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Computer Science Department

Universidad Carlos III de Madrid, Spain
carlos.linares@uc3m.es

Abdallah Saffidine
School of Computer Science and Engineering
The University of New South Wales, Australia

abdallahs@cse.unsw.edu.au

Abstract

The Heuristic Search community has been concentrating
much effort during the last decades in solving more and more
efficiently the SHORTEST PATH problem (SPP). As a result, a
valuable body of scientific results has been produced, mostly
in the form of heuristics and search algorithms. However,
not much attention has been given to other problems even if
they result from slight variations of the typical problems ad-
dressed by the community. Furthermore, other communities
attempt at solving hard combinatorial problems which might
be well solved with heuristic search. In this paper, an attempt
is presented to introduce a preliminary selection of relevant
problems that goes well beyond the classical SPP.

Introduction
A broad definition of Combinatorial Search is the study of
search algorithms that are used to solve hard problems. All
the algorithms considered in the field consist of different
strategies for traversing the state space of a particular prob-
lem as efficiently as possible so that the solution is found
with the minimum consumption of computational resources,
mainly time and memory.

This broad definition embraces numerous different (but
related) fields such as Operations Research, Graph The-
ory, and Discrete Optimization. Also, search algorithms are
widely used in practice, for instance in Knowledge Engi-
neering, Computer Vision, Machine Learning, and Robotics.
In contraposition, the Heuristic Search community focuses
on search algorithms themselves over their applicability to
either theoretical or practical matters.1

The main focus of the Heuristic Search community so far
has been the SHORTEST PATH problem (SPP). Although the
SPP can be solved in polynomial time on explicitly given
graphs, it is often NP-hard on graphs defined implicitly with
a set of operators that act over states such as the sliding-tile
puzzle or the N-pancake. Here, the Heuristic Search com-
munity has produced a valuable body of expertise, mainly
in the form of new algorithms and heuristics that guide the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The declaration of interests of the SoCS organization states:
“The purpose of SoCS is to promote the study and understanding
of combinatorial search algorithms”.

search. This approach results in performances that are mul-
tiple orders of magnitude superior than when using unin-
formed search algorithms —i.e., when a heuristic function
is not available.

Yet, the Heuristic Search community has either implicitly
or explicitly made a number of assumptions that have re-
stricted the focus of attention. As a result, the main body of
scientific discoveries is mostly conceived to solve the SPP
in various forms. However, in the past, a number of papers
have suggested different problems. We want to join these ef-
forts by analyzing these assumptions and attempting at mo-
tivating research that violates them in one way or another.

This paper is organized as follows: the next section intro-
duces some notions of heuristic search and discusses some
of the most notable assumptions in heuristic search. The
next two sections show how these decisions affect the cor-
rectness of various search algorithms and heuristic func-
tions. The following section introduces some theoretical
problems that might be very well suited to search algorithms
but which are fairly ignored by the community. The paper
ends with some concluding remarks.

Definitions
The importance of graphs is that they can easily represent
many problems of different nature. In most cases, vertices
represent different states of the problem. A common mean-
ing of an edge (u, v) is a causal relationship between one
vertex and the next one —so that from u it is feasible by
means of an operator to produce/reach v. From this perspec-
tive, the ability to efficiently solve graph problems directly
relates to the ability to solve real-world problems whose
state space can be formalized as a graph.

State spaces are often described succinctly using the con-
cepts of state variable and operator. It is always possible to
construct the corresponding underlying state space. We can
thus focus the rest of this article on problems expressed on
state spaces directly.

Definition 1 (State space) A state space is a tuple S =
〈V,E,C, s, t〉, where V is a set of states, s ∈ V and t ∈ V
are the initial and goal states, E ⊆ V × V is a set of state
transitions, and C : E −→ N is the edge cost function.2

2As usual, N = {1, 2, 3, . . .} and Z = {. . . , -2, -1, 0, 1, 2, . . .}.
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The pair 〈V,E〉 constitutes a directed graph which can
be finite or infinite. A similar definition could be given for
undirected graphs. As such, states are also called vertices
and state transitions are edges.

