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Abstract

Suboptimal heuristic search algorithms such as greedy best-
first search allow us to find solutions when constraints of ei-
ther time, memory, or both prevent the application of opti-
mal algorithms such as A*. Guidelines for building an effec-
tive heuristic for A* are well established in the literature, but
we show that if those rules are applied for greedy best-first
search, performance can actually degrade. Observing what
went wrong for greedy best-first search leads us to a quantita-
tive metric appropriate for greedy heuristics, called Goal Dis-
tance Rank Correlation (GDRC). We demonstrate that GDRC
can be used to build effective heuristics for greedy best-first
search automatically.

Introduction
The A* search algorithm finds optimal solutions with op-
timal efficiency (Dechter and Pearl 1988). For many prob-
lems, however, finding an optimal solution will consume too
much time or too much memory, even with a heuristic with
only constant error (Helmert and Röger 2007). For prob-
lems that are too difficult for A*, practitioners often consider
Weighted A* (Pohl 1970) or greedy best-first search (GBFS)
(Doran and Michie 1966). GBFS is a best-first search that
expands nodes in h order, preferring nodes with small h,
dropping duplicates by using a closed list. The heuristic
plays a very large role in the effectiveness of these algo-
rithms.

For A*, there are a number of well-documented tech-
niques for constructing an effective heuristic. In this paper,
we revisit these guidelines in the context of GBFS. We be-
gin by showing that if one follows the established guidelines
for creating a quality heuristic for A*, the results are decid-
edly mixed. We present several examples where following
the A* wisdom for constructing a heuristic leads to slower
results for greedy search.

Using these failures, we derive informal observations
about what seems to help GBFS perform well. We then
develop a quantitative metric that can be used to compare
heuristics for use with GBFS. We demonstrate how it can
be used to automatically construct an effective heuristic for
GBFS by iteratively refining an abstraction. The resulting
heuristics outperform those constructed using methods de-
veloped for optimal search algorithms such as A*.

This work provides both qualitative and quantitative ways
to assess the quality of a heuristic for the purposes of GBFS.
Because GBFS is one of the most popular and scalable
heuristic search techniques, it is important to develop a bet-
ter understanding of how to use it. Lessons from optimal
search do not necessarily carry over to the suboptimal set-
ting.

Building a Heuristic for A*
We begin by briefly reviewing the literature on constructing
a heuristic for the A* search algorithm. For finding optimal
solutions using A*, the first and most important requirement
is that the heuristic be admissible, meaning for all nodes n,
h∗(n) — the true cheapest path from n to a goal — is greater
than or equal to h(n).

The most widespread rule for making a good heuristic for
A* is: dominance is good (Pearl 1984). A heuristic h1 is
said to dominate h2 if ∀n : h1(n) ≥ h2(n). This makes
sense, because due to admissibility, larger values are closer
to h∗. Furthermore, A* expands every node n it encoun-
ters where f(n) < f(opt), so large h often reduces expan-
sions. When it is difficult to prove dominance between two
heuristics, they are often informally evaluated by their aver-
age value or by their value at the initial state over a bench-
mark set. In either case, the general idea remains the same:
bigger heuristics are better.

If we ignore the effects of tie breaking and duplicate
states, A* and the last iteration of Iterative Deepening A*
(IDA*) expand the same number of nodes. Korf, Reid, and
Edelkamp (2001) predict that the number of nodes IDA*
will expand at cost c is:

E(N, c, P ) =
c∑

i=0

NiP (c− i)

The function P (h) represents the equilibrium heuristic
distribution, which is “the probability that a node chosen
randomly and uniformly among all nodes at a given depth
of the brute-force search tree has heuristic value less than or
equal to h” (Korf, Reid, and Edelkamp 2001). This quan-
tity tends to decrease as h gets larger, depending on how the
nodes in the space are distributed.

