
Red-Black Planning:
A New Tractability Analysis and Heuristic Function

Daniel Gnad and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{gnad, hoffmann}@cs.uni-saarland.de

Abstract

Red-black planning is a recent approach to partial delete re-
laxation, where red variables take the relaxed semantics (ac-
cumulating their values), while black variables take the reg-
ular semantics. Practical heuristic functions can be gener-
ated from tractable sub-classes of red-black planning. Prior
work has identified such sub-classes based on the black causal
graph, i. e., the projection of the causal graph onto the black
variables. Here, we consider cross-dependencies between
black and red variables instead. We show that, if no red vari-
able relies on black preconditions, then red-black plan gen-
eration is tractable in the size of the black state space, i. e.,
the product of the black variables. We employ this insight
to devise a new red-black plan heuristic in which variables
are painted black starting from the causal graph leaves. We
evaluate this heuristic on the planning competition bench-
marks. Compared to a standard delete relaxation heuristic,
while the increased runtime overhead often is detrimental, in
some cases the search space reduction is strong enough to re-
sult in improved performance overall.

Introduction
In classical AI planning, we have a set of finite-domain state
variables, an initial state, a goal, and actions described in
terms of preconditions and effects over the state variables.
We need to find a sequence of actions leading from the initial
state to a goal state. One prominent way of addressing this is
heuristic forward state space search, and one major question
in doing so is how to generate the heuristic function automat-
ically, i. e., just from the problem description without any
further human user input. We are concerned with that ques-
tion here, in satisficing planning where no guarantee on plan
quality needs to be provided. The most prominent class of
heuristic functions for satisficing planning are relaxed plan
heuristics (e. g. (McDermott 1999; Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Gerevini, Saetti, and Serina
2003; Richter and Westphal 2010)).

Relaxed plan heuristics are based on the delete (or mono-
tonic) relaxation, which assumes that state variables accu-
mulate their values, rather than switching between them.
Optimal delete-relaxed planning still is NP-hard, but satis-
ficing delete-relaxed planning is polynomial-time (Bylander

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1994). Given a search state s, relaxed plan heuristics gen-
erate a (not necessarily optimal) delete-relaxed plan for s,
resulting in an inadmissible heuristic function which tends
to be very informative on many planning benchmarks (an
explicit analysis has been conducted by Hoffmann (2005)).

Yet, like any heuristic, relaxed plan heuristics also have
significant pitfalls. A striking example (see, e. g., (Coles
et al. 2008; Nakhost, Hoffmann, and Müller 2012; Coles
et al. 2013)) is “resource persistence”, that is, the inabil-
ity to account for the consumption of non-replenishable
resources. As variables never lose any “old” values, the
relaxation pretends that resources are never actually con-
sumed. For this and related reasons, the design of heuris-
tics that take some deletes into account has been an active
research area from the outset (e. g. (Fox and Long 2001;
Gerevini, Saetti, and Serina 2003; Helmert 2004; van den
Briel et al. 2007; Helmert and Geffner 2008; Coles et al.
2008; Keyder and Geffner 2008; Baier and Botea 2009;
Keyder, Hoffmann, and Haslum 2012; Coles et al. 2013;
Keyder, Hoffmann, and Haslum 2014). We herein continue
the most recent approach along these lines, red-black plan-
ning as introduced by Katz et al. (2013b).

Red-black planning delete-relaxes only a subset of the
state variables, called “red”, which accumulate their values;
the remaining variables, called “black”, retain the regular
value-switching semantics. The idea is to obtain an inad-
missible yet informative heuristic in a manner similar to re-
laxed plan heuristics, i. e. by generating some (not necessar-
ily optimal) red-black plan for any given search state s. For
this to make sense, such red-black plan generation must be
sufficiently fast. Therefore, after introducing the red-black
planning framework, Katz et al. embarked on a line of work
generating red-black plan heuristics based on tractable frag-
ments. These are characterized by properties of the pro-
jection of the causal graph – a standard structure capturing
state variable dependencies – onto the black variables (Katz,
Hoffmann, and Domshlak 2013a; Katz and Hoffmann 2013;
Domshlak, Hoffmann, and Katz 2015). Cross-dependencies
between black and red variables were not considered at all
yet. We fill that gap, approaching “from the other side” in
that we analyze only such cross-dependencies. We ignore
the structure inside the black part, assuming that there is a
single black variable only; in practice, that “single variable”
will correspond to the cross-product of the black variables.

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

44

Distinguishing between (i) black-precondition-to-red-
effect, (ii) red-precondition-to-black-effect, and (iii) mixed-
red-black-effect dependencies, and assuming there is a sin-
gle black variable, we establish that (i) alone governs the
borderline between P and NP: If we allow type (i) depen-
dencies, deciding red-black plan existence is NP-complete,
and if we disallow them, red-black plan generation is
polynomial-time. Katz et al. also considered the single-
black-variable case. Our hardness result strengthens theirs
in that it shows only type (i) dependencies are needed. Our
tractability result is a major step forward in that it allows to
scale the size of the black variable, in contrast to Katz et al.’s
algorithm whose runtime is exponential in that parameter.
Hence, in contrast to Katz et al.’s algorithm, ours is practical.
It leads us to a new red-black plan heuristic, whose painting
strategy draws a “horizontal line” through the causal graph
viewed as a DAG of strongly connected components (SCC),
with the roots at the top and the leaves at the bottom. The
part above the line gets painted red, the part below the line
gets painted black, so type (i) dependencies are avoided.

