
Expected Path Degradation when
Searching over a Sparse Grid Hierarchy

Robert Kolchmeyer, Andrew Dobson, and Kostas E. Bekris
Department of Computer Science, Rutgers University

New Brunswick, New Jersey 08901

Abstract

The traditional focus of combinatorial search research is to
speed up the search algorithm. An alternative, however, is to
create a sparser representation of the search space. This re-
lates to the idea of spanners from graph theory. These are
subgraphs which retain paths between any two vertices of
the original graph while guaranteeing a maximum stretch in
path length. In practice, the path degradation of graph span-
ners is significantly smaller than the theoretical bound. Even
so, expected path degradation of graph spanners is typically
not studied. This work focuses on grid path-finding to pro-
pose an algorithm that constructs a grid spanner, where anal-
ysis for the obstacle-free case shows that significant perfor-
mance gains can be achieved with a small decrease in ex-
pected path quality. This is an important first step towards
studying the expected performance of spanners. Experiments
on game maps show that expected path quality with obstacles
is only sometimes marginally lower than that in the obstacle-
free case and that a significant reduction in the size of the
search space can be achieved.

Introduction
There is extensive research into improving the efficiency of
A∗ (Hart, Nilsson, and Raphael 1968), such as suboptimal
search (Thayer and Ruml 2011) or anytime methods that
quickly return suboptimal paths and refine them over time
(Likhachev, Gordon, and Thrun 2004). Lifelong planning
(Koenig, Likhachev, and Furcy 2004) instead retains infor-
mation to speed up subsequent searches, and is helpful in
static or near-static environments.

An alternative approach follows a hierarchical represen-
tation of the search spaces to balance the trade-off be-
tween optimality and search speed (Uras and Koenig 2014;
Pochter et al. 2010; Sturtevant and Buro 2005; Botea,
Muller, and Schaeffer 2004; Storandt 2013). This is re-
lated to motion planning methods that provide approxi-
mate, sparse representations of the search space (Marble
and Bekris 2011; Wang, Balkcom, and Chakrabarti 2013;
Shahrabani et al. 2013; Dobson, Krontiris, and Bekris 2013;
Marble and Bekris 2013; Dobson and Bekris 2014). Similar
to this reasoning, this work studies the sparsification of an

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Paths on the spanner originate and terminate in
cell structures, and travel via a highway system (step 2). The
maps illustrate the proposed sparse construction.

input grid during a preprocessing step and shows that by im-
plicitly constructing a grid spanner (Liestman and Shermer
1993), search time can be greatly improved. A motivating
application is the construction of sparse representations for
video game maps.

A grid spanner is defined to be a graph spanner (Peleg
and Schäffer 1989) over a grid. A graph spanner of a graph
G = (V,E) is a subgraph H = (V,E′), such that shortest
path lengths inH are bounded by the corresponding shortest
path lengths inG, i.e., (∀u,v∈V)dH(u, v) ≤ α ·dG(u, v)+β
(Baswana et al. 2010). In general, such bounds provide a
worst case multiplicative bound on path length, α, called the
stretch of the spanner. A path’s degredation will refer to the
ratio of path length dH(u, v) over the original path length
dG(u, v). While a graph spanner can only guarantee that no
path has degradation larger than α, in practice, most paths
are significantly better than the worst case. In fact, most
paths are often very close to optimal. Thus, an expected
case analysis of graph spanners provides a significantly bet-
ter estimate of path quality.

Expected case analysis, however, remains largely unstud-

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

176

Figure 2: Left: Full grid with 4×4 cells. Right: the modified
4× 4 cell.

ied for graph spanners. Previous work in grid spanners fo-
cused on the average degree of nodes, rather than the aver-
age stretch (Liestman and Shermer 1993). Work on the av-
erage stretch for spanning trees reasoned in terms of edge
hops rather than edge weights (Elkin et al. 2008). As a
step towards general expected case analysis for graphs, this
work proposes a grid spanner construction and provides an
expected-case analysis for an obstacle-free scenario. The
proposed construction partitions the grid into cells, which
are then sparsified, creating a hierarchical structure. Paths
on this spanner traverse a sparser grid structure as in Figure
1.

To solve problems with obstacles, this paper describes a
methodology that extends the grid spanner idea. Experimen-
tally evaluating the cost of searching over the proposed grid
spanner construction yields performance benefits with little
path degradation, and correlates well with drawn approxi-
mations for the expected degradation. This results in a sig-
nificant decrease in the size of the search space, while pro-
ducing high-quality paths.