When considering pattern database (PDB) heuristics
(Culberson and Schaeffer 1998), assuming the requirements
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Cost Heuristic A* Exp Greedy Exp

Unit 8/4 PDB 2,153,558 36,023
8/0 PDB 4,618,913 771

Square 8/4 PDB 239,653 4,663
8/0 PDB 329,761 892

Rev Square 8/4 PDB 3,412,080 559,250
8/0 PDB 9,896,145 730

Table 1: Average number of nodes expanded to solve 51
random 12 disk 4 peg Towers of Hanoi problems.

of A* and IDA* are the same also allows us to apply Korf’s
Conjecture (Korf 1997), which tells us that we can expect
M × t = n, where M = m

1+log(m) where m is the amount
of memory the PDB in question takes up, t is the amount of
time we expect an IDA* search to consume, and n is a con-
stant (Korf ). This equation tells us that we should expect
larger pattern databases to provide faster search. To summa-
rize, bigger is better, both in terms of average heuristic value
and pattern database size.

The Behavior of Greedy Best-First Search
As we shall see, these guidelines for A* heuristics are all
very helpful when considering A*. What happens if we ap-
ply these same guidelines to greedy best-first search? We
answer this question by considering the behavior of greedy
search on three benchmark problems: the Towers of Hanoi,
the TopSpin puzzle, and the sliding tile puzzle.

Towers of Hanoi Heuristics
The most successful heuristic for optimally solving 4-peg
Towers of Hanoi problems is disjoint pattern databases (Korf
and Felner 2002). Disjoint pattern databases boost the
heuristic value by providing information about the disks on
the top of the puzzle. For example, consider 12 disks, split
into two disjoint pattern databases: eight disks in the bottom
pattern database, and four disks in the top pattern database.
With A*, the best results are achieved when using the full
disjoint pattern database. The exact numbers are presented
in the Unit rows of Table 1 (the other rows correspond to
alternate cost metrics which are discussed later). The theory
for A* corroborates the empirical evidence observed here:
the disjoint pattern database dominates the single pattern
database, so absent unusual effects from tie breaking, it is
no surprise that the disjoint pattern database results in faster
A* search. The dominance relation also transfers to the KRE
equation, meaning that if a heuristic h1 dominates a different
heuristic h2, the KRE equation predicts that the expected ex-
pansions using h1 will be less than or equal to the expected
expansions using h2.

With greedy search, however, faster search results when
we do not use a disjoint pattern database, and instead only
use the result of the 8 disk pattern database. The reason for
the different behaviour of A* and GBFS is simple. With
greedy best-first search using a single pattern database, it is
possible to follow the heuristic directly to a goal, having the
h value of the head of the open list monotonically decrease.

Figure 1: The h value of the expanded node as a function of
the number of expansions. Top, a single PDB, bottom, two
disjoint PDBs.

To see this, note that every combination of the bottom disks
has an h value specified by the bottom PDB, and all pos-
sible arrangements of the disks on top will also share that
same h value. Since the disks on top can be moved around
independently of where the bottom disks are, it is always
possible to arrange the top disks such that the next move of
the bottom disks can be done, while not disturbing any of the
bottom disks, thus leaving h constant, until h decreases be-
cause more progress has been made putting the bottom disks
of the problem in order. This process repeats until h = 0, at
which point greedy search simply considers possible config-
urations of the top disks until a goal has been found.

This phenomenon can be seen in the top pane of Fig-
ure 1, where the minimum h value of the open list mono-
tonically decreases as the number of expansions the search
has done increases. The heuristic created by the single pat-
tern database creates an extremely effective gradient for the
greedy search algorithm to follow for two reasons. First,
there are no local minima at all, only the global minimum
where the goal is. Following Hoffmann (2005) we define
minimum as a region of the space M where ∀n ∈ M , ev-
ery path from n to a goal node has at least one node n′ with
h(n′) > h(n). Second, there are exactly 256 states associ-
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ated with each configuration of the bottom 8 disks. This
means that every 256 expansions, h is guaranteed to de-
crease. In practice, a state with a lower h tends to be found
much faster.

In the bottom pane of Figure 1, the heuristic is a disjoint
pattern database. We can see that the h value of the head
of the open list fluctuates substantially when using a disjoint
pattern database, indicating that GBFS’s policy of “follow
small h” is much less successful. This is because those states
with the bottom disks very near their goal that are paired
with a very poor arrangement of the disks on top are as-
signed large heuristic values, which delays the expansion of
these nodes.

To summarize, the disjoint pattern database makes a gra-
dient that is more difficult for greedy search to follow be-
cause nodes can have a small h for more than one reason:
being near the goal because the bottom pattern database is
returning a small value, or being not particularly near the
goal, but having the top disks arranged on the target peg.
This brings us to our first observation.

