of known degradation relatively to the shortest.

Evaluation
The methods have been tested in the setup of Fig. 1 and in a
cluttered shelf with limited maneuverability as in Fig. 5. A
model of a Baxter arm is used for testing. For the benchmark
environment the Baxter arm has to move a target object from
the left side to the right side inside a shelf, while 9 objects
are blocking the straight transfer path for the arm. For the
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Figure 6: Average number of constraints (left). Length ratio relative to shortest path (middle). Computation time (right).

Figure 5: Shelf challenge: (left) 15 objects and (right) 10
objects blocking the way for the arm to reach the beer can.

shelf, 10 to 20 cylinders are placed randomly. The objective
is to detect the minimum number of cans that need to be
moved to reach a beer can at the back of the shelf (Fig.5).

Four methods are tested: (a) shortest path, (b) the greedy
algorithm, (c) the exact search and (d) the bounded-length
version of the exact approach with different thresholds (1.3,
1.5 and 2.0). 50 experiments were performed for each com-
bination of method and environment. The shortest path al-
gorithm ignores the movable objects.

A transit roadmap was precomputed that contained on
each edge the set of objects that led to collisions. This al-
lowed to speed up the execution of the experiments so that
each path is computed in sub-second time. If this prepro-
cessing is not available, then the computation time for each
algorithm is approximately two orders of magnitude larger,
since collision checking needs to be performed online. This
change affects all algorithms uniformly.

Fig. 7 shows the results of a single run for the benchmark
of Fig.1. The shortest path goes through the majority of the
objects to reach the target. The robot would need to clear
on average 8 objects before performing this transfer with the
shortest path. The remaining algorithms find a better path
with only 2 constraints. The exact and greedy methods are
relatively expensive in computing a solution. In this case, the
greedy method manages to find the correct number of con-
straints, however. As the threshold for the bounded-length
version becomes smaller, the algorithm becomes faster in
finding a solution. The bounded-length variant that used a
threshold of 3 found the same path length path and con-
straints with the exact method but quite faster. With lower
thresholds, the algorithm manages to find way faster a path
but more constraints.

As Fig. 6 shows the shortest path returns a significant
number of constraints, although it is the shortest in length.
The remaining algorithms return fewer constraints and close
to those of the exact solution, with the exception of BL MCR
using the smallest threshold. As the threshold is relaxed, the

number of constraints approaches that of the exact. The ex-
act and the greedy methods return the longest paths. Fig. 6
(middle) depicts the ratio of the path lengths with respect to
the shortest path. As the threshold for the bounded length
version decreases, the path returned is closer to the shortest
path.

The computation time for the scenario in the shelf is
shown in Fig. 6(right). The shortest path does not check
for collisions with the movable objects and returns solu-
tions faster than alternatives. For all the other algorithms,
the computation time increases. The exact method takes the
longest time. Although the greedy algorithm expands fewer
nodes, the computation time is almost the same. Neverthe-
less, the bounded-length variants result in faster computa-
tion of the solution. The difference in time between the al-
gorithms relates to the issue described in Fig.4. The greedy
and the exact algorithm will waste a lot of time searching
over the collision-free edges before moving through the ob-
jects, a situation that arises often in manipulation. The pro-
posed method will avoid expanding nodes that are far away
from the target. In summary, it appears that a threshold of
1.5 tends to return solutions with a similar number of con-
straints as the exact algorithm but considerably faster.

Discussion
This paper studies a challenge that should be of interest to
the combinatorial search community. This is the problem
of computing “minimum constraint removal” (MCR) paths,
which is important in many application domains, such as
robot manipulation. This is a computationally hard prob-
lem in the general case as such paths do not exhibit dy-
namic programming properties. Various algorithmic alterna-
tives are described here, ranging from approximate to ex-
act algorithms. Approximate solutions that bound the path
length of the considered path seem to provide a desirable
tradeoff in terms of returning solutions with a low number
of constraints, relatively short path lengths and low com-
putation time. It is interesting to consider how the arsenal
of methodologies that have been developed by the combi-
natorial search community can be used to further improve
performance in the context of planning MCR paths.
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Variables Time Constraints
SHORTEST PATH 0.093 7

BL MCR1.3 0.195 7
BL MCR1.5 0.201 5
BL MCR2 0.454 5
BL MCR3 0.814 3

EXACT MCR 1.86 3
GREEDY MCR 1.552 3

Figure 7: Average computation time, length ratio relative to
the shortest path and number of constraints for all the algo-
rithms in the benchmark.
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