
Planning with Always Preferences
by Compilation into STRIPS with Action Costs

Luca Ceriani and Alfonso E. Gerevini∗
Department of Information Engineering, University of Brescia, Italy

luca.ceriani@unibs.it, alfonso.gerevini@unibs.it (∗corresponding author)

Abstract

We address planning with always preferences in propositional
domains, proposing a new compilation schema for translating
a STRIPS problem enriched with always preferences (and pos-
sibly also soft goals) into a STRIPS problem with action costs.
Our method allows many STRIPS planners to effectively ad-
dress planning with always preferences and soft goals. An
experimental analysis indicates that such basic planners are
competitive with current planners using techniques specifi-
cally developed to handle always preferences.

Introduction
Planning with preferences, also called “over-subscription
planning” in (Briel et al. 2004; Do and Kambhampati 2004;
Smith 2004), concerns the generation of plans for prob-
lems involving soft goals or soft state-trajectory constraints
(called preferences in PDDL3), that it is desired a plan satis-
fies, but that do not have to be satisfied. The quality of a so-
lution plan for these problems depends on the soft goals and
preferences that are satisfied. A useful class of preferences
than can be expressed in PDDL3 (Gerevini et al. 2009) con-
sists of always preferences, requiring that a certain condition
should hold in every state reached by a plan. As discussed
in (Weld and Etzioni 1994; Bacchus and Kabanza 1998;
Gerevini et al. 2009; Baier, Bacchus, and McIlraith 2009),
adding always preferences to the problem model can be very
useful to express safety or maintenance conditions, and other
desired plan properties. An simple example of such condi-
tions is “whenever a building surveillance robot is outside a
room, all the room doors should be closed”.

We address propositional planning with always prefer-
ences by a compilation approach. Inspired by the work
of Keyder and Geffner (2009) on compiling soft goals into
STRIPS with action costs (here denoted with STRIPS+), we
propose a compilation scheme for translating a STRIPS prob-
lem with always preferences into an equivalent STRIPS+
problem. Handling action costs is a practically important,
basic functionality that is supported by many powerful plan-
ners, and the proposed complilation method allows them
to support (through the compiled problems) always prefer-
ences with no change to their algorithms and code.

The most prominent existing planners supporting always
preferences (as well as other types of PDDL3 preferences)
are Hplan-P (Baier and McIlraith 2006; Baier, Bacchus, and

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

McIlraith 2009), which won the “qualitative preference”
track of IPC-5, MIPS-XXL (Edelkamp 2006; Edelkamp, Jab-
bar, and Nazih 2006) and the more recent LPRPG-P (Coles
and Coles 2011). These (forward) planners represent prefer-
ences through automata whose states are synchronised with
the states generated by the action plans, so that an accept-
ing automaton state corresponds to preference satisfaction.
For the synchronisation, Hplan-P and LPRPG-P use planner-
specific techniques, while MIPS-XXL compiles the automata
by modifying the domain operators and adding new ones
modelling the automata transitions of the grounded prefer-
ences. Our computation method is very different from the
one of MIPS-XXL since, rather than translating automata
into new operators, the problem preferences are compiled
by only modifying the domain operators, possibly creating
multiple variants of them. Moreover, our compiled files only
use STRIPS+, while MIPS-XXL also uses numerical fluents.1

The works on compiling LTL goal formulas by Cress-
well and Coddington (2004) and Rintanen (2000) are also
somewhat related to ours, but with important differences.
Their methods handle hard always goals instead of prefer-
ences. Rintanen’s compilation considers only single literals
in the always formulae (while we deal with arbitrary CNF
formulas), and extending it to handle more general formu-
las requires substantial new techniques (Rintanen 2015). An
implementation of Crosswell and Coddington’s approach is
unavailable, but Bayer and McIlaraith (2006) observed that
their approach suffers exponential blow up problems and
performs less efficiently than the approach of Hplan-P.

An experimental analysis indicates that solving proposi-
tional problems with always preferences by using our com-
piled problems in state-of-the-art STRIPS+ planners is com-
petitive with, and can be more effective than, solving the
original uncompiled problems with Hplan-P, MIPS-XXL or
LPRPG-P, in terms of satisfied preferences and scalability.

In the following, after some background and preliminar-
ies, we describe our compilation method, present some ex-
perimental results, and finally give the conclusions.