Observation 1. All else being equal, greedy search tends to
work well when it is possible to reach the goal from every
node via a path where h monotonically decreases along the
path.

While this may seem self-evident, our example has illus-
trated how it conflicts with the common wisdom in heuristic
construction.

Another way to view this phenomenon is in analogy to the
Sussman Anomaly (Sussman 1975). The Sussman Anomaly
occurs when one must undo a subgoal prior to being able to
reach the global goal. In the context of Towers of Hanoi
problems, the goal is to get all of the disks on the target peg,
but solving the problem may involve doing and then undoing
some subgoals of putting the top disks on the target peg.
The presence of the top pattern database encourages greedy
searches to privilege states where subgoals which eventually
have to be undone have been accomplished.

Korf (1987) discusses different kinds of subgoals, and
how different kinds of heuristic searches are able to lever-
age subgoals. GBFS uses the heuristic to specify subgoals,
attempting to follow the h to a goal. For example, in a
unit-cost domain, the first subgoal is to find a node with
h = h(root)− 1. If the heuristic is compatible with Obser-
vation 1, these subgoals form a perfect serialization, and the
subgoals can be achieved one after another. As the heuris-
tic deviates from Observation 1, the subgoals induced by the
heuristic cannot be serialized.

These effects can be exacerbated if the cost of the disks
on the top are increased relative to the costs of the disks on
the bottom. If we define the cost of moving a disk as being
proportional to the disk’s size, we get the Square cost met-
ric, where the cost of moving disk n is n2. We could also
imagine that, once again, the cost of moving a disk is lin-
early proportional to the disk’s size, but the disks are stacked
in reverse, requiring the larger disks always be on top of
the smaller disks, in which case we get the Reverse Square
cost function. In either case, we still expect that the number
of expansions that greedy search will require will be lower

Figure 2: Normalized solution cost and expansions attained
by GBFS using various PDBs on Towers of Hanoi.

when using only the bottom pattern database, and this is in-
deed the effect we observe in Table 1. However, if the top
disks are heavier than the disks on the bottom, greedy search
suffers even more with disjoint PDBs than when we consid-
ered the unit cost problem, expanding an order of magnitude
more nodes. This is because the pattern database with infor-
mation about the top disks is returning values that are sub-
stantially larger than the bottom pattern database. If the situ-
ation is reversed, however, and the top pattern database uses
only low cost operators, the top pattern database comprises
a much smaller proportion of h. Since greedy search per-
forms best when the top pattern database isn’t even present,
it naturally performs better when the contribution of the top
pattern database is smaller.

Solution Quality While not the central focus on this pa-
per, it is important to consider solution quality because many
users are concerned with both execution time as well as so-
lution quality. Solution quality is simply the sum of the cost
of all actions included in the final path. All else being equal,
less expensive paths are more desirable than more expensive
paths, although it is typically the case that the less expensive
paths are also more computationally intensive to find. In
Figure 2 we consider single pattern databases with only one
pattern database with between 4 and 8 disks. We also con-
sider disjoint pattern databases with two disjoint parts with
at least five disks in the bottom PDB, and between 4 and 7
disks in the top PDB. As we can see, solution quality varies
less than an order of magnitude, and if we disregard the sin-
gle outlier, there is little variation in solution quality. We
can also see that the best pattern databases for expansions
all result in very high quality solutions.

TopSpin Heuristics
In the TopSpin puzzle, the objective is to sort a permuta-
tion by iteratively reversing a contiguous subsequence of
fixed size. An example can be seen in Figure 3. We
used a simplified problem with 12 disks and a turnstile that
flipped 4 disks, because for larger puzzles, greedy search
would sometimes run out of memory. We considered pat-
tern databases that contained 5, 6, 7, and 8 of the 12 disks.
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Figure 3: A TopSpin puzzle

Figure 4: Total expansions done by GBFS on the TopSpin
puzzle with different heuristics

Korf’s conjecture predicts that the larger pattern databases
will be more useful for A* and indeed, this can be seen in
Figure 4. Each box plot (Tukey 1977) is labeled with either
A* or G (for GBFS), and a number, denoting the number
of disks that the PDB tracks. Each box denotes the middle
50% of the data, with a horizontal line indicating the me-
dian. Circles denote outliers, whiskers represent the range
of the non-outlier data, and thin gray stripes indicate 95%
confidence intervals on the mean. As we move from left to
right, as the PDB heuristic tracks more disks, it gets sub-
stantially better for A*. While there are also reductions for
greedy search, the gains are nowhere near as impressive as
for A*.