Note that, by design, the black variables must be “close to
the causal graph leaves”. This is in contrast with Katz et al.’s
red-black plan heuristics, which attempt to paint black the
variables “close to the causal graph root”, to account for the
to-and-fro of these variables when servicing other variables
(e. g., a truck moving around to service packages). Indeed, if
the black variables are causal graph leaves, then provably no
information is gained over a standard relaxed plan heuristic
(Katz, Hoffmann, and Domshlak 2013b). However, in our
new heuristic we paint black leaf SCCs, as opposed to leaf
variables. As we point out using an illustrative example,
this can result in better heuristic estimates than a standard
relaxed plan, and even than a red-black plan when painting
the causal graph roots black. That said, in the International
Planning Competition (IPC) benchmarks, this kind of struc-
ture seems to be rare. Our new heuristic often does not yield
a search space reduction so its runtime overhead ends up
being detrimental. Katz et al.’s heuristic almost universally
performs better. In some cases though, our heuristic does
reduce the search space dramatically relative to standard re-
laxed plans, resulting in improved performance.

Preliminaries
Our approach is placed in the finite-domain representa-
tion (FDR) framework. To save space, we introduce FDR
and its delete relaxation as special cases of red-black plan-
ning. A red-black (RB) planning task is a tuple Π =
〈V B, V R, A, I,G〉. V B is a set of black state variables and
V R is a set of red state variables, where V B ∩ V R = ∅ and
each v ∈ V := V B ∪ V R is associated with a finite domain
D(v). The initial state I is a complete assignment to V , the
goal G is a partial assignment to V . Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
dition and effect. We often refer to (partial) assignments as
sets of facts, i. e., variable-value pairs v = d. For a partial
assignment p, V(p) denotes the subset of V instantiated by
p. For V ′ ⊆ V(p), p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset s[v] ⊆
D(v), where |s[v]| = 1 for all v ∈ V B. An action a is ap-

plicable in state s if pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)).
Applying a in s changes the value of v ∈ V(eff(a))∩ V B to
{eff(a)[v]}, and changes the value of v ∈ V(eff(a))∩V R to
s[v] ∪ {eff(a)[v]}. The resulting state is denoted sJaK. By
sJ〈a1, . . . , ak〉K we denote the state obtained from sequential
application of a1, . . . , ak. An action sequence 〈a1, . . . , ak〉
is a plan if G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Π is a finite-domain representation (FDR) planning task
if V = V B, and is a monotonic finite-domain representa-
tion (MFDR) planning task if V = V R. Optimal planning
for MFDR tasks is NP-complete, but satisficing planning
is polynomial-time. The latter can be exploited for deriv-
ing (inadmissible) relaxed plan heuristics, denoted hFF here.
Generalizing this to red-black planning, the red-black relax-
ation of an FDR task Π relative to a variable painting, i. e. a
subset V R to be painted red, is the RB task ΠRB

V R = 〈V \V R,

V R, A, I, G〉. A plan for ΠRB
V R is a red-black plan for Π.

Generating optimal red-black plans is NP-hard regardless of
the painting simply because we always generalize MFDR.
The idea is to generate satisficing red-black plans and thus
obtain a red-black plan heuristic hRB similarly as for hFF.
That approach is practical if the variable painting is chosen
so that satisficing red-black plan generation is tractable (or
sufficiently fast, anyway).

A standard means to identify structure, and therewith
tractable fragments, in planning is to capture dependencies
between state variables in terms of the causal graph. This
is a digraph with vertices V . An arc (v, v′) is in CGΠ

if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a)) ∪ V(pre(a))]× V(eff(a)).

Prior work on tractability in red-black planning (Katz,
Hoffmann, and Domshlak 2013b; 2013a; Domshlak, Hoff-
mann, and Katz 2015) considered (a) the “black causal
graph” i. e. the sub-graph induced by the black variables
only, and (b) the case of a single black variable. Of these,
only (a) was employed for the design of heuristic functions.
Herein, we improve upon (b). Method (a) is not of immedi-
ate relevance to our technical contribution, but we compare
to it empirically, specifically to the most competitive heuris-
tic hMercury as used in the Mercury system that participated in
IPC’14 (Katz and Hoffmann 2014). That heuristic exploits
the tractable fragment of red-black planning where the black
causal graph is acyclic and every black variable is “invert-
ible” in a particular sense. The painting strategy is geared at
painting black the “most influential” variables, close to the
causal graph roots.

Example 1 As an illustrative example, we use a simpli-
fied version of the IPC benchmark TPP. Consider Figure 1.
There is a truck moving along a line l1, . . . , l7 of locations.
The truck starts in the middle; the goal is to buy two units of
a product, depicted in Figure 1 (a) by the barrels, where one
unit is on sale at each extreme end of the road map.

Concretely, say the encoding in FDR is as follows. The
state variables are T with domain {l1, . . . , l7} for the truck
position; B with domain {0, 1, 2} for the amount of product
bought already; P1 with domain {0, 1} for the amount of
product still on sale at l1; and P7 with domain {0, 1} for the
amount of product still on sale at l7. The initial state is as

45

T

P1 P7

B

(a) (b)

Figure 1: Our running example (a), and its causal graph (b).

shown in the figure, i. e., T = l3, B = 0, P1 = 1, P7 = 1.
The goal is B = 2. The actions are:

• move(x, y): precondition {T = lx} and effect {T = ly},
where x, y ∈ {1, . . . , 7} such that |x− y| = 1.
• buy(x, y, z): precondition {T = lx, Px = 1, B = y} and

effect {Px = 0, B = z}, where x ∈ {1, 7} and y, z ∈
{0, 1, 2} such that z = y + 1.

The causal graph is shown in Figure 1 (b). Note that the
variables pertaining to the product, i. e. B,P1, P7, form a
strongly connected component because of the “buy” actions.

Consider first the painting where all variables are red,
i. e., a full delete relaxation. A relaxed plan then ignores
that, after buying the product at one of the two locations l1
or l7, the product is no longer available so we have to move
to the other end of the line. Instead, we can buy the product
again at the same location, ending up with a relaxed plan of
length 5 instead of the 11 steps needed in a real plan.

