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Abstract 
Solving cooperative path finding (CPF) by translating it to 
propositional satisfiability represents a viable option in 
highly constrained situations. The task in CPF is to relocate 
agents from their initial positions to given goals in a colli-
sion free manner. In this paper, we propose a reduced time 
expansion that is focused on makespan sub-optimal solving 
of the problem. The suggested reduced time expansion is 
especially beneficial in conjunction with a goal decomposi-
tion where agents are relocated one by one. 

 Cooperative Path Finding (CPF) 
The problem of cooperative path-finding (CPF) (Silver, 
2005) is a graph theoretical abstraction for many real life 
problems where the task is to relocate cooperatively a 
group of agents or other movable objects in a collision free 
manner. Each agent of the group is given its initial and 
goal position. The problem consists in constructing a spa-
tial temporal plan for each agent by which it can relocate 
from its initial position to the given goal. 
 We further develop solving of CPF by translating it to 
propositional satisfiability (SAT) (Surynek, 2014). Recent 
propositional encodings of CPF are based on time expan-
sion of the graph modeling the environment so that the 
encoding is able to represent arrangements of agents over 
the graph (in the environment) at all the time steps up to 
the final step. Since there may be many time-steps before 
all the agents reach their goals, these encodings may be-
come extremely large and hence unsolvable in reasonable 
time. We are trying to overcome this limitation by reducing 
the expansion of the graph in this work. 
 Let 𝐺 =  𝑉, 𝐸  be an undirected graph that models the 
environment where agents are moving and let 𝐴 be a finite 
set of agents; then, an arrangement of agents in vertices of 
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graph 𝐺 is fully described by 𝛼: 𝐴 ⟶ 𝑉 with  {𝑎 ∈
𝐴|𝛼 𝑎 = 𝑣} ≤ 1 for each 𝑣 ∈ 𝑉 (at most one agent can 
be located in each vertex). 
Definition 1 (COOPERATIVE PATH FINDING). An instance of 
cooperative path-finding problem is a quadruple Σ = [𝐺 =
 𝑉, 𝐸 , 𝐴, 𝛼0, 𝛼+] where 𝛼0 and 𝛼+ define the initial and 
the goal arrangement of agents 𝐴 in 𝐺 respectively. □  
 An arrangement 𝛼𝑖  at the 𝑖-th time step can be 
transformed instantaneously by a movement of agents in 
the non-colliding way to form a new arrangement 𝛼𝑖+1. 
The transition between 𝛼𝑖  and 𝛼𝑖+1 must satisfy the 
following validity conditions: 
x ∀𝑎 ∈ 𝐴  either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸 
   (agents move along edges or not move at all), 
x ∀𝑎 ∈ 𝐴  𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒  ∀𝑏 ∈ 𝐴 𝛼𝑖 𝑏 ≠ 𝛼𝑖+1 𝑎    
   (agents move to vacant vertices only), and 
x ∀𝑎, 𝑏 ∈ 𝐴  𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏) 
   (no two agents enter the same target/unique 
   invertibility of resulting arrangement). 

The task in CPF is to transform 𝛼0 using above valid 
transitions to 𝛼+.  
Definition 2 (SOLUTION, MAKESPAN). A solution of a 
makespan 𝑚 to a CPF instance Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] is a 
sequence of arrangements 𝑠 = [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑚 ] where 
𝛼𝑚 = 𝛼+ and 𝛼𝑖+1 is a result of valid transition from 𝛼𝑖  for 
every 𝑖 = 1,2, … , 𝑚 − 1 . □ 

Reduced Time Expansion Graphs 
One approach to makespan optimal CPF solving via SAT 
is to query the SAT solver (Audemard & Simon, 2013) 
whether a formula modeling the question if there is a solu-
tion of makespan 𝑚 is satisfiable for growing 𝑚. This is 
the process originally suggested for planning by Kautz and 
Selman (1999). The drawback of makespan optimal CPF 
solving via SAT is the large size of the formulae that en-
code queries (Surynek, 2014). The size of encoding formu-
lae becomes especially prohibitive when they encode que-
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ries if a solution with a large makespan exists. This is due 
to the fact that existing encodings expands the graph mod-
eling the environment over the time up to the given makes-
pan bound while arrangements of agents are represented at 
all the time steps in the time expansion.  