The reason that greedy best-first search does not perform
better when given a larger heuristic is that states with h = 0
may still be quite far from a goal. For example, consider the
following TopSpin state where A denotes an abstracted disk:
0 1 2 3 4 5 A A A A A A
The turnstile swaps the orientation of 4 disks, but there are
configurations such that putting the abstracted disks in order
requires moving a disk that is not abstracted, such as:

A A 3
A A A 7
8 9 10 11

1 A 3
4 A 6 A
A 9 A 11

Figure 5: Different tile abstractions

Abstraction Greedy Exp A* Exp
Outer L (Figure 5 left) 258 1,251,260
Checker (Figure 5 right) 11,583 1,423,378
Outer L Missing 3 3,006 DNF
Outer L Missing 3 and 7 20,267 DNF
Instance Specific 8,530 480,250
GDRC τ Generated 427 1,197,789
Average 6 tile PDB 1 17,641 1,596,041
Worst 6 tile PDB (for GBFS) 193,849 1,911,566

Figure 6: Performance of GBFS and A* using pattern
databases generated with different abstractions. DNF de-
notes at least one instance requires more than 8GB to solve.

0 1 2 3 4 5 6 7 8 9 11 10
Moving a disk that is not abstracted will increase the

heuristic, so this means that the TopSpin subgraph of only
nodes with h = 0 is disconnected. Thus, when greedy
search encounters a state with h = 0, it may turn out that
the node is nowhere near the goal. If this is the case, greedy
search will first expand all the h = 0 nodes connected to the
first h = 0 node, and will then return to expanding nodes
with h = 1, looking to find a different h = 0 node.

The abstraction controls the number and size of h = 0
regions. For example, if we abstract 6 disks, there are two
strongly connected regions with only h = 0 nodes, each
containing 360 nodes. If we instead abstract 5 disks, there
are 12 strongly connected h = 0 regions, each with 10
nodes. For the heuristic that abstracts 6 disks, there is a 50%
chance that any given h = 0 node is connected to the goal
via only h = 0 nodes, but once greedy search has entered
the correct h = 0 region, finding the goal node is largely
up to chance. For the heuristic that abstracts 5 disks, the
probability that any given h = 0 node is connected to the
goal via only h = 0 nodes is lower. Once the correct h = 0
region is found, however, it is much easier to find the goal,
because the region contains only 10 nodes, as compared to
360 nodes. Empirically, we can see that these two effects
roughly cancel one another out, because the total number of
expansions done by greedy search remains roughly constant
no matter which heuristic is used. This brings us to our next
observation.

Observation 2. All else being equal, nodes with h = 0
should be connected to goal nodes via paths that only con-
tain h = 0 nodes.

One can view this as an important specific case of Observa-
tion 1.

Sliding Tiles Heuristics

1The average across all PDBs for A* is based upon the 429
PDBs which A* was able to use to solve all instances
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The sliding tile puzzle is one of the most commonly used and
best understood benchmark domains in heuristic search. Pat-
tern database heuristics have been shown to be the strongest
heuristics for this domain (Korf and Taylor 1996). We use
the 11 puzzle (4x3) as a case study because the smaller size
of this puzzle allows us to enumerate all pattern databases
with 6 preserved tiles. The central challenge when con-
structing a pattern database for domains like the sliding tile
puzzle is selecting a good abstraction.

The abstraction that keeps only the outer L, shown in the
left part of Figure 5 is extremely effective for greedy search,
because once greedy search has put all non-abstracted tiles
in their proper places, all that remains is to find the goal,
which is easy to do using even a completely uninformed
search on the remaining puzzle as there are only 6!

2 = 360
states with h = 0, and the h = 0 states form a connected
subgraph. Compare this to what happens when greedy
search is run on a checkerboard abstraction of the same size,
as shown in the top right part of Figure 5. Once greedy
search has identified a node with h = 0, there is a very
high chance that the remaining abstracted tiles are not con-
figured properly, and that at least one of the non abstracted
tiles will have to be moved. This effect can be seen in the
first two rows of the table in Figure 6, where the average
number of expansions required by A* is comparable with
either abstraction, while the average number of expansions
required by greedy search is larger by two orders of magni-
tude.