Exactly the same problem arises in hMercury: The only “in-
vertible” variable here is T . But if we paint only T black,
then the red-black plan still is the same as the fully delete-
relaxed plan (the truck does not have to move back and forth
anyhow), and we still get the same goal distance estimate 5.

Now say that we paint T red, and paint all other vari-
ables black. This is the painting our new heuristic function
will use. We can no longer cheat when buying the product,
i. e., we do need to buy at each of l1 and l7. Variable T is
relaxed so we require 6 moves to reach both these locations,
resulting in a red-black plan of length 8.

Tractability Analysis
We focus on the case of a single black variable. This has
been previously investigated by Katz et al. (2013b), but
scantly only. We will discuss details below; our contribu-
tion regards a kind of dependency hitherto ignored, namely
cross-dependencies between red and black variables:

Definition 1 Let Π = 〈V B, V R, A, I,G〉 be a RB planning
task. We say that v, v′ ∈ V B ∪ V R have different colors if
either v ∈ V B and v′ ∈ V R or vice versa. The red-black
causal graph CGRB

Π of Π is the digraph with vertices V and
those arcs (v, v′) from CGΠ where v and v′ have different
colors. We say that (v, v′) is of type:

(i) BtoR if v ∈ V B, v′ ∈ V R, and there exists an action
a ∈ A such that (v, v′) ∈ V(pre(a))× V(eff(a)).

(ii) RtoB if v ∈ V R, v′ ∈ V B, and there exists an action
a ∈ A such that (v, v′) ∈ V(pre(a))× V(eff(a)).

(iii) EFF else.

We investigate the complexity of satisficing red-black
planning as a function of allowing vs. disallowing each of
the types (i) – (iii) of cross-dependencies individually. We
completely disregard the inner structure of the black part
of Π, i. e., the subset V B of black variables may be arbi-
trary. The underlying assumption is that these variables will
be pre-composed into a single black variable. Such “pre-
composition” essentially means to build the cross-product of
the respective variable domains (Seipp and Helmert 2011).
We will refer to that cross-product as the black state space,
and state our complexity results relative to the assumption
that |V B| = 1, denoting the single black variable with vB.
In other words, our complexity analysis is relative to the size
|D(vB)| of the black state space, as opposed to the size of the
input task. From a practical perspective, which we elaborate
on in the next section, this makes sense provided the variable
painting is chosen so that the black state space is “small”.

Katz et al. (2013b) show in their Theorem 1, henceforth
called “KatzP”, that satisficing red-black plan generation is
polynomial-time in case |D(vB)| is fixed, via an algorithm
that is exponential only in that parameter. They show in their
Theorem 2, henceforth called “KatzNP”, that deciding red-
black plan existence is NP-complete if |D(vB)| is allowed
to scale. They do not investigate any structural criteria dis-
tinguishing sub-classes of the single black variable case. We
close that gap here, considering the dependency types (i) –
(iii) of Definition 1. The major benefit of doing so will be a
polynomial-time algorithm for scaling |D(vB)|.

Switching each of (i) – (iii) on or off individually yields
a lattice of eight sub-classes of red-black planning. It turns
out that, as far as the complexity of satisficing red-black plan
generation is concerned, this lattice collapses into just two
classes, characterized by the presence or absence of depen-
dencies (i): If arcs of type BtoR are allowed, then the prob-
lem is NP-complete even if arcs of types RtoB and EFF are
disallowed. If arcs of type BtoR are disallowed, then the
problem is polynomial-time even if arcs of types RtoB and
EFF are allowed. We start with the negative result:

Theorem 1 Deciding red-black plan existence for RB plan-
ning tasks with a single black variable, and without CGRB

Π
arcs of types RtoB and EFF, is NP-complete.

Proof: Membership follows from KatzNP. (Plan length with
a single black variable is polynomially bounded, so this
holds by guess-and-check.)

d0 d1 d2 dn

x1

¬x1

x2

¬x2

x3

¬x3

xn

¬xn

. . .

Figure 2: Illustration of the black variable vB in the SAT
reduction in the proof of Theorem 1.

We prove hardness by a reduction from SAT. Consider a
CNF formula φ with propositional variables x1, . . . , xn and
clauses c1, . . . , cm. Our RB planning task has m Boolean
red variables vRi , and the single black variable vB has do-
main {d0, . . . , dn} ∪ {xi,¬xi | 1 ≤ i ≤ n}. In the initial

46

Algorithm NoBtoR-Planning:
R := I[V R]∪ RedFixedPoint(AR)
if G[V R] ⊆ R and BlackReachable(R, I[vB], G[vB]) then

return “solvable” /* case (a) */
endif
R := I[V R]∪ RedFixedPoint(AR ∪ARB)
if G[V R] ⊆ R then

for a ∈ ARB s.t. pre(a) ⊆ R do
if BlackReachable(R, eff(a)[vB], G[vB]) then

return “solvable” /* case (b) */
endif

endfor
endif
return “unsolvable”

Figure 3: Algorithm used in the proof of Theorem 2.

state, all vRj are set to false and vB has value d0. The goal
is for all vRj to be set to true. The actions moving vB have
preconditions and effects only on vB, and are such that we
can move as shown in Figure 2, i. e., for 1 ≤ i ≤ n: from
di−1 to xi; from di−1 to ¬xi; from xi to di; and from ¬xi to
di. For each literal l ∈ cj there is an action allowing to set
vRj to true provided vB has the correct value, i. e., for l = xi
the precondition is vB = xi, and for l = ¬xi the precondi-
tion is vB = ¬xi. This construction does not incur any RtoB
or EFF dependencies. The paths vB can take correspond ex-
actly to all possible truth value assignments. We can achieve
the red goal iff one of these paths visits at least one literal
from every clause, which is the case iff φ is satisfiable. �

The hardness part of KatzNP relies on EFF dependencies.
Theorem 1 strengthens this in showing that these dependen-
cies are not actually required for hardness.