Obstacle-Free Case
This work considers a specific grid spanner construction,
which will be generalized later. Using this construction, it
will be possible to show how sparse the resulting structure is,
and then proceed to analyze the expected path degradation
for paths through the grid spanner.

Grid spanner construction: The construction partitions
the grid into k× k cells, where k is an even natural number,
sparsifies each cell, and maintains graph connectivity. The
borders of the cells define a subgraph referred to here as the
low resolution grid. The following discussion analyzes the
expected path degradation of such a spanner with k = 4.

Consider a square, 2-dim n × n lattice graph. Figure 2
(left) shows the 4× 4 cells, where the low resolution grid is
outlined. The construction replaces each of the 4 × 4 cells
in the full grid with the modified cell depicted in Figure 2
(right). This structure bounds the distance from any node
to the boundary by k

2 , and is generalizable to arbitrary k.
Examples for larger k can be seen in the next section.

Notice that any path on this spanner can be decomposed
into sections that traverse the inside of at most two 4 × 4
cells and that traverse the low resolution grid. Searching for
a path is hierarchical:
• First get onto the low resolution grid.
• Then find a path from the start cell to the goal cell.

Figure 3: Average Degradation vs p, the number of cells in
a row of cells. The blue line is the approximation.

• Lastly, depart the low resolution grid.
Our goal is to derive an expression of the form α · dG + β
to approximate the expected path length of a path on the
spanner given dG, the path length of the path on the full
grid. This can be achieved by approximating the average
multiplicative stretch on the low resolution grid for α and
providing a worst case β to account for the sections of the
path that need to enter the 4× 4 cells.

Sparseness of the structure: First, we compute the num-
ber of edges that are pruned by this construction to show the
reduction of the search space size. The proposed spanner
retains only 5

9 of the full grid’s edges, i.e., already close to
the number of edges of a spanning tree for large numbers of
vertices. Further analysis shows that only 5

9 of the nodes are
considered during a search on the spanner.

The number of nodes can be reduced further by under-
standing that nodes between intersection points on the low
resolution grid only need to be considered in a search if one
of those nodes is the goal. The path has no choice at these
nodes but to proceed in one direction. If we only count in-
tersection nodes on the low resolution grid, we find that the
search space is reduced by a factor of 1

9 .
Approximating expected degradation: To compute the

average multiplicative stretch in the low resolution grid, it
is necessary to (a) first find the average degradation among
all paths with degradation, (b) count the number of paths
with degradation, and then (c) calculate a weighted average
among all paths with degradation and paths without degra-
dation. The analysis follows from the fact that any path with
degradation must exist within a row or column of 4×4 cells.
An approximation for the average multiplicative degradation
on the low resolution grid has the following form:

α = 1 +O(log(n) + n

n2
) (1)

This is an under-approximation but it is close to the real
average on the low resolution grid. Figure 3 shows how the
approximation compares to the actual average degradation
on the low resolution grid. Notice that the worst case degra-
dation is 5

3 ≈ 1.667, which is significantly larger than the
scale of the plot. The additive term incurred by traversing
the cells is at most k, (k = 4 in the 4×4 case). Then, for the
4× 4 case, we have: (∀u,v∈V) dH(u, v) = α · dG(u, v)+ 4,
where α comes from Eq. 1.

177

Figure 4: Data for a spanner with 4× 4 cell size on a 100×
100 grid. Straight lines: obstacle free case. Degradation
greater than 1.0 indicates longer paths.

Figure 5: Left: A 6 × 6 cell with a 4 × 4 cell embedded in
the center. Right: The pattern associated with any boundary
of the 6× 6 cell.

General Case
The construction can handle obstacles by bordering them
with edges, i.e., if a path encounters an obstacle, it can move
along its boundary. Experiments show that path degradation
increases slightly for low obstacle densities but then signif-
icantly decreases for higher densities as expected at the ex-
pense of the relative sparseness (Figure 4).

Let the average degradation be a
b , where a is the sum of

the degradations of all paths, and b is the number of paths.
Any obstacle will eliminate paths. In the worst case, all
paths to and from the blocked node have no degradation.
Since the average degradation must be at least 1, a

b ≤
a−n2

b−n2 ,
the new average degradation after adding the obstacle is
larger than the average degradation without the obstacle,
which increases average degradation with obstacles.

