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Abstract

Most work in heuristic search focused on path finding prob-
lems in which the cost of a path in the state space is the sum
of its edges’ weights. This paper addresses a different class
of path finding problems in which the cost of a path is the
product of its weights. We present reductions from differ-
ent classes of multiplicative path finding problems to suitable
classes of additive path finding problems. As a case study,
we consider the problem of finding least and most probable
paths in a Markov Chain, where path cost corresponds to the
probability of traversing it. The importance of this problem
is demonstrated in an anomaly detection application for cy-
berspace security. Three novel anomaly detection metrics for
Markov Chains are presented, where computing these metrics
require finding least and most probable paths. The underlying
Markov Chain is dynamically changing, and so fast methods
for computing least and most probable paths are needed. We
propose such methods based on the proposed reductions and
using heuristic search algorithms.

Keywords. Multiplication domain search, anomaly detec-
tion, search space monotonicity, Markov Chains, network
intrusion detection

Introduction
Many optimization problems can be solved efficiently by
formalizing them as a path finding problem in a (either
explicitly of implicitly defined) graph. The most common
problems found in the literature try to find paths of low cost,
where a path’s cost is computed as the sum of the weights
of the paths’ edges. In this paper we consider path finding
problems in which the cost of a path is the product of its
edge’s weights. We call such problems PROD problems, as
oppose to the regular SUM problems.

In particular, we study the problem of finding paths in a
Markov Chain. A Markov Chain (MC) is a common model
used to describe memory-less random processes. More con-
cretely, an MC is a directed weighted graph where edge
weights correspond to the probability of moving from one
state to another (the sum of all outgoing edges from one
state is equal to 1). The probability of following some trajec-
tory (path) in a MC is the product of its edge’s probabilities
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(weights). We study the problems of finding the least- and
most-probable path in an MC.

This problem has application in many domains. One ex-
ample is anomaly detection for cyberspace security when
monitoring network traffic. Network traffic can be modeled
by a MC (Pat 2007; Ye and others 2000) and an anomaly
is detected when observing a transition with low probabil-
ity in the MC. In some cases, anomalies are better detected
when the probability of k sequential transitions are consid-
ered (i.e. the product of the edge costs along the last k transi-
tions made). However, when k is very large, the probability
of any k transitions becomes exponentially small – making
it difficult to distinguish between likely transition sequences
and anomalies. By knowing the cost of the most probable
paths (i.e., MAX) and least probable paths (i.e., MIN) in
such a scenario, the achieved probabilities can be placed in
their context, thereby assisting in labeling their likelihood.
We propose three anomaly score metrics for doing so and
demonstrate their effectiveness.

In our application, the MC dynamically changes over
time, and thus an efficient algorithm for finding the least and
most probable k-step trajectory is needed. One approach is
to enumerate all possible k-step paths. Clearly, this is not
practical for large MCs and large values of k. Thus, fast
methods for finding least and most probable path in MC is
required.

The first contribution of this work is in formalizing these
problems as minimization or maximization PROD prob-
lems. The second contribution of this work is in determin-
ing which existing algorithms can be used to solve PROD
problems. This is done by analyzing the symmetry between
PROD and SUM problems in both maximization (MAX)
problems and minimization of problems (MIN). Then, we
discuss when and how PROD problems can be translated to
SUM problems.

The third contribution is in introducing, as a case study,
PROD problems that arise in the context of anomaly detec-
tion using Markov Chains. We evaluate the comparison of
known search algorithms in this domain. Our results show
that the reduction of the PROD domain to SUM not only
opens the doors to many new theoretical questions, but also
has practical implications.

As a secondary contribution, we also propose three novel
anomaly detection metrics, based on computing least and
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most probable paths, and show their impact on improving
anomaly detection accuracy.

Background: MIN and MAX problems
Most work on solving path finding problems with search al-
gorithms were on domains having two underlying assump-
tions. The first assumption is that the cost of a path is the
sum of the weights (or other costs) along its edges. The sec-
ond assumption is that lower cost path are preferred, and
an optimal solution is a path of minimum cost. Problems
with the first assumption are referred to as SUM problems,
and problems with the second assumption are referred to as
MIN problems. Algorithms such as Dijkstra’s algorithm and
A* are perfectly suitable for MIN-SUM problems.