Theorem 2 Satisficing plan generation for RB planning
tasks with a single black variable, and without CGRB

Π arcs
of type BtoR, is polynomial-time.

Proof: Let Π = 〈{vB}, V R, A, I,G〉 as specified. We can
partition A into the following subsets:

• AB := {a ∈ A | V(eff(a)) ∩ V B = {vB},V(eff(a)) ∩
V R = ∅} are the actions affecting only the black variable.
These actions may have red preconditions.

• AR := {a ∈ A | V(eff(a)) ∩ V B = ∅,V(eff(a)) ∩ V R 6=
∅} are the actions affecting only red variables. As there
are no CGRB

Π arcs of type BtoR, the actions in AR have no
black preconditions.

• ARB := {a ∈ A | V(eff(a)) ∩ V B = {vB},V(eff(a)) ∩
V R 6= ∅} are the actions affecting both red variables and
the black variable. As there are no CGRB

Π arcs of type
BtoR, the actions in ARB have no black preconditions.

Consider Figure 3. By RedFixedPoint(A′) for a subset A′ ⊆
A of actions without black preconditions, we mean all red
facts reachable using only A′, ignoring any black effects.
This can be computed by building a relaxed planning graph
overA′. By BlackReachable(R, d, d′) we mean the question

whether there exists an AB path moving vB from d to d′,
using only red preconditions from R.

Clearly, NoBtoR-Planning runs in polynomial time. If
it returns “solvable”, we can construct a plan πRB for Π
as follows. In case (a), we obtain πRB by any sequence
of AR actions establishing RedFixedPoint(AR) (there are
neither black preconditions nor black effects), and attach-
ing a sequence of AB actions leading from I[vB] to G[vB].
In case (b), we obtain πRB by: any sequence of AR ac-
tions establishing RedFixedPoint(AR ∪ ARB) (there are no
black preconditions); attaching the ARB action a success-
ful in the for-loop (which is applicable due to pre(a) ⊆ R
and V(pre(a)) ∩ V B = ∅); and attaching a sequence of AB

actions leading from eff(a)[vB] to G[vB]. Note that, after
RedFixedPoint(AR ∪ ARB), only a single ARB action a is
necessary, enabling the black value eff(a)[vB] from which
the black goal is AB-reachable.

If there is a plan πRB for Π, then NoBtoR-Planning re-
turns “solvable”. First, if πRB does not use any ARB action,
i. e. πRB consists entirely ofAR andAB actions, then case (a)
will apply because RedFixedPoint(AR) contains all we can
do with the former, and BlackReachable(R, I[vB], G[vB])
examines all we can do with the latter. Second, say πRB

does use at least oneARB action. RedFixedPoint(AR∪ARB)
contains all red facts that can be achieved in Π, so in particu-
lar (*) RedFixedPoint(AR ∪ARB) contains all red facts true
along πRB. Let a be the lastARB action applied in πRB. Then
πRB contains a path from eff(a)[vB] toG[vB] behind a. With
(*), pre(a) ⊆ R and BlackReachable(R, eff(a)[vB], G[vB])
succeeds, so case (b) will apply. �

In other words, if (a) no ARB action is needed to solve
Π, then we simply execute a relaxed planning fixed point
prior to moving vB. If (b) such an action is needed, then
we mix ARB with the fully-red ones in the relaxed plan-
ning fixed point, which works because, having no black pre-
conditions, once an ARB action has become applicable, it
remains applicable. Note that the case distinction (a) vs.
(b) is needed: When making use of the “large” fixed point
RedFixedPoint(AR∪ARB), there is no guarantee we can get
vB back into its initial value afterwards.

Example 2 Consider again our illustrative example (cf.
Figure 1), painting T red and painting all other variables
black. Then vB corresponds to the cross-product of vari-
ables B, P1, and P7; AB contains the “buy” actions, AR

contains the “move” actions, and ARB is empty.
The call to RedFixedPoint(AR) in Figure 3 results in R

containing all truck positions, R = {T = l1, . . . , T = l7}.
The call to BlackReachable(R, I[vB], G[vB]) then succeeds
as, given we have both truck preconditions T = l1 and T =
l7 required for the “buy” actions, indeed the black goalB =
2 is reachable. The red-black plan extracted will contain a
sequence of moves reaching all of {T = l1, . . . , T = l7},
followed by a sequence of two “buy” actions leading from
I[vB] = {B = 0, P1 = 1, P2 = 1} to G[vB] = {B = 2}.

Theorem 2 is a substantial improvement over KatzP in
terms of the scaling behavior in |D(vB)|. KatzP is based

47

on an algorithm with runtime exponential in |D(vB)|. Our
NoBtoR-Planning has low-order polynomial runtime in that
parameter, in fact all we need to do is find paths in a graph
of size |D(vB)|. This dramatic complexity reduction is ob-
tained at the price of disallowing BtoR dependencies.

Heuristic Function
Assume an input FDR planning task Π. As indicated, we
will choose a painting (a subset V R of red variables) so that
BtoR dependencies do not exist, and for each search state
s generate a heuristic value by running NoBtoR-Planning
with s as the initial state. We describe our painting strategy
in the next section. Some words are in order regarding the
heuristic function itself, which diverges from our previous
theoretical discussion – Figure 3 and Theorem 2 – in several
important aspects.

While the previous section assumed that the entire black
state space is pre-composed into a single black variable vB,
that assumption was only made for convenience. In practice
there is no need for such pre-composition. We instead run
NoBtoR-Planning with the BlackReachable(R, d, d′) calls
implemented as a forward state space search within the pro-
jection onto the black variables, using only those black-
affecting actions whose red preconditions are contained in
the current set of red facts R. This is straightforward, and
avoids having to generate the entire black state space up
front – instead, we will only generate those parts actually
needed during red-black plan generation as requested by the
surrounding search. Still, of course for this to be feasible we
need to keep the size of the black state space at bay.