STRIPS+ with Always Preferences
A STRIPS problem is a tuple 〈F, I,O,G〉 where F is a set
of fluents, I ⊆ F and G ⊆ F are the initial state and goal
set, respectively, and O is a set of actions or operators de-
fined over F as follows. A STRIPS operator o ∈ O is a pair

1Another compilation scheme using numerical fluents is con-
sidered in (Gerevini et al. 2009) to study the expressiveness of
PDDL3.0 (without an implementation).

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

161

〈Prec(o),Eff(o)〉, where Prec(o) is a sets of atomic formulae
over F and Eff(o) is a set of literals over F . Eff(o)+ denotes
the set of positive literals in Eff(o), Eff(o)− the set of nega-
tive literals in Eff(o). An action sequence π = 〈a0, . . . , am〉
is applicable in a planning problem Π if all actions ai are in
O and there exists a sequence of states 〈s0, . . . , sm+1〉 such
that s0 = I , Prec(ai) ⊆ si and si+1 = si \ {p | ¬p ∈
Eff(ai)−} ∪ Eff(ai)+, for i = 0 . . .m. Applicable action se-
quence π achieves a fluent g if g ∈ sm+1, and is a valid plan
for Π if it achieves each goal g ∈ G (denoted with π |= G).

A STRIPS+ problem is a tuple 〈F, I,O,G, c〉, where
〈F, I,O,G〉 is a STRIPS problem and c is a function map-
ping each o ∈ O to a non-negative real number. The cost
c(π) of a plan π is

∑|π|−1
i=0 c(ai), where c(ai) denotes the

cost of the ith action ai in π and |π| is the length of π.
Without loss of generality, we will assume that the con-

dition of a preference Ai is expressed in CNF form, i.e.,
Ai = ap1 ∧ . . . ∧ apn, where each apj (j ∈ [1 . . . n]) is
a clause of Ai formed by literals over the problem fluents.
We write π |=a Ai to indicate that plan π satisfies Ai.
Definition 1. A STRIPS+ problem with always preferences
is a tuple 〈F, I,O,G,AP, c, u〉 where: 〈F, I,O,G, c〉 is a
STRIPS+ problem; AP is a set of always preferences; u is
an utility function mapping each Ai ∈ AP to a value in R+

o .
In the following, the class of STRIPS+ with always pref-

erences is indicated with STRIPS+AP.
Definition 2. Let Π be a STRIPS+AP problem with a set of
preferences AP . The utility u(π) of a plan π solving Π is
the difference between the total utility obtained by the plan
and its cost, i.e., u(π) = − c(π) +

∑
Ai∈AP :π|=aAi

u(Ai).

The definition of plan utility for STRIPS+AP is similar to
the one given for STRIPS+ with soft goals by Keyder and
Geffner (2009). A plan π with utility u(π) for a STRIPS+AP
problem is optimal when no other plan π′ has utility u(π′) >
u(π). The next two definitions introduce some notation use-
ful to simplify the following presentation.
Definition 3. Given a preference clause ap = l1 ∨ . . . ∨
ln, the set L(ap) = {l1, · · · , ln} is the equivalent set-based
definition of ap and L(ap) = {¬l1, · · · ,¬ln} is the literal-
complement set of L(ap).
Definition 4. Given an operator o ∈ O of a STRIPS+AP
problem, Z(o) is the set of literals defined as:
Z(o) = (Prec(o)\{p | ¬p ∈ Eff(o)−})∪Eff(o)+∪Eff(o)−.

Note that the literals in Z(o) hold in any reachable state
resulting from the execution of operator o.

In our compilation of a STRIPS+AP problem, it is impor-
tant to distinguish three types of operators that are specified
in the following Definitions 5,6,7.
Definition 5. Given an operator o and a preference A of a
STRIPS+AP problem, o is a violation ofA if there is a clause
ap of A such that L(ap) ⊆ Z(o) ∧ L(ap) 6⊆ Prec(o).

If an operator violates a preference, the preference is un-
satisfied in any state resulting from the application of the
operator. The set of preferences in a STRIPS+AP problem
that are violated by an operator o is denoted with V (o).
Definition 6. Given an operator o and a preference A of a
STRIPS+AP problem, o is a threat for A if it is not a viola-
tion and there exists a clause ap of A, such that:
L(ap)∩Z(o) 6= ∅∧L(ap)∩Z(o) = ∅∧L(ap) 6⊆ Prec(o).