Recently, attention has been raised to the converse setting,
where one wishes to find a path of maximum reward (Stern
et al. 2014). Such problems are called MAX problems. Stern
et al. studied the behavior of classic search algorithms on
MAX problems. They observed that popular search algo-
rithms such as Dijkstra’s algorithm and A* loose their ef-
fectiveness or optimality guarantees when applied to some
MAX problems.

Stern et al. (2014) suggested the notion of search space
monotonicity as a class of problems that can be solved by
classical search algorithms.

Definition 1 (Search Space Monotonicity) A search space
is said to be monotone w.r.t. a start state s if for any path P
that starts at s it holds that P is no better than any of its
prefixes, where better is defined w.r.t. the objective function
(MAX/MIN).

Based on this we add the following inverse definition:
Definition 2 (Inversely Monotone Search Space) A
search space is said to be inversely monotone w.r.t a start
state s if for any path P that starts from s it holds that P
is not worse than any of its prefixes, where worse is defined
w.r.t the objective function (MAX/MIN).

Monotonicity is required for several key properties of
known search algorithms. For example, in a monotone
search space, A∗ can halt when a goal node is chosen
for expansion. This is not necessarily the case in inversely
monotone search spaces. For example, in the longest simple
path problem, expanding a goal does not guarantee that the
longest path to it has been found since an even longer sim-
ple path to a goal may exists elsewhere. Adapting existing
search algorithms to domains that are inversely monotone is
possible, but may cause the search to be slower. See Stern et
al. (2014) for details on how to perform these search algo-
rithms adaptations.

Note that some problems may be not monotone and not
inversely monotone. For example, a shortest path problem
in a graph which also includes negative-weight edges. We
do not consider these cases in this work.

Cost Algebra
A very related work that predates the work of Stern et
al. (2014) is the work of Edelkamp et al. (2005) on cost al-
gebra. Cost algebra (CA) is a general way to express so-

Figure 1: An example where MIN-SUM has a different op-
timum path than MIN-PROD

lution costs in search problems. CA allows for other non-
trivial meanings to the + and > operators that appear when
accumulating costs and when comparing them, respectively.
The benefit of formulating a search problem as a CA, is that
Edelkamp et al. also provided cost algebraic versions of Di-
jkstra’s Algorithm (DA) (Dijkstra 1959) and A* (Hart, Nils-
son, and Raphael 1968) suitable for any problem that can be
represented as a CA. These algorithms generalize the com-
mon, well-known implementations of DA and A* for the
shortest-path problem, by again allowing other meanings to
the + and > operators that appear in the relevant pseudo
code.

The exact relation between search space monotonicity
and cost algebra is not known. However, Stern et al. (2014)
showed that some search spaces that are inversely monotone
cannot be formulated as a cost algebra. An example of a such
a problem is the longest simple path problem.

From SUM to PROD
Up until now the assumption was that the costs (in MIN
problems) and rewards (in MAX problems) are additive.
These are called SUM problems (MIN-SUM, and MAX-
SUM, respectively). We now move to problems where the
costs/rewards are not additive, but rather multiplicative.
These are denoted as product problems (PROD problems).
More formally, let G = (V,E,w) be a graph representing a
state space of a given problem, where w(u, v) is the weight
of edge (u, v) ∈ E. The cost of a path P from a start state
s ∈ V to some state n ∈ V is denoted by cost(n) and its
definition depends on the nature of problem. In SUM, the
cost of a path P is defined as

cost(n) =

|P |−1∑
i=1

w(P [i], P [i+ 1]) (1)

whereas in PROD, the cost is defined as

cost(n) =

|P |−1∏
i=1

w(P [i], P [i+ 1]) (2)

The optimal solution for a SUM problem and for a PROD
problem can be profoundly different, even for the same state
space graph. As illustrated in figure 1, the shortest path in
this MIN problem is different when considering SUM or
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 Domain MIN MAX 
SU

M
 

[0,1] MIN-SUM (CA) 
Use a standard algorithm 

MAX-SUM  
Run until the open list is empty 

(Stern et al.) [1,∞] 

PR
O

D
 [0,1] 