The sheer size of the PDB is not as important for GBFS
as it is for A*. In Figure 6, we can see that as we weaken the
pattern database by removing the 3 and 7 tiles, the number
of expansions required increases only modestly for GBFS,
while rendering some problems unsolvable for A* within 8
GB of memory. It is worth noting that even without the 3 tile,
the outer L abstraction is still more effective for greedy best-
first search as compared to the checkerboard abstraction.

The underlying reason behind the inefficiency of greedy
search using certain kinds of pattern databases is the fact that
the less useful pattern databases have nodes with h = 0 that
are nowhere near the goal. This provides additional confir-
mation that Observation 2 matters; greedy best-first search
concentrates its efforts on finding and expanding nodes with
a low h value, and if some of those nodes are, in reality, not
near a goal, this clearly causes problems for the algorithm.
A* is able to eliminate some of these states from consider-
ation by considering the high g value that such states may
have.

The checkerboard pattern database also helps to make
clear another problem facing greedy search heuristics. Once
the algorithm discovers a node with h = 0, if that node is not
connected to any goal via only h = 0 nodes, the algorithm
will eventually run out of h = 0 nodes to expand, and will
begin expanding nodes with h = 1. When expanding h = 1
nodes, greedy best-first search will either find more h = 0
nodes to examine for goals, or it will eventually exhaust all
of the h = 1 nodes as well, and be forced to consider h = 2
nodes. A natural question to ask is how far the algorithm has
to back off before it will be able to find a goal. This leads us
to our next observation.

Observation 3. All else being equal, greedy search tends to
work well when the difference between the minimum h value
of the nodes in a local minimum and the minimum h that
will allow the search to escape from the local minimum and
reach a goal is low.

This phenomenon is visible when considering instance
specific pattern databases, a state of the art technique for
constructing pattern databases for A* (Holte, Grajkowskic,
and Tanner 2005). In an instance specific pattern database,
the tiles that start out closest to their goals are abstracted
first, leaving the tiles that are furthest away from their goals
to be represented in the pattern database. This helps to max-
imize the heuristic values of the states near the root, but can
have the undesirable side effect of raising the h value of all
nodes near the root, including nodes that are required to be
included in a path to the goal. Raising the heuristic value of
the initial state is helpful for A* search, as evidenced by the
reduction in the number of expansions for A* using instance
specific abstractions of the same size, shown in the table in
Figure 6. Unfortunately, despite its power with A*, if we
apply this technique to greedy best-first search, the resulting
pattern database is still not nearly as powerful as the outer L
abstraction.

This observation contrasts with how Hoffmann (2005)
discusses the “size” of a local minimum. Hoffmann con-
siders the performance of the enforced hill climbing algo-
rithm. This algorithm begins by hill climbing, always pursu-
ing a node with a lower h value. When the algorithm cannot
find a node with lower h, it then begins doing a breadth-first
search, using the node with the lowest h as a root, until a
node with a lower h is found, at which point hill climbing
resumes. As such, the performance of this algorithm is de-
pendent upon how far away the nearest node with a lower
heuristic is from the origin point of the breadth-first search.
Thus, for this algorithm, the important question is how many
edges are between the origin point of the breadth-first search
and the termination of the breadth-first search at a node with
a lower h value.

Greedy best-first search considers all nodes on the open
list when deciding which node to expand, and selects nodes
with low h no matter where the they are in the search space.
The breadth-first aspect of enforced hill-climbing causes the
search to expand only nodes that are “near” the root of the
breadth-first search (with distance defined using edge count,
not edge weight), a bias that greedy best-first search lacks.
Thus, for greedy best-first search, the question is how many
nodes are actually in the local minimum, independent of
where those nodes are with respect to the bottom of the local
minimum that is the origin point of the breadth-first search
that enforced hill-climbing does. While measuring how far
the breadth-first search has to go to find a better node is help-
ful for enforced hill-climbing, this number is independent of
how much work a greedy best-first search is going to have
to do, because it is unrelated to the total number of nodes in
the local minimum.