A clause ap of A satisfying the condition of Definition 6
is a threatened clause ofA. A threatened preference (clause)
may be falsified by an operator depending on the state where
the operator is applied. The set of preferences threatened by
an operator o is denoted with T (o); the set of clauses of a
preference A threatened by o is denoted with TA(o). Note
that conjunct L(ap) 6⊆ Prec(o) in the conditions of Defini-
tions 5-6 avoids that an operator o is considered a viola-
tion/threat when its preconditions require ap to be already
violated in the state where it is applied.
Definition 7. Given an operator o and a preference A of a
STRIPS+AP problem, o is safe for A if: (i) for all clauses ap
of A, L(ap) ∩ Z(o) 6= ∅ or L(ap) ∩ Z(o) = ∅ holds, or (ii)
there exists a clause ap such that L(ap) ⊆ Prec(o).

If an operator o of a STRIPS+AP problem Π is safe for
every always preference of Π, we say that the operator is
safe for Π, and we write this property with Safe(o,Π).

Compilation into STRIPS+
Given a STRIPS+AP problem, an equivalent STRIPS+ prob-
lem can be derived by a translation similar to the one of Key-
der and Geffner (2009) for soft goals. Their compilation is
considerable simpler than ours because for soft goals there
is no need to consider threatening and violating operators.
For the sake of simplicity, we don’t consider soft goals, but
their compilation into STRIPS+ can be easily added to our
compilation for always preference using the same method
of Keyder and Geffner. Moreover, we will assume that ev-
ery preference is satisfied in the problem initial state I .2

Given a STRIPS+AP problem Π = 〈F, I,O,G,AP, c, u〉,
the compiled STRIPS+ problem of Π is Π′ = 〈F ′, I ′, O′, G′,
c′〉 with:
• F ′ = F ∪AV ∪D∪C ′∪C ′∪{normal-mode, end-mode,

pause};
• I ′ = I ∪ C ′ ∪ {normal-mode};
• G′ = G ∪ C ′;
• O′={collect(A), forgo(A) | A ∈ AP}∪{end}∪Ocomp;

• c′(o) =


u(A) if o = forgo(A)
c(o) if o ∈ OS
ctv(o) if o ∈ OT ∪OV
0 otherwise

where:
– AV =

⋃k
i=1{Ai-violated}, k = |AP |;

– D =
⋃k
i=1{Ai-doneo1 , . . . , Ai-doneon}, k = |AP | and

n = is number of operators threatening or violating Ai;
– C ′ = {A′ | A ∈ AP} and C ′ = {A′ | A′ ∈ C ′};
– collect(A) = 〈{end-mode,¬A-violated, A′}, {A′,¬A′}〉;
– forgo(A) = 〈{end-mode, A-violated, A′}, {A′,¬A′}〉;
– end = 〈{normal-mode,¬pause}, {end-mode,
¬normal-mode}〉;

– OS = {〈Pre(o) ∪ {normal-mode,¬pause},Eff(o)〉 | o ∈
O and Safe(o,Π)};

– Ocomp = OS ∪OT ∪OV ;

2Unsatisfied preferences in I can be easily handled as we de-
scribe in a workshop paper (Ceriani and Gerevini 2014) including
proofs of the main compilation properties.

162

– OT and OV are the operator sets generated by the oper-
ator transformation schema applied to the operators of Π
that threaten and violate, respectively, a preference of Π.3
Such sets will be defined after presenting the general idea
for compiling an operator threatening a preference.

– ctv(o) is the cost of an operator o in OV ∪ OT that we
define after describing how exactly these sets are formed.
For each preference A the transformation of Π into Π′

adds a dummy hard goal A′ to Π′ which can be achieved
in two ways: with action collect(A), that has cost 0 but re-
quires A to be satisfied (i.e. A-violated is false in the goal
state), or with action forgo(A), that has cost equal to the util-
ity of A and can be performed when A is false (A-violated
is true in the goal state). For each preference exactly one of
{collect(A), forgo(A)} appears in the plan.

We now present the transformation of operators that
threaten or violate a preference. (Safe operators are com-
piled through OS as indicated above.) The compilation of a
threatening operator is not simple since it can violate multi-
ple preferences and a preference is an arbitrary CNF formula
that can be violated in different ways, depending on the op-
erator definition and the state the operator is applied to.