When the cost of some edges is equal to zero, pathologi-
cal cases might arise. In consequence, the Heuristic Search
community typically assumes that the cost of every edge is
lower bounded by a constant, say 1. When a cost function is
not given, it is assumed to map each edge to 1.

The Heuristic Search community assumes a single goal
state, although goal states might not be unique in general.
This assumption does not limit the applicability of Heuristic
Search results as one can seamlessly transform a representa-
tion with multiple goal states to one with a single goal.

The most elementary problem on state spaces is the reach-
ability problem, which consists of finding a path between the
initial and the goal states.

Definition 2 A path π = 〈n0, n1, n2, ..., nk〉 is a sequence
of states such that each step corresponds to a valid edge
(ni, ni+1) ∈ E. A prefix of π is a subsequence of states
〈n0, n1, n2, ..., nk′〉 where k′ ≤ k. A path is simple if no
vertices are repeated, i 6= j =⇒ ni 6= nj .

A solution to the reachability problem is therefore a path
π such that n0 = s and nk = t. The cost of the solution
is defined as the sum of the costs of every edge in the path:
Cπ =

∑
∀0≤i<k C(ni, ni+1). In the forthcoming discus-

sions, we will refer to Cπ as the objective function.
The Heuristic Search community has developed a large

body of algorithms and heuristics to solve problems that ex-
hibit Bellman’s “principle of optimality”, a foundation of dy-
namic programming:

Definition 3 (Optimal policy) An optimal policy is such
that no matter the initial state and decision, the remaining
decisions must constitute an optimal policy with regard to
the state resulting from the first decision.

This principle gives rise to a characterization of state
spaces that satisfy it:

Definition 4 (Monotonicity of state spaces) A search
space is said to be monotone with respect to a state s if for
any path P in G starting from s it holds that P is not better
than any of its prefixes, where better is defined with regard
to the objective function (Stern et al. 2014).

For example, the SPP is monotone with respect to the start
state. Indeed, recall that individual edge costs are positive
C(u, v) > 0,∀(u, v) ∈ E, and thus any path P issued from
s has a cost that is monotonically increasing.

The key observation is that the notion of monotone state
spaces is more restrictive than the definition of the principle
of optimality. As a matter of fact, some problems can be
solved with dynamic programming and yet are very hard to
solve with search algorithms. Often, the monotonicity of the
state space is not even mentioned, yet it dramatically affects
the applicability of various search algorithms and heuristic
functions. The following section reviews this impact.

Search and Heuristics
We now survey the main mechanisms for generating heuris-
tic functions and show how they are affected by the assump-
tion of monotonicity of state spaces.

Search algorithms
The largest body (if not all) of algorithms developed in the
Heuristic Search community are designed to traverse mono-
tone state spaces. Monotonicity is, indeed, required for
Dijkstra’s algorithm to be applicable. Other important al-
gorithms also relying on monotonicity include A∗, IDA∗,
Linear-Space Best-First Search (RBFS) and DFBnB.

Heuristics
Another interesting object of study are heuristics, already
introduced in the preceding section. The trivial heuristic
for the SPP, h0 that maps every state to 0, is admissible if
the state space is monotone. Otherwise, when costs are not
lower bounded, the trivial heuristic needs to be h0 = −∞.

Constraint relaxation
In the constraint relaxation procedure, an optimization prob-
lem is viewed as a collection of constraints, some of which
are discarded so that the resulting relaxed problem is easier
to solve optimally. The relaxation allows new transitions,
and the cost of the optimal solution of the relaxed problem
lower bounds that of the original problem. Some heuristics
obtained this way are still state-of-the-art, e. g. (Zhang and
Korf 1996; Junghanns 1999).