135



Quantifying Effectiveness in Greedy Heuristics
Our observations provide qualitative suggestions for what
GBFS looks for in a heuristic, but quantitative metrics for
assessing heuristic quality are also extremely helpful. It is
important to note that from the perspective of GBFS, the
magnitude of h is unimportant, and all that truly matters
is node ordering using h. GBFS will be fastest if order-
ing nodes on h puts the nodes in order of d∗(n) (the true
distance-to-go, or the cost of going from n to a goal where
all edges cost 1). One way to quantify this idea is to assess
how well ordering nodes on h replicates the ordering on d∗.
Using rank correlation, one can assess how well one order-
ing replicates another ordering. We call the rank correlation
between h and d∗ the Goal Distance Rank Correlation, or
GDRC.

Spearman’s ρ is a rank correlation metric that measures
the correlation (Pearson’s r) between the ranked variables.
Another way to quantify rank correlation is Kendall’s τ
(Kendall 1938) which compares counts of concordant pairs
and discordant pairs. In the context of greedy search, a
concordant pair of nodes pc is a pair of nodes such that
h(n1) > h(n2) and d∗(n1) > d∗(n2) or h(n1) < h(n2)
and d∗(n1) < d∗(n2). pd is a pair of nodes that is not con-
cordant, and n is the total number of nodes in the space.
Kendall’s τ is equal to |pc|−|pd|

0.5·n(n−1) . It is also possible to esti-
mate the true value of Kendall’s tau by sampling nodes.

In this paper we use Kendall’s τ to measure GDRC, but
it is worth noting that because both τ and ρ are measures of
rank correlation, they are generally related to one another,
in that one can be used to reliably predict the other (Gib-
bons 1985). This relationship means that in practice, it is
generally possible to use either metric.

As h deviates from our observed requirements, we ex-
pect GDRC to decrease. For example, if a heuristic violates
Observation 1 or Observation 2, solutions starting at a node
with low h or h = 0 require at least one high h node. This
means there are some nodes with low h or h = 0 that have
higher d∗ than some nodes with high h, which means there
will be errors in the rank ordering. If a heuristic violates Ob-
servation 3, solutions starting at a node in a local minimum
require high h nodes, which once again forces some nodes
with higher h to have lower d∗, and forces some nodes with
lower h to have higher d∗.

In order to assess the effectiveness of GDRC, we ran ex-
periments on the Towers of Hanoi problem using 19 disjoint
and non-disjoint pattern databases. We considered single
pattern databases with between 4 and 8 disks, as well as all
possible pairings of PDBs where the total number of disks
in all PDBs is less than or equal to 12, each constituent PDB
contained between 3 and 8 disks, and the bottom PDB never
contained fewer than 5 disks. Pattern databases where the
bottom PDB contained fewer than 5 disks sometimes ex-
ceeded resource bounds. For each pattern database, we cal-
culated the GDRC for the heuristic produced by the PDB. In
the top part of Figure 7 we plot, for each PDB, the GDRC
of the PDB on the X axis and the average of the log of the
number of expansions required by greedy best-first search
on the Y axis. As we can see from the figure, when GDRC

Figure 7: Average log of expansions with different heuris-
tics, plotted against τ GDRC (top is Towers of Hanoi, bot-
tom is 11-puzzle)

is below roughly 0.4, greedy search performs very poorly,
but as GDRC increases, the average number of expansions
done by GBFS decreases.

We also did experiments on all 462 distinct 6 tile PDBs
for the 11 puzzle (Figure 7 bottom). Once again, for each
PDB we estimated Kendall’s τ , and calculated the average
number of expansions GBFS required to solve the problem
using that pattern database. As was the case with the Tow-
ers of Hanoi, we can see that as the GDRC increases, the
average number of expansions required by GBFS decreases.

To assess the helpfulness of GDRC, we also compared
evaluating heuristics using the dominance relationship and
by using GDRC. Given a set of heuristics we begin by con-
sidering all pairs of heuristics, and attempt to pick which
heuristic in each pair will lead to faster GBFS. When us-
ing GDRC to pick a heuristic, we simply select the heuristic
with the larger GDRC, and this is either the correct deci-
sion (GBFS using the selected heuristic expands fewer nodes
than GBFS using the alternate heuristic) or the incorrect de-
cision. As a simple example, we could compare a single
PDB with the bottom 8 disks (τ = 0.709 for reverse square
costs) against a disjoint PDB with the bottom 6 disks and
the top 6 disks (τ = 0.430 for reverse square costs). Since
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the PDB with the bottom 8 disks has a higher τ , we select
this heuristic, since we expect it to be a superior heuristic,
which turns out to be true, since using the single 8 disk PDB
with reverse square costs requires an average of 771 expan-
sions, while using the disjoint 6/6 PDB requires an average
of approximately 646,000 expansions. When we select be-
tween heuristics using GDRC, we make the correct decision
on 159/171 pairings of heuristics on the Towers of Hanoi
with square costs, and we make the correct decision 157/171
pairings when using the reverse square costs.