Transform problem to 
MAX-SUM: 

1. 𝑤𝑤′ ← 𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤) 
2. 𝑤𝑤′ ← (−1) ∗ 𝑤𝑤′ 

Transform problem to 
MIN-SUM: 

1. 𝑤𝑤′ ← 𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤) 
2. 𝑤𝑤′ ← (−1) ∗ 𝑤𝑤′ 

[1,∞] 
Transform problem to 

MIN-SUM: 
𝑤𝑤′ ← 𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤) 

Transform problem to 
MAX-SUM: 
𝑤𝑤′ ← 𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤) 

 

Figure 2: monotone (white) and inversely monotone (grey)
PROD problems and their reduction to the equivalent SUM
problem.

PROD (equations 1 and 2). With SUM, 10 + 10 = 100 is
the minimum. However with PROD, 6 × 15 = 90 is the
minimum.

There are four classes of problems: MAX-SUM, MAX-
PROD, MIN-SUM, and MIN-PROD. In addition, for PROD
problems it makes a difference whether the edges’ costs are
in the range [0, 1] or in [1,∞]. The table in figure 2 summa-
rizes which classes of problems are monotone and which are
inversely monotone, depending on the range of their edges’
weights. The cells with a white background are monotone
while the cells with a grey background are inverse mono-
tone. As mentioned above, this distinction has an impact on
which search algorithms to apply and how to apply them.

The SUM cells (top) were already described by Stern et
al.(2014). They showed that MIN-SUM is monotone while
MAX-SUM is inverse monotone, regardless of whether edge
weights are smaller or larger than one (as long as the edge
weights are non-negative).

PROD problems
In order to classify PROD problems, we reduce each PROD
problem either to a MAX-SUM or MIN-SUM problem. The
first step of these reductions is to provide a transformation of
the PROD problem to a SUM problem. For this, we take the
logarithm of the weights of the edges (denoted log(w)). The
second step is to prove that the transformation is a proper
reduction. This means showing that the optimality of the so-
lution holds across the transformation. We will do this sepa-
rately for each cell in the Table in figure 2.
Case 1: We start with bottom left cell: MIN-PROD[1,∞]

(i.e., when edges’ weights are ≥ 1). A problem P in MIN-
PROD[1,∞] can be transformed to a problem P ′ in MIN-
SUM[0,∞] as follows. Each weight w in P is transformed to
log(w) in P ′. This is clearly a transformation. For the reduc-
tion step it is enough to prove that:

(w1 × w2 < w3 × w4)⇒
(log(w1) + log(w2) < log(w3) + log(w4)) (3)

Since all weights are larger than 1, their log will always be
positive, and due to the basic attributes of log, Equation 3
holds true. Therefore, MIN-PROD [1,∞] is monotone.

Case 2: Next we move to the bottom right cell: MAX-
PROD[1,∞]. We transform each problem P in MAX-
PROD[1,∞] to a problem P ′ in MAX-SUM[0,∞]. The re-
duction is identical to the former case as the relation < is
robust to the transformation. However, since now we pre-
fer paths with a larger objective function, the problem is
reduced to MAX-SUM (and not MIN-SUM). Therefore,
MAX-PROD[1,∞] is inversely monotone and can be solved
with methods designed for MAX-SUM.
Case 3: We now move to the next case: MAX-PROD[0,1]

(middle, right). We note that the log(W ) for 0 < W < 1 is
negative. Therefore, we transform each problem P in MAX-
PROD[0,1] to a problem P ′ in MIN-SUM[0,∞] as follows.
Each weight w in P is transformed to −log(w) in P ′. For
the reduction step it is enough to prove that:

(w1 × w2 > w3 × w4)⇒
− (log(w1) + log(w2)) < −(log(w3) + log(w4)) (4)

Since all weights are less than 1, their log is negative, and
due to the basic attributes of log, equation 4 holds true.
Therefore, MAX-PROD[0,1] is monotone.
Case 4: Finally we move to the case of MIN-PROD[0,1].
Following a similar process for the reduction of MAX-
PROD[1,∞] to MAX-SUM[0,∞] we transform w in P to
−log(w) in P ′. Based on the same line of proof it can be
seen that indeed MIN-PROD[0,1] is inversely monotone and
can be solved with methods designed for MAX-SUM.