Given an operator o threatening k preferences A1...k, o
can be compiled by adding k conditional effects (when ci
Ai-violated), for i = 1 . . . k, where ci is a formula that,
when satisfied in the state where o is applied, makes o vi-
olate Ai. Condition ci can be derived by regression of Ai
over o (it is analogous to precondition l1 ∧ . . . ∧ lq in the
o-operators of Definition 8). However, with this method, in
order to keep the compiled problem in the STRIPS+ class, the
conditional effects have to be compiled away, which leads to
an exponential blow up of operators (in our example 2k for
o) (Gazen and Knoblock 1997). Since an original operator
can threaten many preferences (e.g., k = 20), in the follow-
ing we propose a more elaborated transformation generating
only a linear number of operators (2k instead of 2k).

Each operator o such that T (o) 6= ∅ is compiled into a
set of new operators (one for each threatened preference). If
T (o) = {A1, . . . , Am}, o is compiled into a set of 2m oper-
ators OT (o) = {oA1 , oA1 , . . . , oAm , oAm} such that, in any
state s where o can be applied violating a set of preferences
in T (o), the sequence ωT (o) ofm operators inOT (o) defined
as follows can be applied: ωT (o) = 〈o′A1

, . . . , o′Am
〉, where

o′Ai
= oAi

if o violates Ai when applied in s, o′Ai
= oAi

if o
does not violate Ai when applied in s, and oAi

and oAi
are

mutually exclusive, for i ∈ [1 . . .m].
The cost ctv(ot) of an operator ot ∈ OT (o) is c(o) if o ∈
{oA1

, oA1
}, 0 otherwise (exactly one of the operators in ωT

has cost equal to the cost of the original domain operator o
compiled into OT (o), while the others have cost zero).

Before defining the operators of OT (o) and ωT (o), we in-
troduce some notation useful to simplify their formalisation.
For an operator o and a preference clause ap:
• NA(o)ap = {l ∈ L(ap) | ¬l ∈ (Eff(o)+ ∪ Eff(o)−)} is

the set of literals in L(ap) falsified by the effects of o;
• AA(o)ap = L(ap) \ NA(o)ap is the set of literals in
L(ap) not falsified by the effects of o;
• AA(o)ap is the literal-complement set of AA(o)ap.

3Note that if an operator is both a violation and a threat for the
same preference, the generated compiled operators are only in OT .

Definition 8. The operators OT (o) of an operator o threat-
ening a set of preferences T (o) = {A1, . . . , Am} are:
• For oA1

and oA1
:

Prec(oA1) = Prec(o) ∪ {¬pause} ∪⋃
ap∈TA1

(o){(l1∨. . .∨lp) | {l1, . . . , lp} = AA(o)ap}
Eff(oA1) = {A1-doneo, pause}
Prec(oA1

) = Prec(o) ∪ {¬pause} ∪
{
∨
ap∈TA1

(o)(l1∧ . . .∧ lq) | {l1, . . . , lq} = AA(o)ap}
Eff(oA1) = {A1-doneo, pause, A1-violated}
• For oAk

and oAk
with k ∈ [2 . . .m− 1]:

Prec(oAk
) = {Ak−1-doneo, pause}∪⋃

ap∈TAk
(o){ (l1∨ . . .∨ lp) | {l1, . . . , lp} = AA(o)ap}

Eff(oAk
) = {Ak-doneo,¬Ak−1-doneo}

Prec(oAk
) = {Ak−1-doneo, pause}∪

{
∨
ap∈TAk

(o)(l1 ∧ . . . ∧ lq) | {l1, . . . , lq} = AA(o)ap}
Eff(oAk

) = {Ak-doneo, Ak-violated,¬Ak−1-doneo}
• For oAm

and oAm
:

Prec(oAm
) =

⋃
ap∈TAm (o){(l1∨. . .∨lp) | {l1, . . . , lp} =

AA(o)ap} ∪ {Am−1-doneo, pause}
Eff(oAm) = Eff(o) ∪ {¬Am−1-doneo,¬pause}
Prec(oAm) = {

∨
ap∈TAm (o)(l1∧. . .∧lq) | {l1, . . . , lq} =

AA(o)ap} ∪ {Am−1-doneo, pause}
Eff(oAm)=Eff(o)∪{¬Am−1-doneo,Am-violated,¬pause}.