That said, actually what we need to keep at bay is not
the black state space itself, but its weakly connected compo-
nents. As the red variables are taken out of this part of the
problem, chances are that the remaining part will contain
separate components.

Example 3 In our running example, say there are several
different kinds of products, i. e. the truck needs to buy a goal
amount of several products. (This is indeed the case in the
TPP benchmark suite as used in the IPC.) The state vari-
ables for each product then form an SCC like the variables
B,P1, P7 in Figure 1 (b), mutually separated from each
other by taking out (painting red) the central variable T .

We can decompose the black state space, handling each
connected component of variables V B

c ⊆ V B separately.
When calling BlackReachable(R, d, d′), we do not call a
single state space search within the projection onto V B, but
call one state space search within the projection onto V B

c ,
for every component V B

c . The overall search is successful if
all its components are, and in that case the overall solution
path results from simple concatenation.

We finally employ several simple optimizations: black
state space results caching, stop search, and optimized red-
black plan extraction. The first of these is important as
the heuristic function will be called on the same black
state space many times during search, and within each call
there may be several questions about paths from d to d′

through that state space. The same pairs d and d′ may re-
appear many times in the calls to BlackReachable(R, d, d′),
so we can avoid duplicate effort simply by caching these
results. Precisely, our cache consists of pairs (d, d′)
along with a black path π(d, d′) from d to d′. (In pre-
liminary experiments, caching the actual triples (R, d, d′)
led to high memory consumption.) Whenever a call to
BlackReachable(R, d, d′) is made, we check whether (d, d′)
is in the cache, and if so check whether π(d, d′) works given
R, i. e., contains only actions whose red preconditions are
contained in R. If that is not so, or if (d, d′) is not in the
cache at all yet, we run the (decomposed) state space search,
and in case of success add its result to the cache.

Stop search is the same as already used in (and found to be
important in) Katz et al.’s previous work on red-black plan
heuristics. If the red-black plan πRB generated for a search
state s is actually executable in the original FDR input plan-
ning task, then we terminate search immediately and output
the path to s, followed by πRB, as the solution.

Finally, the red-black plans πRB described in the proof
of Theorem 2 are of course highly redundant in that they
execute the entire red fixed points, as opposed to establish-
ing only those red facts Rg ⊆ R required by the red goal
G[V R], and required as red preconditions on the solution
black path found by BlackReachable(R, d, d′). We address
this straightforwardly following the usual relaxed planning
approach. The forward red fixed point phase is followed by
a backward red plan extraction phase, in which we select
supporters for Rg and the red subgoals it generates.

Painting Strategy
Given an input FDR planning task Π, we need to choose our
painting V R such that the red-black causal graph CGRB

Π has
no BtoR dependencies. A convenient view for doing so is
to perceive the causal graph CGΠ as a DAG D of SCCs in
which the root SCCs are at the top and the leaf SCCs at the
bottom: Our task is then equivalent to drawing a “horizontal
line” anywhere through D, painting the top part red, and
painting the bottom part black. We say that such a painting
is non-trivial if the bottom part is non-empty.

Example 4 In our running example, the only non-trivial
painting is the one illustrated in Figure 4.

T

P1 P7

B

top (red)
bottom (black)

Figure 4: The painting in our running example.

If there are several different kinds of products as de-
scribed in Example 3, then the state variables for each prod-
uct form a separate component in the bottom part. If there
are several trucks, then the “horizontal line” may put any
non-empty subset of trucks into the top part.

48

without preferred operators with preferred operators
N = N =

domain # hMercury hFF 0 1k 10k 100k 1m 10m hMercury hFF 0 1k 10k 100k 1m 10m

Logistics00 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
Logistics98 35 35 26 23 23 23 23 23 23 35 35 32 32 32 32 32 32
Miconic 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150
ParcPrinter08 30 30 26 30 30 30 30 30 30 30 26 30 30 30 30 30 30
ParcPrinter11 20 20 12 20 20 20 20 20 20 20 12 20 20 20 20 20 20
Pathways 30 11 11 8 10 10 10 10 10 30 20 23 23 23 23 23 23
Rovers 40 27 23 23 23 24 26 25 24 40 40 40 40 40 40 40 40
Satellite 36 36 30 26 26 26 26 25 26 36 36 35 35 35 35 35 35
TPP 30 23 22 18 18 18 18 18 19 30 30 30 30 30 30 30 30
Woodworking08 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Woodworking11 20 20 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20
Zenotravel 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20∑

469 430 397 395 397 399 401 399 400 469 447 458 458 458 458 458 458

Table 1: Coverage results. All heuristics are run with FD’s greedy best-first search, single-queue for configurations without
preferred operators, double-queue for configurations with preferred operators. The preferred operators are taken from hFF in all
cases (see text).

We implemented a simple painting strategy accommodat-
ing the above. The strategy has an input parameterN impos-
ing an upper bound on the (conservatively) estimated size of
the decomposed black state space. Starting with the DAG D
of SCCs over the original causal graph, and with the empty
set V B of black variables, iterate the following steps:

1. Set the candidates for inclusion to be all leaf SCCs Vl ⊆
V in D.

2. Select a Vl where
∏

v∈V ′ |D(v)| is minimal.

3. Set V ′ := V B ∪ Vl and find the weakly connected com-
ponents V B

c ⊆ V ′.
4. If

∑
V B
c

∏
v∈V B

c
|D(v)| ≤ N , set V B := V ′, remove Vl

from D, and iterate; else, terminate.

Example 5 In our running example, this strategy will result
in exactly the painting displayed in Figure 4, provided N
is choosen large enough to accommodate the variable sub-
set {B,P1, P7}, but not large enough to accommodate the
entire set of variables.