Let C∗r be the cost of an optimal solution to the relaxed
problem. If it can be proven that no paths with a cost strictly
less than C∗r reaches the goal state, then the cost of the op-
timal solution of the relaxed problem can be used as an ad-
missible estimate for reaching the target from every node in
the original problem. In case the state space is monotone,
this verification can be done by extending paths until their
cost is larger or equal than C∗r . However, it this property is
not satisfied, the test suggested does not work because there
might be paths that are cheaper than their prefixes. In other
words, computing the optimal solution to a relaxed problem
may be as difficult as solving the original problem.

Abstractions
Abstractions, and especially Pattern Databases (PDBs), are
a very powerful means for automatically producing heuris-
tic functions (Korf 1997; Culberson and Schaeffer 1998). In
PDBs, states that agree on a subset of variables (the pattern)
are aggregated into a single one. Since abstractions effec-
tively reduce the size of the state space, an analysis of the
abstract space is more tractable (Helmert et al. 2014). A
simple backwards breadth-first search from the goal pattern
allows to compute the distance between each pattern and the
goal pattern. If the state space is monotone then the values
recorded by a single PDB are necessarily less or equal than
the cost to reach any of the states aggregated into the same
abstract state, and the PDB can be effectively used as an ad-
missible heuristic. Otherwise, inadmissible estimates might
result.
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Theoretical problems
The ability to efficiently solve problems over state spaces di-
rectly translates into the ability to efficiently solve real prob-
lems that can be represented with such graphs. There are dif-
ferent types of combinatorial problems, from optimally solv-
ing to counting the number of solutions through approximat-
ing them or deciding their existence. However, we focus on
different classes of problems defined over state spaces, usu-
ally confining our treatment to the optimally solving task.
Furthermore, the classes suggested here refer to classical
(deterministic, offline) heuristic search.

The Longest Path Problem
Given a state space 〈V,E,C, s, t〉 find a simple path

between s and t such that its cost is as large as possible.

This problem has been already considered in the Heuristic
Search community motivated by different applications such
as peer-to-peer information retrieval (Wong et al. 2005),
multi-robot patrolling (Portugal and Rocha 2010), and VLSI
design (Tseng et al. 2010). The state space is non-
monotonic and optimal and suboptimal search algorithms
for the SPP have to be modified to deal with this case (Stern
et al. 2014). Among optimal search algorithms, DFBnB is
slightly faster than A∗ and heuristic search algorithms have
been observed to preserve their substantial advantage over
uninformed search.

Although, the LONGEST PATH problem (LPP) in un-
weighted graphs can easily be shown to be NP-hard on arbi-
trary graphs with a reduction from the HAMILTONIAN PATH
problem, the problem can be solved in polynomial time
on some specific classes of graphs, including trees, block
graphs, and cacti graphs (Uehara and Uno 2007), and rect-
angular grid graphs (Keshavarz-Kohjerdi et al. 2012). A dy-
namic programming-based algorithm can solve the LPP on
interval graphs in O(|V |4) (Ioannidou et al. 2011), and the
same problem has been solved for a larger class of graphs,
cocomparability graphs (Mertzios and Corneil 2012).

Shortest Path Problem with Negative Costs
Given a graph (V,E), two vertices s, t ∈ V and an

edge cost function C : E −→ Z \ {0}, find a simple
path between s and t with the minimum cost.

Note that the definition requires a simple path, as negative
cycles would allow paths of arbitrarily low cost. It can be
shown with a reduction from the LONGEST PATH problem
that the SHORTEST PATH problem with negative costs is also
NP-hard.

Negative edges make the state space non-monotonic and
Dijkstra’s algorithm is not applicable anymore. Indeed, the
observation that a shortest path to a node to be expanded
has been discovered is not an invariant anymore. When the
graph has no negative cycles, the Bellman-Ford algorithm
can be used instead and runs in O(|V | × |E|) (Bellman
1958). The most remarkable contributions are processing
the vertices in first-in-first-out order (Yen 1975) and parti-
tioning the input graph (Yen 1970). These ideas have been
recently combined and extended with the idea of randomly

permuting vertices resulting in a speedup version of the orig-
inal algorithm (Bannister and Eppstein 2012).