The operators of OT (o) can be applied only in a sequence
ωT (o) defined above. The preconditions of any operator oAi

in ωT (o) require AA(o)ap to hold in the state where ωT (o) is
applied for at least one ap ∈ TAi(o). If this happens, then
oAi
∈ ωT (o) and preference Ai is violated by ωT (o). Predi-

cate Ai-violated is made true by oAi
and is never falsified.

After the end action is applied, Ai-violated serves as a
precondition of the operator forgo(Ai) that has cost equal
to the utility of Ai. The Ai-doneo predicates force the plan-
ner to strictly follow the order in ωT (o), avoiding repetitions.
Once the planner starts sequence ωT (o) for some o, no other
operator o′ 6∈ OT (o) is enabled before the application of
ωT (o) is completed. Predicate pause serves to this purpose,
and only the last action in ωT (o) (oAm

or oAm
) falsifies it.

Each domain operator o violating a preference (V (o) 6= ∅)
must be compiled as well. The compilation schema for o is
simpler than the one for a threatening operator. It is suffi-
cient to add to Eff(o) a A-violated predicate for each prefer-
ence A ∈ V (o). If the modified operator is applied, all the
preferences it violates are falsified (making their violated-
predicates true) and corresponding forgo actions must later
be selected by the planner for every valid plan. Note that an
operator o can simultaneously be a violation and a threat of
different preference sets. If an operator o threatening a set of
preferences also violates a preference A, effect A-violated is
added to the first pair of operators (oA1 , oA1) in OT (A). The
cost ctv(ov) of an operator ov derived by compiling an orig-
inal operator o that violates a preference (and does not threat
any other preference) is the the same cost c(o) of o.

The compilation of a threatening operator can generate
operators with negated literals and disjunctions of (conjunc-
tion of) literals in the preconditions. Such operators can
then be translated into STRIPS+ operators by the method de-
scribed in (Gazen and Knoblock 1997).

163

Rovers Mercury LAMA LPRPG-P HPlan-P
%G %A %G %A %G %A %G %A

P01 (0/3) - 100 - 100 - 100 - 100
P02 (0/3) - 100 - 100 - 100 - 100
P03 (0/5) - 100 - 100 - 100 - 100
P04 (0/5) - 100 - 100 - 100 - ?
P05 (0/5) - 100 - 100 - 60 - 100
P06 (0/5) - 60 - 60 - 60 - 60
P07 (0/6) - 80 - 80 - 80 - 100
P08 (0/6) - 100 - 83 - 100 - 100
P09 (0/6) - 67 - 83 - 67 - 100
P10 (0/6) - 100 - 100 - 100 - 100
P11 (0/6) - 83 - 83 - 67 - ?
P12 (0/6) - 100 - 100 - 67 - 100
P13 (0/6) - 100 - 100 - 100 - 100
P14 (0/6) - 100 - 100 - 83 - ?
P15 (0/6) - 100 - 100 - 100 - ?
P16 (0/6) - 67 - 100 - 83 - ?
P17 (0/8) - 100 - 100 - 100 - ?
P18 (0/8) - 100 - 100 - 88 - ?
P19 (0/8) - 75 - 75 - 100 - ?
P20 (0/10) - 80 - 90 - ? - ?

TPP Mercury LAMA LPRPG-P HPlan-P
%G %A %G %A %G %A %G %A

P01 (1/2) 100 100 100 100 100 100 100 100
P02 (6/6) 83 100 83 100 83 83 83 100
P03 (9/8) 67 100 67 100 67 63 ? ?
P04 (12/8) 83 100 83 75 83 50 ? ?
P05 (20/14) 85 86 85 93 75 79 ? ?
P06 (24/14) 75 93 75 86 63 71 58 64
P07 (28/14) 75 86 75 86 61 64 54 64
P08 (32/16) 75 88 75 88 66 63 56 63
P09 (45/22) 82 68 82 68 73 68 64 68
P10 (50/42) 80 81 80 81 76 76 74 83
P11 (55/42) 80 79 80 83 69 60 ? ?
P12 (60/45) 80 76 80 80 70 62 63 76
P13 (78/57) 83 81 83 81 76 67 ? ?
P14 (84/54) 83 81 83 83 75 81 ? ?
P15 (90/57) 83 86 84 75 74 81 ? ?
P16 (96/60) 83 73 83 82 76 72 ? ?
P17 (119/69) 86 80 86 81 76 75 ? ?
P18 (126/72) 86 78 86 76 ? ? ? ?
P19 (133/72) 86 76 86 79 ? ? ? ?
P20 (140/75) ? ? 85 75 ? ? ? ?