We can also perform this same evaluation using the dom-
inance relationship. For example, keeping with the reverse
square example from before, an 8 disk PDB dominates a 7
disk PDB, so if selecting between a 7 and an 8 disk PDB,
we would expect the 8 disk PDB to be superior, which is
true (average of 771 expansions vs 2,104 expansions). Un-
fortunately, some heuristics cannot be directly compared to
one another using the dominance relationship (for example,
a disjoint pattern database with the bottom 6 disks and the
top 6 disks does not dominate, nor is it dominated by, a sin-
gle pattern database with 8 disks). We make no predictions
when neither heuristic dominates the other. When attempt-
ing to select a heuristic for the Towers of Hanoi with square
costs, we make the correct decision 23/60 times, and when
using reverse square costs, we make the correct decision
13/60 times.

As we can see, GDRC is a much more effective metric for
selecting between heuristics for GBFS, picking the correct
PDB more than 90% of the time compared to the dominance
metric, which cannot make predictions for some pairings of
heuristics, and makes the correct prediction less than half of
the time.

Building a heuristic by hill climbing on GDRC
Our experiments from the previous section suggest that it
is possible to use GDRC to compare heuristics against one
another. This implies that, as an automated quantitative
metric, GDRC allows us to automatically construct effec-
tive abstraction-based heuristics for greedy search in many
domains. For example, for the TopSpin problem, we be-
gin with a heuristic that abstracts all disks. We then con-
sider all PDBs that can be devised by abstracting everything
except one disk, and measure the GDRC of each. GDRC
can be effectively estimated by doing a breadth-first search
backwards from the goal (we used 10,000 nodes for a 12
disk problem, a small fraction of the half billion node state
space, and sampled 10% of these nodes) to establish d∗ val-
ues for nodes, and the h value can be looked up in the pat-
tern database. It is also possible to obtain a better estimate of
GDRC by randomly selecting nodes and calculating h and
d∗ for those nodes. We then select the PDB with the high-
est GDRC. This process iterates until either all PDBs have
a worse GDRC than the current one, or until the PDB has
reached the desired size. While we elected to use hill climb-
ing due to its simplicity, it is possible to use other methods
to explore the space of abstractions.

When used to generate a 6 disk PDB for TopSpin, this pro-
cess always produced PDBs where the abstracted disks were
all connected to one another, and the refined disks were also

PDB Greedy Exp A* Exp Avg. Value
Contiguous 411.19 10,607.45 52.35
Big Operators 961.11 411.27 94.37
Random 2,386.81 26,017.25 47.99

Figure 8: Average expansions required to solve TopSpin
problems

all connected to one another. This prevents the abstraction
from creating regions where h = 0, but where the goal is
nowhere near the h = 0 nodes, per Observation 2.

With unit-cost TopSpin problems, abstractions where all
of the disks are connected to one another work well for both
greedy search and A*, but when we change the costs such
that moving an even disk costs 1 and moving an odd disk
costs 10, the most effective PDBs for A* are those that keep
as many odd disks as possible, because moving the odd disks
is much more expensive than moving an even disk. If we
use such a pattern database for greedy search, the algorithm
will align the high cost odd disks, but will have great dif-
ficulty escaping from the resulting local minimum. If we
use hill climbing on GDRC to build a heuristic for greedy
search on such a problem, we end up with a heuristic that
keeps the abstracted and the refined disks connected to one
another. As can be seen in Figure 8, the Contiguous pat-
tern database produced by hill climbing on GDRC works
much better for greedy search as compared to the Big Op-
erators pattern database that tracks only the expensive disks.
A*, on the other hand, performs much better when using the
Big Operators pattern database, because the average values
found in this pattern database are much higher. We can see
the importance of creating a good pattern database when we
consider the Random row from Figure 8, which contains the
average number of expansions from 20 different randomly
selected pattern databases.