If there are several different kinds of products, as in the
IPC TPP domain, then N does not have to be large to ac-
commodate all products (as each is a separate component),
but would have to be huge to accommodate any truck (which
would reconnect all these components). Hence, for a broad
range of settings ofN , we end up painting the products black
and the trucks red, as desired.

Note that our painting strategy may terminate with the
trivial painting (V B = ∅), namely if even the smallest can-
didate Vl breaks the size bound N . This will happen, in par-
ticular, on all input tasks Π whose causal graph is a single
SCC, unless N is large enough to accommodate the entire
state space. Therefore, in practice, we exclude input tasks
whose causal graph is strongly connected.

Experiments
Our techniques are implemented in Fast Downward (FD)
(Helmert 2006). For our painting strategy, we experiment

with the size bounds N ∈ {1k, 10k, 100k, 1m, 10m} (“m”
meaning “million”). We run all IPC STRIPS benchmarks,
precisely their satisficing-planning test suites, where we ob-
tain non-trivial paintings. This excludes domains whose
causal graphs are strongly connected, and it excludes do-
mains where even the smallest leaf SCCs break our size
bounds. It turns out that, given this, only 9 benchmark do-
mains qualify, 3 of which have been used in two IPC editions
so that we end up with 12 test suites.

As our contribution consists in a new heuristic function,
we fix the search algorithm, namely FD’s greedy best-first
search with lazy evaluation, and evaluate the heuristic func-
tion against its closest relatives. Foremost, we compare to
the standard relaxed plan heuristic hFF, which we set out to
improve upon. More specifically, we compare to two imple-
mentations of hFF: the one from the FD distribution, and our
own heuristic with size bound N = 0. The former is more
“standard”, but differs from our heuristic even in the case
N = 0 because these are separate implementations that do
not coincide exactly in terms of tie breaking. As we shall
see, this seemingly small difference can significantly affect
performance. To obtain a more precise picture of which dif-
ferences are due to the black variables rather than other de-
tails, we use N = 0, i. e. “our own” hFF implementation, as
the main baseline. We also run hMercury, as a representative
of the state of the art in alternate red-black plan heuristics.

A few words are in order regarding preferred operators.
As was previously observed by Katz et al., hMercury yields
best performance when using the standard preferred oper-
ators extracted from hFF: The latter is computed as part of
computing hMercury anyhow, and the standard preferred oper-
ators tend to work better than variants Katz et al. tried trying
to exploit the handling of black variables in hMercury. For our
own heuristics, we made a similar observation, in that we
experimented with variants of preferred operators specific to
these, but found that using the standard preferred operators
from hFF gave better results. This is true despite the fact
that our heuristics do not compute hFF as part of the process.
The preferred operators are obtained by a separate call to

49

FD’s standard implementation of hFF, on every search state.
Hence, in what follows, all heuristics reported use the exact
same method to generate preferred operators.

Table 1 shows coverage results. Observe first that, in
terms of this most basic performance parameter, hMercury

dominates all other heuristics, across all domains and re-
gardless whether or not preferred operators are being used.
Recall here that, in contrast to our heuristics which paint
black the variables “close to the causal graph leaves”,
hMercury uses paintings that paint black the variables “close
to the causal graph roots”. Although in principle the former
kind of painting can be of advantage as illustrated in Ex-
ample 1, as previously indicated the latter kind of painting
tends to work better on the IPC benchmarks. We provide
a per-instance comparison of hMercury against our heuristics,
in Rovers and TPP which turn out to be the most interesting
domains for these heuristics, further below (Table 3). For
now, let’s focus on the comparison to the baseline, hFF.

Note first the influence of tie breaking: Without preferred
operators,N = 0 has a dramatic advantage over hFF in Parc-
Printer, and smaller but significant disadvantages in Logis-
tics98, Pathways, Satellite, and TPP. With preferred oper-
ators, the coverage differences get smoothed out, because
with the pruning the instances become much easier to solve
so the performance differences due to the different heuris-
tics do not affect coverage as much anymore. The upshot is
that only the advantage in ParcPrinter, but none of the dis-
advantages, remain. As these differences have nothing to do
with our contribution, we will from now on not discuss hFF

as implemented in FD, and instead use the baseline N = 0.
Considering coverage as a function of N , observe that,

with preferred operators, there are no changes whatsoever,
again because with the pruning the instances become much
easier to solve. Without preferred operators, increasing N
and thus the black part of our heuristic function affects cov-
erage in Pathways, Rovers, Satellite, TPP, and Woodwork-
ing11. With the single exception of Satellite for N = 1m,
the coverage change relative to the baseline N = 0 is pos-
itive. However, the extent of the coverage increase is small
in almost all cases. We now examine this more closely, con-
sidering more fine-grained performance parameters.

Table 2 considers the number of evaluated states during
search, and search runtime, in terms of improvement factors
i. e. the factor by which evaluations/search time reduce rel-
ative to the baseline N = 0. As we can see in the top half
of the table, the (geo)mean improvement factors are almost
consistently greater than 1 (the most notable exception being
Pathways), i. e., there typically is an improvement on aver-
age (although: see below). The actual search time, on the
other hand, almost consistently gets worse, with a very pro-
nounced tendency for the “improvement factor” to be < 1,
and to decrease as a function of N . The exceptions in this
regard are Rovers, and especially TPP where, quite contrary
to the common trend, the search time improvement factor
grows as a function of N . This makes sense as Rovers and
TPP clearly stand out as the two domains with the highest
evaluations improvement factors.