We now have proven that the reduction table in figure 2
can be used to determine what type of algorithm can be used
in different PROD problems. For example, MAX-PROD[0,1]

is monotone and therefore, by taking the logarithm of its
weights, it can be solved using a MIN-SUM algorithm such
as the traditional A*.

Since log is not defined for negative numbers, and since
negative numbers do not apply to this paper’s example appli-
cation (MCs), we defer the discussion of dealing with neg-
ative edge weights to future research. Furthermore, we omit
the PROD problems whose weights can be both greater than
and less than 1. This is because their log reduction is equiv-
alent to a SUM problem whose weights consist of both posi-
tive and negative values. Such problems are problematic due
to possible loops with negative sum which can infinitely im-
prove the path cost.

Case Study: Pathfinding in Markov-Chains
As a case study for PROD problems, consider the problems
of finding the most/least probable paths in a Markov Chain.

As mentioned earlier, a Markov chain (MC) is a weighted
directed graph G = (V,E,w) that models a discrete-time
stochastic process. Vertices in this graph are states, where a
state is some event or temporal status of the modeled appli-
cation. Edges represent possible transitions between states
and the weight of an edge (u, v) represents the probability
of transitioning to from state u to v in a single step. A MC
model is a memory-less process, i.e., a process where the
probability of transition at time t only depends the state at
time t and not on any of the states leading up that state.
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Typically, an MC is represented as an adjacent matrix M
such that Mij stores the probability of transitioning from
state i to state j at any given time t. Formally, if Xt is the
random variable representing the state at time t then

Mij = Pr(Xt+1 = j|Xt = i) (5)

Finding the least- and most-probable paths in MCs is ex-
actly MIN-PROD and MAX-PROD problems, respectively.
To motivate solving these problems, we briefly describe our
anomaly detection application and how finding the least and
most probable paths in an MC is needed.

Anomaly Detection Using Markov Chains
Anomaly detection with MCs have been proposed in several
domains (Ye and others 2000; Jha, Tan, and Maxion 2001;
Meng et al. 2006). We consider a specific type of anomaly
detection problem, where the task is to identify harmful net-
work activity. Such activity can be caused, for example, by a
malicious agent trying to exploit some vulnerability of net-
work protocols to gain unlawful access to private informa-
tion. A challenging aspect of our anomaly detection problem
is that it is unsupervised, in the sense that we try to detect
malicious behaviors not known a priori, i.e., we do not know
how such anomalies manifest in the network packet data.

The high-level approach for such unsupervised anomaly
detection using MCs consists of three stages: training, track-
ing, and classifying. In the training stage, an MC for the nor-
mal behavior is learned from past data. In the tracking stage,
the last k observed state transitions are tracked to form ob-
served trajectories (Pat 2007). An observed trajectory Pobs

is an observed sequence of state transitions, i.e., a path in
the MC, and k is a user defined parameter. In the classifying
stage, an observed trajectory is analyzed and classified as an
anomaly or not.

The classifying stage requires an anomaly metric. An
anomaly metric is a score given to an observed trajectory
to quantify the degree to which that trajectory is anomalous.
An observed trajectory Pobs is classified as anomalous if the
measured anomaly score metric for Pobs is lower than some
threshold T .

Algorithm 1 summarizes the anomaly detection process
described above. It accepts two parameters k and T , where
k is the length of the observed trajectories and T is the
described above threshold value. Metric(Pobs) denotes the
measured anomaly metric for the observed trajectory (Pobs).
If it is smaller than T , then Pobs is considered as an anomaly.