Alternatively, Dijkstra’s algorithm can be used by prop-
erly modifying the weight of each edge. This is essen-
tially the main idea behind Johnson’s algorithm (Johnson
1977) which, nonetheless, uses the Bellman-Ford search al-
gorithm.

All these algorithms are based on dynamic programming.

Target-Value Search
Given a graph (V,E), two vertices s, t ∈ V , an

edge cost function C : E −→ N and a target value
T ∈ N, find a simple path between s and t such that its
cost is as close as possible to T .

The problem originates from several significant applica-
tions, such as planning a tour of a given duration in a park, or
model-based planning and diagnosis (Schmidt et al. 2009).

When T ≤ h∗(s), the target-value search problem is
equivalent to the SPP. Otherwise, the problem is NP-hard,
via reductions from SUBSET SUM and the LPP (Linares
López et al. 2014)

The state space behaves non-monotonically for every path
whose cost is strictly less than T , and monotonically for all
paths with a cost strictly larger or equal to T . Prefixes with
different costs might result in different deviations, therefore
it is not possible to use a CLOSED list with A∗. Addition-
ally, the algorithm cannot be stopped once the goal has been
expanded as additional paths have to be generated to prove
that none can lower the deviation of the incumbent solution.

The current state of the art, T∗, only addresses the case
of unitary costs (Linares López et al. 2013). T∗ consists of
a breadth-first search from s interleaved with a depth-first
search from t, and a domain-independent heuristic based on
dynamic programming. The searches are continued until the
heuristic guarantees that the deviation of the incumbent so-
lution with respect to the target value is minimal.

A related problem is the bounded-cost search problem
where the goal is to find a solution with a cost smaller than
or equal to a given fixed constant (Stern et al. 2011).

ANOTHER SOLUTION problem
Given a state space 〈V,E,C, s, t〉 and a path π from

s to t, find another path from s to t with the same cost.

The ANOTHER SOLUTION problem (ASP) was intro-
duced to derive a finer characterization of previously stud-
ied NP-complete problems (Ueda and Nagao 1996). For in-
stance, while both the classic 3SAT and VERTEX COVERING
problems are both NP-complete, only the former remains
hard under ASP considerations. A natural extension of the
ASP is the more general n-ASP which provides n distinct
solutions to the problem as input (Yato 2003).

The ASP for path finding remains polynomial for explicit
graphs as it can be solved with the following algorithm. For
each edge e of the input path, try to solve the SPP for (V,E\
{e}). If a path exists, then it constitutes a valid answer to the
ASP. Since the input path is of polynomial length, at most a
polynomial number of calls to SPP will be made.
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Depending on the precise variant of ASP considered, so-
lutions of differing cost may be accepted. If solutions of
lower cost are desired, input solutions of high cost might
provide a source of inspiration to find a better solution. For
instance, the Aras postprocessor uses neighborhood searches
to improve plans proposed by Monte Carlo and classical
planners with relatively little computational effort (Nakhost
and Müller 2010). Another interesting application of the
ASP lies in puzzle design where solution unicity is often
a desirable property.

K-optimal paths
Given a state space 〈V,E,C, s, t〉 and a parameter

K ∈ N find K simple paths between s and t with the
minimum cost.

This problem has been extensively applied to many real-
world problems, such as urban rail mass transit (Zhou et
al. 2014), time-schedule networks (Jin et al. 2013), as
well as probabilistic model checking when looking for small
counter-examples (Han et al. 2009).

Depending on the setting, the full graph can be given ex-
plicitely or implicitely as in the SPP. In the online version,K
is not known beforehand and new paths have to be generated
one after another until the user stops the algorithm.