Per-instance data sheds additional light on this. In Logis-
tics, Miconic, ParcPrinter, Pathways, and Zenotravel, almost

domain # 1k 10k 100k 1m 10m

evaluations
Logistics00 28 1.00 1.05 1.43 3.71 3.71
Logistics98 23 1.00 0.98 1.01 1.22 1.35
Miconic 150 1.24 1.41 1.86 2.18 3.12
ParcPrinter08 30 1.07 1.38 1.52 1.52 1.71
ParcPrinter11 20 1.00 1.03 1.08 1.08 1.09
Pathways 8 0.71 0.71 0.71 0.88 0.88
Rovers 19 1.60 1.95 5.10 5.84 5.16
Satellite 25 1.04 1.83 1.61 2.18 2.40
TPP 17 1.83 3.76 5.90 20.89 27.54
Woodworking08 30 1.54 2.06 2.06 2.06 2.06
Woodworking11 19 1.08 1.68 1.76 1.76 1.76
Zenotravel 20 1.14 1.14 0.87 1.13 2.27

search time
Logistics00 28 1.00 1.00 0.94 0.59 0.59
Logistics98 23 1.00 1.00 0.93 0.80 0.58
Miconic 150 0.73 0.73 0.70 0.63 0.44
ParcPrinter08 30 1.00 1.00 1.00 1.00 0.44
ParcPrinter11 20 1.00 0.95 0.96 0.96 0.23
Pathways 8 0.97 0.97 0.96 0.96 0.93
Rovers 19 1.44 1.74 2.01 1.56 0.87
Satellite 25 0.87 1.07 0.90 0.63 0.24
TPP 17 0.98 1.39 1.78 3.75 4.67
Woodworking08 30 0.94 0.86 0.86 0.86 0.86
Woodworking11 19 0.87 0.65 0.67 0.67 0.67
Zenotravel 20 1.00 1.00 0.95 0.78 0.43

Table 2: Improvement factors relative to N = 0. Per-
domain geometric mean over the set of instances commonly
solved for all values of N . Without preferred operators.

all search space reductions obtained are on the smallest in-
stances, whereN is large enough to accommodate the entire
state space and hence, trivially, the number of evaluations
is 1. On almost all larger instances of these domains, the
search spaces are identical, explaining the bad search time
results previously observed. In Satellite and Woodworking,
the results are mixed. There are substantial improvements
also on some large instances, but the evaluations improve-
ment factor is always smaller than 6, with the single excep-
tion of Woodworking08 instance p24 where for N ≥ 10k it
is 17.23. In contrast, in Rovers the largest evaluations im-
provement factor is 4612, and in TPP it is 17317.

Table 3 shows per-instance data on Rovers and TPP,
where our techniques are most interesting. We also in-
clude hMercury here for a detailed comparison. N = 1k and
N = 100k are left out of the table for lack of space, and
as these configurations are always dominated by at least one
other value of N here. With respect to the behavior against
the baseline N = 0, clearly in both domains drastic eval-
uations and search time improvements can be obtained. It
should be said though that there is an unfortunate tendency
for our red-black heuristics to have advantages in the smaller
instances, rather than the larger ones. This is presumably be-
cause, in smaller instances (even disregarding the patholog-
ical case where the entire state space fits into the black part
of our heuristic) we have a better chance to capture complex
variable interactions inside the black part, and hence obtain
substantially better heuristic values.

50

N =

hMercury 0 10k 1m 10m
E T E T E T E T E T

Rovers

p01 5 0.1 35 0.1 31 0.1 1 0.1 1 0.1
p02 6 0.1 6 0.1 1 0.1 1 0.1 1 0.1
p03 1 0.1 62 0.1 112 0.1 1 0.1 1 0.1
p04 1 0.1 17 0.1 21 0.1 1 0.1 1 0.1
p05 119 0.1 114 0.1 170 0.1 117 0.1 117 0.1
p06 304 0.1 543 0.1 485 0.1 485 0.1 285 0.6
p07 70 0.1 331 0.1 334 0.1 162 1.5 175 7.1
p08 116 0.1 1742189 46.3 451078 15.4 603 0.1 1929 28.2
p09 358 0.1 2773 0.1 1792 0.1 2120 0.1 2120 0.1
p10 578 0.1 441 0.1 441 0.1 244 0.4 244 0.4
p11 1047 0.1 85832 2.7 85787 3.1 85787 3.1 85787 3.1
p12 6 0.1 606 0.1 958 0.1 301 0.3 698 0.4
p13 25037 2.13 1944 0.1 2578 0.1 2882 0.3 2882 0.3
p14 294 0.1 5161720 208.5 1467 0.1 732 0.2 1119 0.8
p15 1035 0.1 – – 5024 0.3 3520 1.5 4782 3.3
p16 358 0.1 – – 11895 0.6 11895 0.6 11895 0.6
p17 1139 0.1 – – – – 3340 0.3 3340 0.3
p18 2156 0.19 93372 6.6 47472 3.6 47472 3.6 48620 6.0
p19 180979 22.08 370650 38.3 452905 47.7 470758 47.7 470758 47.3
p20 – – 1782100 233.1 – – 1828671 248.3 1828671 248.0
p22 3674 0.63 2478919 339.2 1707251 237.1 1707251 232.4 1707251 236.0
p23 24347 5.77 – – – – – – – –
p25 1 0.1 2677 0.3 31890 4.5 31248 4.2 44688 5.8
p26 7338129 1418.16 117583 13.7 83724 11.7 7263721 974.8 – –
p27 61575 13.73 – – 6737329 1158.0 6737329 1138.6 6737329 1148.3
p28 6346 1.95 1066434 223.8 15321 3.8 18002 4.3 18002 4.3
p29 8409 2.71 1298473 251.4 – – – – – –
p30 – – 5940371 1134.0 333303 108.0 – – – –
p34 60144 38.59 – – – – – – – –