Metrics for Anomaly Detection
The simplest anomaly score metric is the probability of the
observed trajectory Pobs = (s0, . . . , st) w.r.t the given MC.
This is given by

Pr(Pobs) = Pr(
t∧

i=0

(Xi = si)) =
t−1∏
i=0

Msi,si+1
(6)

(Ye, Zhang, and Borror 2004) discuss the use of MCs as
a means for anomaly detection in the application of cyber-
attack detection. Nevertheless, they show how using the

Algorithm 1 Detection of anomalies in MCs
Input: k, the length of trajectory considered
Input: T , the anomaly metric threshold

1: Pobs ← initFIFO(k)
2: while true do
3: Xt ← getCurrentState()
4: Pobs ← Add(Pobs, Xt)
5: score← Metric(Pobs)
6: if score > T then
7: alarm()
8: end if
9: end while

probability Pr(Pobs) as an anomaly score metric is not ro-
bust due to the presence of noise (rare yet benign sequences
of observations). For example, consider the case where one
single transition in Pobs has a zero probability w.r.t. the MC.
In this case, Pr(Pobs) would report a zero probability not for
just one time-tick, but rather k time-ticks. This means that
the metric will report a score of 0 (anomaly) even t+ k − 1
time ticks after the event. Still, Pr(Pobs) with a k > 1 will
be better than just considering k = 1, however it is not ro-
bust when short anomalies or noise occur.

Next, we define two anomaly score metrics that are more
robust than only considering Pr(Pobs), and another metric
which is good for only certain scenarios as will be discussed
further on. Computing these metrics will require solving
PROD problems.

Metric 1 Let Pobs[1], Pobs[i], and Pobs[k] denote the first,
ith, and last state observed. The first anomaly score metric
we propose is the probability of the most probable k-hop tra-
jectory from Pobs[1] to Pobs[k] (denoted by Pmax(Pobs[k])).
This metric, denoted Metric1, is defined as follows:

Metric1(Pobs) = Pmax(Pobs[k]) (7)

This metric might seem surprising, as it ignores the prob-
ability of the observed trajectory, and only considers the
most probable path to reach the end state of the observed
trajectory. However, as shown in the experimental results,
the performance of Metric1 is surprisingly good. Computing
Metric1(Pobs) requires solving a single PROD problem of
finding the most probable k-step trajectory path from Pobs[1]
to Pobs[k] (= Pmax(Pobs[k])). We call denote this problem as
Problem 1.

Metric 2 The second anomaly score metric, referred to as
Metric2, serves as default choice metric when performance
feedback is unavailable (i.e. when feedback about the best
T is unavailable). This is achieved by considering also the
least-probable k-hop trajectory from Pobs[1] to Pobs[k] (de-
noted by Pmin(Pobs[k])). Metric2 is the probability of the
observed trajectory normalized by the most and least prob-
able path that reaches the same state. Formally, Metric2 is
computed as follows:

Metric2(Pobs) =
Pr(Pobs)− Pmin(Pobs[k])

Pmax(Pobs[k])− Pmin(Pobs[k])
(8)
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Computing Metric2 requires solving two search problems:
Problem 1 (as defined above), and the problem finding
the least probable k-hop path from Pobs[1] to Pobs[k]
(=Pmin(Pobs[k])). We denote the latter problem as Problem
2.

Metric 3 The third anomaly score metric we propose, re-
ferred to as Metric3, considers all most-probable k-step tra-
jectories that start from Pobs[1]. Metric3 is computed as fol-
lows. Let Sk(Pobs[1]) denote the set of all states that are
reachable with a k-step trajectory from Pobs[1]. For every
state si ∈ Sk(Pobs[1]), we compute the most probable path
from Pobs[1] to si, denoted by Pmax(si). Then, we consider
the values of PDFmax(si) as a probability density func-
tion and compute the corresponding cumulative distribution
function

CDFmax(v) =

sum({Pmax(si)|si ∈ Sk(Pobs[1])s.t.Pmax(si) ≤ v}) (9)

In words, CDFmax(v) represents the sum of probabilities
over all states si for which Pmax(si) ≤ v. Thus, having
a high CDFmax(Pr(Pobs)) suggests that Pobs is normal.
Metric3 combines this information with Metric1 as follows.1

Metric3(Pobs) = Metric1(Pobs) + CDFmax(Pr(Pobs))
(10)

Computing Metric3 is much more demanding than Metric1,
as it requires finding the most probable k-hop from Pobs[1]
to each of the states in Sk(Pobs[1]). We refer to this problem
as Problem 3.