Obstacles can also block paths that are unique on the
spanner, but not unique on the full grid; if the path is unique
on the spanner, blocking it will require a longer detour, while
the length on the grid stays the same. However, since we
are bounding obstacles with edges, the average degradation
quickly drops with increased obstacle density. The number
of retained edges significantly increases with higher obsta-
cle density, implying the construction is more beneficial in
search spaces with few obstacles.
From 4×4 cells to k × k cells:
As k gets larger, the average degradation on the low reso-
lution grid decreases; however, the additive term increases.

Figure 6: Data for 4 × 4 cells presented as an average for
paths of each category. The bar heights represent relative
results, and the values on top of the bars are average absolute
results. Runtimes are given in milliseconds.

Furthermore, with larger k, there is less redundancy in paths
in the low resolution grid. Thus, obstacles will affect path
degradation more than they do in the 4× 4 case. We expect
to see a slow decrease in the number of edges pruned; the
4 × 4 case prunes 4

9 of the edges for large n: close to the
limit for retaining connectivity of 1

2 .
Figure 5 depicts the generalization. The structure in Fig-

ure 5 (right) compose the 6× 6 cell. Cells of any size can be
decomposed into a similar, easily determined pattern.

Experiments
This construction was implemented given the HOG2 repos-
itory using commercial maps from StarCraft, Warcraft 3,
Baldurs Gate, and Dragon Age (Sturtevant 2012). Exper-
iments were conducted also with room maps, mazes, and
maps with random obstacles. They called A∗ search on the
full grid and on the proposed spanner.

Path length, runtime, and number of expanded nodes are
the metrics considered in the evaluation of the proposed
spanner. For each map, we performed measurements for at
most 73 paths using a variety of path lengths. The goal of us-
ing the spanner is to reduce query times by reducing the size
of the search space, while keeping the path length as simi-
lar to the optimal path as possible. Measuring path lengths
show how close to optimal the computed paths are. Measur-
ing the number of expanded nodes provides an idea at how
well the spanner reduces the search space, and measuring
the run times illustrates how well the spanner performs in
practice.

To best work with the existing infrastructure in the repos-
itory, we implemented this construction by modifying the
A∗ implementation, such that it only considers nodes that
would be in our spanner. Our implementation attempts to
minimize the number of expanded nodes in a search. One
way to do this is by searching strictly in a hierarchy. First, a
path is found from the start point to the low resolution grid.

178

Figure 7: Same data set as Figure 6, excluding paths with
lengths less than roughly 500 units

Figure 8: Left: search space with our spanner. Right: search
space on full grid. Path stretch is 1.0047. White line indi-
cates the found path.

Then, a path is found from the end point to the low resolution
grid. Finally, a path is computed on the low resolution grid.
When planning a path on the low resolution grid, nodes that
are within a cell are not expanded, unless an obstacle on the
low resolution grid makes it necessary. Thus, while the opti-
mal path might exist on the spanner for obstacle-dense maps,
this search algorithm might not find it, because the optimal
path might involve cutting through cells to take shortcuts in-
duced by obstacles. Furthermore, we do not expand nodes
between intersection points on the low resolution grid, un-
less there is an obstacle or goal between the two intersection
points. Since we are not expanding nodes within cells, there
is no reason to expand the nodes between intersection points
if there is no obstacle or goal between them.

The construction significantly reduced the size of the
search space, improving running time for maps with large
open areas. Our construction performed poorly on maps
with random obstacle distribution, as expected. The opti-
mal path might involve taking shortcuts constructed by ob-
stacles, which our search algorithm does not consider in or-
der to significantly reduce the number of nodes expanded in
instances where the existence of such shortcuts is unlikely.

We found that gains in running time were clearer when
only looking at data for longer paths (paths on the order of
500 units in length or longer). For extremely small paths,
such as ones that start and end within a cell, we expect to

Figure 9: Top: search space with our spanner. Bottom:
search space on full grid. Path stretch is 1. White line in-
dicates the found path.

see increases in running time. If a path starts and ends in the
same cell, then the path has to first leave the cell, traverse the
low resolution grid, and re-enter the cell. For slightly longer,
but still small paths, running times for regular A∗ on the full
grid is on the order of tens of microseconds. In these cases,
the additional logic involved in our implementation to avoid
expanding nodes not part of our spanner is likely to increase
run times. While the ratios of the expanded nodes might
be significant, the actual difference in number of expanded
nodes is likely not enough in shorter paths to offset the cost
incurred by additional logic.

Figure 8 shows the difference in the searched space be-
tween our construction and the full grid on maps with sec-
tions of low obstacle density. This figure shows the spanner
with 4× 4 cell width.