TPP

p01 1 0.1 5 0.1 1 0.1 1 0.1 1 0.1
p02 1 0.1 9 0.1 1 0.1 1 0.1 1 0.1
p03 1 0.1 13 0.1 1 0.1 1 0.1 1 0.1
p04 1 0.1 17 0.1 17 0.1 1 0.1 1 0.1
p05 1 0.1 22 0.1 25 0.1 25 0.1 25 0.1
p06 38 0.1 107 0.1 46 0.1 46 0.1 46 0.1
p07 1672 0.1 1756 0.1 68 0.1 68 0.1 68 0.1
p08 2462 0.1 2534 0.1 71 0.1 71 0.1 71 0.1
p09 6753 0.28 2963 0.1 299 0.1 121 0.1 121 0.1
p10 24370 1.24 10712 0.5 1061 0.1 147 0.1 147 0.1
p11 15519 1.3 1610504 99.8 56090 4.0 93 0.1 93 0.1
p12 54852 4.37 1340734 91.3 699377 55.7 109 0.1 109 0.1
p13 38205 3.5 40291 3.5 40291 3.5 472 0.1 475 0.1
p14 57981 7.37 35089 3.6 35089 3.6 552 0.1 555 0.1
p15 52722 7.32 22842 2.4 22842 2.5 70467 8.1 283 0.1
p16 298618 77.47 247304 49.6 247304 48.4 112610 19.6 253727 38.0
p17 2660716 774.05 – – – – – – 1611051 671.4
p18 264855 77.25 – – – – – – – –
p19 1957381 639.02 1710323 509.3 1710323 508.8 1710323 505.6 – –
p20 – – – – – – – – 4161990 1272.4
p21 811226 578.23 – – – – – – – –
p22 652741 372.74 – – – – – – – –
p23 1329626 902.09 2432228 1362.0 2432228 1365.3 2432228 1367.6 2432228 1370.7
p24 1253699 801.71 – – – – – – – –

Table 3: Evaluations and search time in Rovers and TPP. “E”
evaluations, “T” search time. Without preferred operators.

With respect to hMercury, the conclusion can only be that
the previous approach to red-black plan heuristics – painting
variables “close to the root” black, as opposed to painting
variables “close to the leaves” black as we do here – works
better in practice. There are rare cases where our new heuris-
tics have an advantage, most notably in Rovers p20, p26,
p30, and TPP p5–p17, p19, p20. But overall, especially on
the largest instances, hMercury tends to be better. We remark
that, with preferred operators switched on, the advantage of
hMercury tends to be even more pronounced because the few
cases that are hard for it in Table 3 become easy.

A few words are in order regarding plan quality, by which,
since we only consider uniform action costs in the exper-
iments, we mean plan length. Comparing our most in-
formed configuration, N = 10m, to our pure delete re-
laxed baseline, i. e. our heuristic with N = 0, it turns out
that the value of N hardly influences the quality of the plans

found. Without using preferred operators, the average per-
domain gain/loss of one configuration over the other is al-
ways < 3%. The only domain where solution quality dif-
fers more significantly is TPP, where the generated plans for
N = 10m are 23.3% shorter on average than those with
N = 0. This reduces to 10% when preferred operators are
switched on. In the other domains, not much changes when
enabling preferred operators; the average gain/loss per do-
main is less than 4.4%.

Comparing our N = 10m configuration to hMercury, hav-
ing preferred operators disabled, the plan quality is only
slightly different in most domains (< 3.1% gain/loss on av-
erage). Results differ more significantly in Miconic and TPP.
In the former, our plans are 25% longer than those found us-
ing hMercury; in the latter, our plans are 25% shorter. En-
abling preferred operators does not change much, except
in Woodworking, where our plans are on average 19.1%
(16.5%) shorter in the IPC’08 (IPC’11) instance suites.

Conclusion
Our investigation has brought new insights into the interac-
tion between red and black variables in red-black planning.
The practical heuristic function resulting from this can, in
principle, improve over standard relaxed plan heuristics as
well as known red-black plan heuristics. In practice – as
far as captured by IPC benchmarks – unfortunately such im-
provements are rare. We believe this is a valuable insight for
further research on red-black planning. It remains to be seen
whether our tractability analysis can be extended and/or ex-
ploited in some other, more practically fruitful, way. The
most promising option seems to be to seek tractable spe-
cial cases of black-to-red (BtoR) dependencies, potentially
by restrictions onto the DTG (the variable-value transitions)
of the black variable weaker than the “invertibility” criterion
imposed by Katz et al.

Acknowledgments. We thank Carmel Domshlak for discus-
sions. We thank the anonymous reviewers, whose comments
helped to improve the paper. This work was partially sup-
ported by the German Research Foundation (DFG), under
grant HO 2169/5-1, and by the EU FP7 Programme under
grant agreement 295261 (MEALS). Daniel Gnad’s travel to
SoCS’15 was partially supported by the AI section of the
German Informatics Society (GI).

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 10–17. AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid
relaxed planning graph’lp heuristic for numeric planning do-

51

mains. In Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen,
E., eds., Proceedings of the 18th International Conference
on Automated Planning and Scheduling (ICAPS’08), 52–59.
AAAI Press.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
hybrid LP-RPG heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Research
46:343–412.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. In Nebel, B., ed., Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-01),
445–450. Seattle, Washington, USA: Morgan Kaufmann.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS’08), 140–147. AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In IPC 2014 planner
abstracts, 43–47.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th AAAI Confer-
ence on Artificial Intelligence (AAAI’13), 489–495. Belle-
vue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.

Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI-08), 588–592. Patras, Greece: Wiley.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.
McDermott, D. V. 1999. Using regression-match graphs
to control search in planning. Artificial Intelligence 109(1-
2):111–159.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A monte carlo random walk approach.
In Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12), 181–189.
AAAI Press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Seipp, J., and Helmert, M. 2011. Fluent merging for classi-
cal planning problems. In ICAPS 2011 Workshop on Knowl-
edge Engineering for Planning and Scheduling, 47–53.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP’07), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.

52