With regards to robustness, Metrics 1 and 3 are more ro-
bust w.r.t just using the basic metric Pr(Pobs). This is be-
cause the output of Metric1 is unaffected by a short low
probable trajectories (observations), since Metric1’s scores
are based on the most probable path in the given MC. In
applications such as network intrusion detection, the MCs
are well-connected (can get from every state to every state).
Therefore, scores as low as 0 will not to occur. Further-
more, the metric calculated after the anomalous event (up
to t + k − 1 time tick afterwards) will not be affected by
the low probable transitions in the middle of the observed
trajectory.

Underlying Search Problems
Computing the three anomaly score metrics presented above
requires solving a set of PROD problems: Problem 1, Prob-
lem 2, and Problem 3. Problem 1 is a MAX-PROD[0,1] prob-
lem, and thus can be reduced to a standard MIN-SUM prob-
lem where all search algorithms work well. Problem 2 is a
MIN-PROD[0,1] problem, and thus is not reducable to MIN-
SUM problems but to MAX-SUM problems. Thus, Problem
2 is more challenging computationally and require the adap-
tations of some search algorithms, as outlined by Stern et
al. (2014). Finally, Problem 3 is a set of MAX-PROD[0,1]

problems, which we solved sequentially.

1Metric3 uses Metric1 and not Metric2 because, as shown be-
low, Metric1 was superior to Metric2 in our experimental results.

Note that solving any of these problems by enumerating
all k-hop paths is impractical for large k, as thus using search
algorithms is needed.

One might consider computing the most- and least-
probable k-step trajectories for all states upfront. However,
for our application the matrix M is constantly updated
with the observed trajectories since network traffic behav-
ior changes over time. In fact, we update the MC every time
that a transition occurs between a state si and a state sj then
Mik (for every k including k = i as we allow self loops)
are updated according to the new transition distribution seen
thus far. Thus, we need a fast method to compute the least
and most probable k-steps paths (trajectories).

Before running any search algorithm, we performed the
reduction of our problem to MIN-SUM[0,∞] and MAX-
SUM[0,∞] accordingly, as explained above. Following the
reduction, we considered the use of three traditional search
algorithms: breadth first search (BFS), uniform cost search
(UCS), and A*.2

Search Space
All paths that need to be considered in the MC for solving
all problems have at most k steps in them, and may contain
loops (i.e., repeated states) and even self loops (i.e., an edges
from a state to itself). To handle these problem attributes, we
formalized the search tree as follows.

A node in the search tree is a tuple 〈v, d〉where v is a state
in the MC and d is a the depth in the search tree. The initial
node is 〈Pobs[0], 0〉. The successors of each node 〈i, d〉 are
all possible transitions from state i and they are denoted as
〈j, d+ 1〉 where j is a state reachable from i (i.e. Mij 6= 0).
We keep the depth of the node in the search tree as an inher-
ent part of the node definition to enable duplicate pruning
of states of the MC revisited at the same depth in the search
tree. This is done to accommodate the possibility of self loop
edges.

The goal node is defined according to the two problem
definitions given above. For Problem 1 and Problem 2 the
goal node is 〈Pobs[k], k〉, and for Problem 3 the goal nodes
are the set G = {〈v, k〉|v ∈ Sk(Pobs[1])}. We note that if
the goal state Pobs[k] was reached, but it was not at depth k,
then search continues (e.g., with self loops).

The cost function g is given according to Equation 1 (af-
ter the reduction). UCS expands nodes according to their g-
value. Unlike UCS, A* also considers a heuristic estimate
h(n) as to the cost left between node n and the goal node,
such that f(n) = g(n) + h(n). The topic of heuristics in
MCs is rather unexplored. Since our problem requires that
we find optimal paths consisting of exactly k-steps, we pro-
pose the heuristic:

h(n) = wmin · (k − i) (11)

where wmin is the smallest edge weight in Mt (after the re-
duction), and i is the number of hops taken so far from the
initial state to n. We note that this heuristic is admissible
since it never overestimates the cost of reaching the goal.

2Note that UCS is a best-first search implementation of Disjk-
tra’s algorithm (Felner 2011).
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Figure 3: The number of expanded nodes for BFS, UCS, and
A* for Problem 1 as a function of k

Note that this problem before the reduction is equivalent
to having the search algorithm modified to select the node
with the largest f(n) = g(n) · h(n) where g(n) is equation
2, and h(n) = (wmax)

k−i.