Eppstein’s Algorithm (EA) is a notable algorithm to
solve the KSP problem (Eppstein 1998) in time O(|E| +
|V | log |V | + k). However, the graph needs to be provided
in full from the start. The K∗ algorithm alleviates this re-
quirement while maintaining low complexity (Aljazzar and
Leue 2011) and takes advantage of admissible heuristics.

A typical enhancement of best-first search algorithms,
such as Dijkstra’s, is to prune paths that visit a node already
expanded. Unfortunately, this optimisation is not applicable
here as it could discard, say, the second best solutions. Strik-
ingly, no comparative analysis has been performed with re-
gard to depth-first searches (i. e., IDA∗or DFBnB) or search
algorithms that do not use a CLOSED list which do not have
this limitation, the main problem being that transpositions
would be re-expanded as many times as necessary.

Number of paths between two vertices
Given a graph (V,E) and two vertices s, t ∈ V find

the number of paths from s to t.

Finding the number of paths between a given pair of ver-
tice (s, t) is a #P-complete problem (Valiant 1979): it is as
hard as counting the number of satisfying assignments in a
SAT formula. It is quite remarkable that although finding a
path in an explicit graph is (presumably) significantly easier
than finding a single solution to SAT, counting the number
of solutions is just as hard for both problems. While the
hardness of the path counting problem might raise interest-
ing theoretical questions, developing practical algorithms to
address it is a pressing matter, especially in the field of net-
work and routing protocols. Indeed, this problem is directly
connected to the computation of the two-terminal reliability
of a given pair of nodes in a network which quantifies the
likelihood of there remaining a path between nodes in the
event of link failures.

The problem can be easily solved using dynamic pro-
gramming in Directed Acyclic Graphs (DAGs). The prob-
lem of counting the number of (s, t)-paths in both di-
rected and undirected graphs has been addressed by the
Monte Carlo community who proposed a stochastic algo-
rithm (Roberts and Kroese 2007).

K edge-disjoint paths
Given a state space 〈V,E,C, s, t〉 and a parameterK ∈
N find K edge-disjoint paths from s to t such that the
sum of their costs is minimal.

Finding sets of edge-disjoint s− t paths has numerous ap-
plications, including computing the size of the largest such
set allows one to lower bound the two-terminal reliability of
a graph (Papadimitratos et al. 2002).

Finding a shortest pair (K = 2) of edge-disjoint paths is
a special case of minimum-cost network flow and a linear
time algorithm for DAGs has been recently proposed (Tho-
ley 2012). However, if length constraints are imposed over
an undirected graph the problem is NP-complete (Tragoudas
and Varol 1997). The problem has been studied in a wide
variety of forms, including generalizations to k restricted
edge-disjoint paths (Guo 2014). The node-disjoint variant
has been applied to object tracking (Berclaz et al. 2011).

This problem concludes our preliminary selection of
search problems and it appears to us as a perfect fit for the
Heuristic Search community as long as it does not violate
the monotonicity of the state space. Let a state describe K
edge-disjoint paths from s. Extending these paths results in
a larger value of the objective function than any of its pre-
fixes provided that all edge costs are strictly positive. Fur-
thermore, admissible heuristics based on either constraint re-
laxation or abstraction seem to be easy to derive as simple
combinations of the heuristics for every path.

Conclusions
Search algorithms have been vastly applied to many differ-
ent problems, both theoretical and practical. Although dif-
ferent problems have been studied by the Heuristic Search
community, most efforts have concentrated around the
SHORTEST PATH problem. This focus has resulted in relying
consistently on various assumptions (such that the edge costs
are strictly positive) and remarkably, that the state space is
monotonic.

We first examined the consequences of dropping the
monotonicity assumption on search algorithms and heuris-
tics. Non-monotonicity affects the algorithms’ termination
and node re-expansion conditions and the heuristics’ admis-
sibility or tractability. We then proposed a selection of prob-
lem classes built on the same formalism as the SPP. They
have important applications, have been studied in other com-
munities, and pose refreshing challenges to our community.
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