Fig 9 shows how the spanner performs on a map with ran-
domly placed obstacles. In this case, the spanner is still us-
ing a 4× 4 cell size, and the map has 10% obstacle density.

Discussion
This work proposes a new spanner construction for grids that
works well on maps that have areas with few obstacles. For
the case with no obstacles, theoretical analysis for a spanner
with 4×4 cell size shows that the spanner is sparse, meaning
that 4

9 of the edges are pruned, while having low expected
path degradation. This means that for large maps, the length
of a path on the spanner is expected to be within 4 units of
1.002 times the path length on the full grid. For maps with
open areas, the spanner significantly reduces query times
and the number of nodes expanded in a search.

While experiments show where the method succeeds, it
also illustrates where it is lacking. The spanner performs
poorly on mazes and maps with random obstacle distribu-
tion; running times can increase on maps with random obsta-
cle distribution. Ideally, maps using the proposed approach
in practice would make sure during the preprocessing step to
only use it in open areas. For maps with open areas, perfor-
mance gains are seen for the vast majority of paths and are

179

more prominent for longer paths.
One direction for future research is generalizing this con-

struction to multiple dimensions. Multi-dimension path
planning has applications in many areas, such as motion
planning and manipulation. Furthermore, by performing the
expected case analysis, this work is a first step for expected
path degradation analysis on general graph spanners.

Acknowledgements
The authors are with the Computer Science Dept. at Rutgers
University, NJ, USA. Their work is supported by NSF awards
IIS-1451737, CCF-1330789, an RU-Aresty fellowship to Robert
Kolchmeyer, and a DHS-CCICADA fellowship to Andrew Dob-
son. Any opinions, findings and conclusions or recommendations
expressed in this paper do not necessarily reflect the views of the
sponsors.

References
Baswana, S.; Kavitha, T.; Mehlhorn, K.; and Pettie, S. 2010.
Additive spanners and (α, β)-spanners. TALG 7(1).
Botea, A.; Muller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. Journal of Game Development.
Dobson, A., and Bekris, K. 2014. Sparse Roadmap Spanners
for Asymptotically Near-Optimal Motion Planning. IJRR
33(1):18–47.
Dobson, A.; Krontiris, A.; and Bekris, K. 2013. Sparse
Roadmap Spanners. In Workshop on the Algorithmic Foun-
dations of Robotics (WAFR).
Elkin, M.; Emek, Y.; Spielman, D.; and Teng, S. 2008.
Lower-stretch spanning trees. SIAM Journal on Computing.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal Ba-
sis for the Heuristic Determination of Minimum Cost Paths.
TSSC 4(2):100–107.
Janssen, S. 2011. Improving heuristics for pathfinding in
games. In 14th Twente Student Conference on IT.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
Planning A*. Artificial Intelligence Journal 155(1-2):93–
146.
Liestman, A., and Shermer, T. 1993. Grid spanners. Net-
works.
Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality.
NIPS.
Marble, J. D., and Bekris, K. 2011. Asymptotically near-
optimal is good enough for motion planning. In Interna-
tional Symposium on Robotics Research.
Marble, J., and Bekris, K. 2013. Asymptotically near-
optimal planning with probabilistic roadmap spanners. IEEE
Transactions on Robotics 29(2):432–444.
Peleg, D., and Schäffer, A. 1989. Graph Spanners. Journal
of Graph Theory 13:99–116.
Pochter, N.; Zohar, A.; Rosenschein, J.; and Felner, A. 2010.
Search space reduction using swamp hierarchies. In Pro-
ceedings of the Third Annual Symposium on Combinatorial
Search (SOCS-10).

Shahrabani, D.; Salzman, O.; Agarwal, P. K.; and Halperin,
D. 2013. Sparsification of motion-planning roadmaps by
edge contraction. In Proc. of the IEEE Intern. Conf. on
Robotics and Automation (ICRA), 4083–4090.
Storandt, S. 2013. Contraction hierarchies on grid graphs.
In KI 2013: Advances in Artificial Intelligence.
Sturtevant, N. R., and Buro, M. 2005. Partial pathfinding
using map abstraction and refinement. In Proc. 20th Nat.
Conf. Artif. Intell.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. T-CIAIG 4(2):144–148.
Thayer, J. T., and Ruml, W. 2011. Tutorial: A Survey
of Suboptimal Search Algorithms. In Twenty-first Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-11).
Uras, T., and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI).
Wang, W.; Balkcom, D.; and Chakrabarti, A. 2013. A Fast
Streaming Spanner Algorithm for Incrementally Construct-
ing Sparse Roadmaps. IROS.

180