Experimental Results
In this section we first describe the network intrusion dataset
used and how the MC was generated from it. Afterwards we
evaluate the results of BFS, UCS and A* as they pertain to
problems 1 and 3. Lastly, we evaluate and discuss the results
of proposed anomaly metrics (equations 7, 10, and 8) on the
network intrusion MC.

The Network Intrusion Dataset
We used the KDD’99 cup network intrusion dataset in our
evaluations (Lichman 2013). The dataset is a time-series
consisting of several million observations of network con-
nections inside a simulated military network. Each observa-
tion has a number of features ranging from connection time
to protocol specific settings. The observations are paired
with one of 23 possible labels that indicate the class of the
observation; normal or one 22 possible attacks. Since our
application is anomaly detection, we considered all attack
types as single label. Therefore, each observation had the la-
bel normal or anomalous, where approximately 40% of the
observations were anomalous.

In our evaluation, we divided the dataset into two sets;
the training set and test set. The training set consisted of the
first 25% instances of the dataset. To simulate an unsuper-
vised anomaly detection setting, we removed the observa-
tions labeled anomalous from the training set, and only the
normal instances were used to model the MC. The test set
was the last 75% of the dataset, and was used to evaluate the
anomaly score metric w.r.t. the trained MC.

The first step we took to generate the MC on the train-
ing set was to define what a state is in the MC. Since
anomaly detection is an unsupervised method of machine
learning, we chose to detect the states using a stream clus-
tering algorithm called pcStream (Mirsky et al. 2015). pc-
Stream dynamically detects contexts (clusters) in numeric
data-streams, assigning observations to one of the known
contexts (based on statistical similarity measures). Simply
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Figure 4: The largest size of OPEN over the duration of solv-
ing problem 1

put, pcStream detects the state of the time-series so that we
can track its transitions.

Now that we were able to track the state of the network
(during a chronological pass over the training set) we gen-
erated our MC using an Extensible Markov Model (EMM)
(Dunham, Meng, and Huang 2004). An EMM counts the
number of transitions which occur from state i to state j (de-
noted nij). From here, the MC can be obtained by

Mij =
nij

ni

where ni is the total number of out-going transitions ob-
served by state i.

The final MC generated from our training set consisted of
2122 states.

Search Performance in a Network Intrusion MC
In the application described above, the transition probabili-
ties of the EMM (our MC) change after each time tic. There-
fore we do not consider preprocessing as a means of improv-
ing the search time.

We experimented from various states in the MC (obtained
above). We repeated this many times, each time with a larger
k. We also attempted to use a version of DFS but even for
very small values of k (3-4) it proved impractical due to the
lack of duplicate detection. This is why we included breadth-
first search (BFS) (to help contrast A* and UCS’s perfor-
mance). All code was written in Java and run on a single
core of an Intel i5-3470 CPU.

Results for Problem 1
The number of nodes expanded for BFS, UCS, and A* for
the most probable k-hop single source to the single target
problem (problem 1), can be found in figure 3. Each trial
used a different k and the same network intrusion dataset
MC. The figure clearly shows that A* outperforms UCS for
all k in terms of nodes expanded.

Figure 5 shows the CPU time in seconds. Surprisingly,
here A* was slower than UCS. The explanation to this re-
lies on Fig. 4 which shows the largest number of nodes that
were concurrently present in OPEN for the different k val-
ues. Clearly, A* had a larger OPEN. Thus, the time over-
head was larger despite the fact that fewer nodes were ex-
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panded. This is an interesting phenomenon which may ap-
pear in many circumstances. This subject requires further
research to understand the circumstances under which this
phenomenon occurs.

Similarly, BFS’s OPEN is relatively small, making its
overhead negligible. Therefore, although it expands far more
nodes than UCS and A*, it runs much faster. Moreover,
we did not implement the priority queue of UCS and A*’s
OPEN in the most efficient way since our focus was on
the number of nodes expanded by the respective algorithms.
Therefore, an algorithm such as A* would be preferred to
solve such problems when dealing with MCs with more than
2122 states.

Results for Problem 3
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Figure 6: Results for the single source all targets problem
using UCS only.