We also evaluated GDRC-generated PDBs for the sliding
tile puzzle. For the sliding tile puzzle, we refined one tile at
a time, selecting the tile that increased GDRC the most. The
resulting pattern database tracked the 1, 3, 4, 7, 8, and 11
tiles. The results of using this PDB are shown in Figure 6.
While this abstraction is not as strong as the outer L abstrac-
tion, it is the fourth best PDB for minimizing the average
number of expansions done by greedy search of the 462 pos-
sible 6 tile pattern databases. The automatically constructed
PDB is two orders of magnitude faster than the number of
expansions one would expect to do using an average 6 tile
PDB, and 3 orders of magnitude faster than the worst 6 tile
PDB for GBFS. It also handily outperformed the state-of-
the-art instance specific PDB construction technique.

GDRC can also be used to select a heuristic from among
many heuristics. For example, as Figure 7 (top) shows, on
the Towers of Hanoi domain by selecting the PDB with the
highest GDRC, we automatically select the best PDB out of
19 for GBFS.

Related Work
While there has been much work on constructing admissible
heuristics for optimal search, there has been much less work
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on heuristics for GBFS.
Most analyses of heuristics assume their use for opti-

mal search. However, Hoffmann (2005) analyzes the pop-
ular delete-relaxation heuristic (Hoffmann and Nebel 2001)
for domain-independent planning, showing that it leads to
polynomial-time behavior for enforced hill-climbing search
in several benchmarks. Hoffmann (2011) automates this
analysis. Although enforced hill climbing is a kind of greedy
search, it is very different from greedy best-first search when
a promising path turns into a local minimum. Greedy best-
first search considers nodes from all over the search space,
possibly allowing very disparate nodes to compete with one
another for expansion. Enforced hill climbing limits con-
sideration to nodes that are near the local minimum, which
means that the algorithm only cares about how the heuristic
performs in a small local region of the space. Observation
1 is also related to a point discussed by Hoffmann (2005),
who points out that in many domains, it is possible to find
a plan leading to a goal where the heuristic never increases,
meaning there are no local minima in the space at all.

Wilt and Ruml (2012) use a GDRC-like metric to predict
when Weighted A* and GBFS will fail to provide speed-up.
We use GDRC to directly compare heuristics against one
another, and to build or find quality heuristics for GBFS.

Xu, Fern, and Yoon (2010) discuss how to learn search
guidance specifically for planners, relying on features of
the state description. Arfaee, Zilles, and Holte (2011) dis-
cuss constructing an inadmissible heuristic for near-optimal
search. Thayer and Ruml (2011) show how to debias an
admissible heuristic into an inadmissible one. While these
works discuss creating a heuristic, none of them address
metrics or comparing multiple heuristics as we do here.

Wilt and Ruml (2014) show that large local minima harm
the performance of best-first search, and that the expected
size of local minima is smaller for a unit-cost (speedy
search) heuristic. They argue that it is local minimum size
that is most important for predicting how well greedy best-
first search will perform. At first glance, that would seem
to be at odds with the results of this paper, but it is worth
noting that it is generally the case that domains with large
local minima have poor GDRC. This is because, by defini-
tion, all paths from a node n in a local minimum will contain
nodes with h(n′) > h(n), so the heuristic value of n is off
by at least h(n′)− h(n). This additional error increases the
likelihood that the heuristic will have a poor GDRC.

An alternative approach to solving problems with greedy
best-first search is to use a different algorithm, one that is,
by construction, better suited to the available heuristics. This
approach is taken by algorithms that use randomness (Imai
and Kishimoto 2011; Nakhost and Müller 2013; Valenzano
et al. 2014).

Conclusion
We have shown several examples in which the conventional
guidelines for building heuristics for A* can actually harm
the performance of GBFS. These helped us discover at-
tributes of the heuristic that help or harm the performance
of GBFS. We then introduced the GDRC metric and ex-
plained how it captures the preferences we observed for

GBFS heuristics. We showed that GDRC is a useful met-
ric to compare different heuristics for greedy search, and
demonstrated how it can be used to automatically construct
appropriate heuristics for GBFS. Given the importance of
greedy best-first search in solving large problems quickly,
we hope this investigation spurs further analysis of subopti-
mal search algorithms and the heuristic functions they rely
on.
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