Trucks Mercury LAMA LPRPG-P HPlan-P
%G %A %G %A %G %A %G %A

P01 (2/1) 100 100 100 100 100 0 100 100
P02 (3/10) 67 50 67 50 100 30 100 40
P03 (1/12) ? ? ? ? 0 8 ? ?
P04 (2/15) 100 40 100 53 100 20 ? ?
P05 (2/17) 0 24 50 53 0 53 ? ?
P06 (2/20) 0 35 50 55 100 30 ? ?
P07 (6/31) 0 19 0 71 83 58 ? ?
P08 (8/53) 0 49 13 71 88 46 ? ?
P09 (9/38) 0 47 11 66 89 50 ? ?
P10 (7/42) 0 43 0 67 57 38 ? ?
P11 (7/45) 0 31 0 69 29 42 ? ?
P12 (12/49) 0 47 8 71 42 41 ? ?
P13 (11/52) 0 40 0 71 45 46 ? ?
P14 (11/56) 9 41 9 70 64 38 ? ?
P15 (12/59) 0 42 0 71 58 46 ? ?
P16 (15/81) 0 27 7 77 60 56 ? ?
P17 (18/85) 11 42 22 75 44 42 ? ?
P18 (16/90) 19 53 13 77 69 52 ? ?
P19 (16/94) 6 41 0 76 44 45 ? ?
P20 (17/99) 0 39 0 77 47 51 ? ?

Table 1: Performance comparison about solving uncompiled
and compiled STRIPS+AP problems. The values in brackets
of the 1st column are the total numbers of soft goals/always
preferences. %G is % of satisfied soft goals; %A is % of
satisfied always preferences; ? indicates unsolved problem.

Experimental Results
We implemented the proposed compilation schema and
compared the performance of the two state-of-the-art
STRIPS+ planners Mercury (Katz and Hoffmann 2014) and
LAMA (Richter and Westphal 2010) with Hplan-P and MIPS-
XXL and LPRPG-P.4 For brevity, results for MIPS-XXL are
not reported since this planner performed generally worse
than both Hplan-P and LPRPG-P. We considered the five
domains, and corresponding test problems involving always
preferences (below abbreviated with AP), of the qualitative
preference track of IPC5 (Gerevini et al. 2009). Here we
focus the presentation on three of them (Rovers, TPP and
Trucks), while for the others (Openstack and Storage)
we give general results for the STRIPS+ planners and Hplan-
P. For Openstacks LPRPG-P generates no plans (appar-

4Planner Mercury was 2nd best planner in IPC8. We tried also
the available version of IbACop2 (winner of IPC8), but we could
not properly test it due to several internal crash of it during testing.

ently because these test problems don’t have hard goals),
and for Storage the problems use some PDDL features that
are not supported by the available version of LPRPG-P.

For each original IPC5 problem, all soft goals were
kept, while all types of preferences different from APs
were removed. Additional domain-specific APs were added
to make the problems more challenging. Specifically, in
Trucks it is requested that 50% of the packages should be
delivered by half of the originally specified deadline (using
discrete levels of time). In Rovers, each rover should al-
ways avoid a specified set of locations; moreover, we used
APs to specify the preference that at least one rover store
remains empty in every state reached by a plan. Finally, in
TPP APs are used to request that each type of goods should
be carried by a specific truck, which has to buy the total goal
quantity of the good and unload it visiting a deposit no more
than once. The association between goods and trucks is ran-
domly decided. For each test problem, the utility of every
AP is one, and the cost of every domain action is zero. The
CPU-time limit for each run of each planner was 30 minutes.

Table 1 shows results for Rovers, TPP and Trucks ob-
tained by running Hplan-P and LPRPG-P over the origi-
nal uncompiled problems, and Mercury and LAMA over the
equivalent compiled problems. For each considered prob-
lem, the table indicates the percentages of soft goals and al-
ways preferences satisfied by each of the compared planners.