Figures 6 and 5 show the number of nodes expanded and
the CPU time for the problem of multiple goals (problem 3).
Here, only UCS is used. In order to reach all goals, regard-
less of k, an additional amount of time (nearly constant) was
required in comparison with the single goal search.

Anomaly Detection Performance
The performance of an anomaly detection algorithm can be
measured by its true positive rate (TPR) and false positive
rate (FPR), where the TPR is calculated as:

#True Positives
#True Positives + #False Negatives

and the FPR is calculated as:
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Figure 7: The performance (in terms of AUC) of the different
anomaly detection scoring methods using the MC that was
trained on clean network traffic

#False Positives
#False Positives + #True Negatives

Typically, an anomaly detection algorithm will assign a
score to each observation that indicates to what degree the
observation is anomalous. Changing the threshold sensitiv-
ity T (i.e. scores above the threshold indicates an anomaly)
produces different a TPR and FPR. The plot of these normal-
ized values is called the Receiver Operating Characteristic
(ROC). The area under this curve (AUC) gives the proba-
bility that the anomaly detection algorithm will rank a ran-
domly chosen anomalous instance higher than a randomly
chosen normal one. Therefore, an achieved AUC of 1

2 indi-
cates a random classifier (the worst), and an achieved AUC
of 1 indicates a perfect classifier (the best). We use the AUC
as our evaluation metric.

To evaluate the proposed anomaly score metrics (equa-
tions 7,10, and 8) we did the following to each observa-
tion o in the set (chronologically). First we used the trained
pcStream model to determine what Xt is from o w.r.t. the
trained MC. Afterwards, we computed metrics, and assigned
the scores to o. Once all observations were scored, the AUCs
were computed (for each metric). We repeated this for vari-
ous sizes of k.

We found that the logarithm of the paths costs in
Sk(Pobs[1]) conformed to a Gamma distribution. Therefore,
we fitted the PDF from 9 used in Metric3 accordingly. Note
that since a Gamma distribution is defined for positive val-
ues only (and the log of values on the domain [0, 1] are neg-
ative), we fit the distribution to the absolute values of the
logged costs, and then computed the CDF as 1− CDF .

Figure 7 shows the proposed anomaly scoring methods
compared to other EMM anomaly scoring methods (Meng
et al. 2006): Normalized Transition Probability (edge rarity)
nij∑
ni

, and Occurrence Frequency (node rarity) nj∑
ni

. More-
over, we also include the commonly used transition prob-
ability Pr(Pobs) from equation 6, and the product of each
observation’s cluster similarity score from pcStream as well.

Figure 8 shows the performance of Metrics 1 and 3 when
selecting various ks in relation to Pr(Pobs). The results
show that both Metrics 1 and 3 provide better anomaly
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scores then the other methods. This is due to their added
robustness.

Metric3 achieves a slightly better AUC than Metric1 (on
this dataset). However, the runtime of Metric1 is much
shorter than Metric3. This is because Metric1 only needs to
perform the single goal search (problem 1) to find the most
probable path. In contrast, Metric3 requires solving the all
goal problem (problem 3) for both most probable paths. For
future work, we intend on testing the proposed anomaly de-
tection methods on other datasets and MCs from other do-
mains.

Conclusion and Future Work
In this work we studied the properties of PROD problems,
where the cost of a path is the product of the weights of
its constituent edges. A complete map is given for reducing
MAX-PROD and MIN-PROD problems to MIN-SUM and
MAX-SUM problems (see Figure 2). This enables solving
PROD problems with the suitable search algorithm. Next,
we described specific MIN-PROD and MAX-PROD prob-
lems: finding the least probable and the most probable path
in a Markov Chain. These problems are important building
blocks for designing an anomaly detection system, specifi-
cally for cyberspace security in network intrusion. Different
search algorithms were evaluated for solving these problems
and their performance was analyzed.

To the best our knowledge, very little attention has been
given to the full scope of PROD problems and in this work
we aimed to start closing this gap. However, much theoreti-
cal and practical research is needed. On the theoretical side,
it is still not clear how the classification provided in Figure 2
and the definitions of monotone and inversely monotone re-
lates to key search space properties such as the principle of
optimality. Another open question is which PROD problems
can and cannot be formulated as cost algebra.
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