Figure 1. An example of CPF and its solving through reduced 
time expansion graph. A reduced time expansion graph consist-
ing of 3 time layers is build. A solution is obtained by collecting 
vertex disjoint paths connecting the initial positions agents in the 
first layer with their goal positions in the last time layer. 
 Hence, our idea was to reduce the time expansion by 
relaxing from the requirement of makespan optimality. 
The key observation is that if there is no need of any com-
plex avoidance between agents (there is no need to visit a 
single vertex multiple times), no time expansion of the 
graph is necessary at all. The query if there is a solution 
(not necessarily makespan optimal) can be stated as a ques-
tion of existence of vertex disjoint paths connecting initial 
positions of agents with their goals in the original graph. 
 Nevertheless, interactions among agents require com-
plex avoidance in real situations - a single vertex may need 
to be visited multiple times. This led us to the suggestion 
of a concept of reduced time expansion graph, which com-
bines reduction of the expansion with ability to represent 
complex avoidance. 
Definition 3 (REDUCED TIME EXPANSION GRAPH - 
rExpT(𝐺, 𝜗)). Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 
𝜗 ∈ ℕ. A reduced time expansion graph with 𝜗 time layers 
associated with 𝐺 is a directed graph rExpT 𝐺, 𝜗 = (𝑉 ×
{1,2, … , 𝜗}, 𝐸′) where 𝐸′ = {( 𝑢, 𝑙 ,   𝑣, 𝑙 )| 𝑢, 𝑣 ∈ 𝐸; 𝑙 =
1,2, … , 𝜗} ∪ {( 𝑣, 𝑙 ,  𝑣, 𝑙 + 1 ) | 𝑙 = 1,2, …, 𝜗 − 1}. □ 

 Solving of CPF Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] can be viewed as a 
search for vertex disjoint paths in rExpT 𝐺, 𝜗  that connect 
initial positions and goals in the first and the last time-layer 

respectively provided that the number of time-layers 𝜗 is 
sufficiently high (Figure 1). 

UniAGENT Solving Process 
It turned out that vertex disjoint paths exist in reduced time 
expansion graphs with few time layers when the initial 
arrangement differs little from the goal one. This observa-
tion led us to design a method called UniAGENT solving 
in which agents are placed to their goals one by one. Plac-
ing a single agent is solved by extracting vertex disjoint 
paths from a (small) reduced time expansion graph via 
SAT. The comparison of the UniAGENT method with 
other optimal and sub-optimal methods (Figure 2) indicates 
better scalability of the new method for growing number of 
agents in highly constrained situations (dense occupancy). 

Figure 2. Runtime and makespan comparison over 8⨯8 
4-connected grid. UNIAGENT and WHCA* (Silver, 2005) pro-
duce makespan sub-optimal solutions; OD+ID (Standley & Korf, 
2011) and other SAT based methods (Surynek, 2014) are makes-
pan optimal. Evaluation of runtime and makespan has been done 
for the growing number of agents (the timeout was 256 seconds). 
Average optimal makespan is shown as 𝜂; 𝜗 and 𝜔 are average 
makespans of UNIAGENT method and WHCA* respectively. 

References 
Audemard, G., Simon, L., 2013. The Glucose SAT Solver. 
http://labri.fr/perso/lsimon/glucose/, [accessed in April, 2015]. 
Kautz, H., Selman, B., 1999. Unifying SAT-based and Graph-
based Planning. Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI 1999), pp. 318-325, 
Morgan Kaufmann. 
Silver, D., 2005. Cooperative Pathfinding. Proceedings of the 1st 
Artificial Intelligence and Interactive Digital Entertainment Con-
ference (AIIDE 2005), pp. 117-122, AAAI Press. 
Standley, T. S., Korf, R. E., 2011. Complete Algorithms for Co-
operative Pathfinding Problems. Proceedings of Proceedings of 
the 22nd International Joint Conference on Artificial Intelligence 
(IJCAI 2011), pp. 668-673, IJCAI/AAAI Press. 
Surynek, P., 2014.Compact Representations of Cooperative Path-
Finding as SAT Based on Matchings in Bipartite Graphs. Pro-
ceedings of the 26th International Conference on Tools with 
Artificial Intelligence (ICTAI 2014), pp. 875-882, IEEE Press. 

CPF Σ=(G=(V,E), {a1,a2}, α0, α+) α0 

α+ 
 

v3 

v2 v4 v5 v6 
a1 

v1 
a2 

rExpT (G, 3) 

v2 v4 v5 
a2 

v6 
a1 

v1 

v3 

v3
1 

v1
1 

a1 a2 
v2

1 v4
1 v5

1 v6
1 

v1
2 v2

2 v4
2 

v3
2 

v5
2 v6

2 

v1
3 v2

3 

v3
3 

v5
3 v6

3 

3  tim
e layers 

1 

2 

3 
v4

3 

𝒔     a1 a2 

 α0  v1 v6 

 α1  v2 v6 

 

α3  v3 v6 

 

α5  v3 v4 

 

α4  v3 v5 

 

α6  v3 v2 

 α7  v3 v1 

 

α10 = α+ v6 v1 

 

α8  v4 v1 

 α9  v5 v1 

 

α2  v4 v6 

 

 
|A| 1 4 8 12 16 20 24 28 32 
𝜼 5.3 8.4 11.0 11.7 12.4 12.3 - - - 

𝝎 5.6 9.3 - - - - - - - 
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