In general, we observe that Hplan-P solves many less
problems than the STRIPS+ planners and LPRPG-P. Con-
cerning the relative performance of LPRPG-P and the con-
sidered STRIPS+ planners, we have the following results.
For Rovers, in terms of satisfied always preferences, both
STRIPS+ planners satisfy more preferences in several prob-
lems, while LPRPG-P performs better only in very few prob-
lems, but fails to solve the largest one. Note that in Rovers
there are no soft goals. For TPP, LAMA performs generally
best in terms of both satisfied always preferences and soft
goals. Moreover, the largest problems are solved only by
the STRIPS+ planners. For Trucks, in general LAMA per-
forms better than the other compared planners in terms of
always preferences, but LPRPG-P satisfies more soft goals.
Overall, in terms of problem coverage (regardless plan qual-
ity), Hplan-P solved 21 problems, LPRPG-P 56, Mercury 58,
and LAMA 59.

Finally, for both Openstack and Storage we observed
that the considered STRIPS+ planners perform generally bet-
ter than Hplan-P. In particular, LAMA solves 70% more
Openstack problems than Hplan-P, and for the 7 problems
of this domain that both planners solve, on average LAMA
satisfies 95% of the preferences while Hplan-P 82%.

Conclusions
We have presented a compilation method for handling al-
ways preferences in propositional planning. The compiled
problems use only STRIPS and action costs, which makes the
compilation method usable by many existing powerful plan-
ners. A preliminary experimental analysis shows their good
behaviour in terms of scalability and quality of the generated
plans (satisfied preferences) compared to existing state-of-
the-art planners supporting always preferences.

In addition to a deeper experimental analysis, current
work concerns the compilation of other types of PDDL3 pref-
erences into STRIPS+, although always preferences in the
problem model are already practically useful by themselves.

164

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Baier, J., and McIlraith, S. 2006. Planning with first-order
temporally extended goals using heuristic search. In Proc.
of the 21st National Conference on Artificial Intelligence
AAAI, 788–795. AAAI Press.
Baier, J.; Bacchus, F.; and McIlraith, S. 2009. A heuristic
search approach to planning with temporally extended pref-
erecens. Artificial Intelligence 173:593–618.
Briel, M.; Sanchez, R.; Do, M.; and Kambhampati, S.
2004. Effective approaches for partial satisfaction (over-
subscription) planning. In Proc. of 19th National Conf. on
Artificial Intelligence (AAAI’04).
Ceriani, L., and Gerevini, A. E. 2014. Planning with prefer-
ences by compiling soft always goals into strips with action
costs. In Proc. of the 5th Workshop on Knowledge Engineer-
ing for Planning and Scheduling (ICAPS-2014), 23–30.
Coles, A. J., and Coles, A. 2011. LPRPG-P: Relaxed plan
heuristics for planning with preferences. In Proceedings of
21st Internaltional Conference on Automated Planning and
Scheduling ICAPS’11).
Cresswell, S., and Coddington, A. M. 2004. Compilation of
LTL goal formulas into PDDL. In Proc. of the 16th Euro-
pean Conference on Artificial Intelligence ECAI, 985–986.
Do, M., and Kambhampati, S. 2004. Partial satisfaction
(over-subscription) planning as heuristic search. In Proc.
of 5th Int. Conf. on Knowledge Based Computer Systems
(KBCS’04).
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-scale
optimal pddl3 planning with mips-xxl. In In 5th Interna-
tional Planning Competition Booklet (ICAPS-06).
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. In In Proceedings of ICAPS-06, 374–377.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning: 4th European Conference on Planning, ECP’97. New
York: Springer-Verlag.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In In 8th International
Planning Competition Booklet (ICAPS-14).
Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. J. Artif. Intell. Res. (JAIR) 36:547–556.
Richter, S., and Westphal, M. 2010. The lama planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Int. Res. 39(1):127–177.
Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Proc. of the 14th European Confer-
ence on Artificial Intelligence ECAI, 526–530. IOS Press.
Rintanen, J. 2015. Personal communication.

Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. of 14th Int. Conf. on Automated Planning
and Scheduling (ICAPS’04).
Weld, D., and Etzioni, O. 1994. The first law of robotics (a
call to arms). In Proc. of AAAI-94, 1042–1047.

165

