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Abstract

Vehicle sharing (ex: bike sharing, car sharing) systems,
an attractive alternative of private transportation, are
widely adopted in major cities around the world. In
vehicle-sharing systems, base stations (ex: docking sta-
tions for bikes) are strategically placed throughout a city
and each of the base stations contain a pre-determined
number of vehicles at the beginning of each day. Due
to the stochastic and individualistic movement of cus-
tomers, there is typically either congestion (more than
required) or starvation (fewer than required) of vehicles
at certain base stations,which causes a significant loss
in demand. We propose to dynamically redeploy idle
vehicles using carriers so as to minimize lost demand
or alternatively maximize revenue for the vehicle shar-
ing company. To that end, we contribute an optimization
formulation to jointly address the redeployment (of ve-
hicles) and routing (of carriers) problems and provide
two approaches that rely on decomposability and ab-
straction of problem domains to reduce the computation
time significantly.

1 Introduction
Shared Transportation Systems (STS) offer attractive alter-
natives to deal with serious concerns of private transporta-
tion such as increased carbon emissions, traffic congestion
and usage of non-renewable resources. Popular examples
of STS are bike sharing (ex: Capital Bikeshare in Wash-
ington DC, Hubway in Boston, Bixi in Montreal, Velib in
Paris, Wuhan and Hangzhou Public Bicycle in Hangzhou)
and car sharing (ex: Car2go in Seattle, Zipcar in USA) sys-
tems, which are installed in many major cities around the
world. Bike sharing systems are widely adopted with 747
active systems, a fleet of over 772,000 bicycles and 235 sys-
tems in planning or under construction. A bike-sharing sys-
tem (BSS) typically has a few hundred base stations scat-
tered throughout a city. At the beginning of the day, each
station is stocked with a pre-determined number of bikes.
Users with a membership card can pickup and return bikes
from any designated station, each of which has a finite num-
ber of docks. At the end of the work day, carrier vehicles
(ex: trucks) are used to move bikes around so as to return to
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some pre-determined configuration at the beginning of the
day.

Due to the individual movement of customers according
to their needs, there is often congestion (more than required)
or starvation (fewer than required) of bikes on aggregate at
certain base stations. This (particularly starvation) can re-
sult in a significant loss of customer demand. Such loss in
demand can have two undesirable outcomes: (a) loss in rev-
enue; (b) increase in carbon emissions, as people can resort
to fuel burning modes of transport. So, there is a practical
need to minimize the lost demand and our approach is to
dynamically redeploy bikes with the help of carriers (typ-
ically medium to large sized trucks) during the day. How-
ever, because carriers incur a cost in performing redeploy-
ment, we have to consider the trade-off between minimizing
lost demand (alternatively maximizing revenue) and cost of
using carriers for redeployment. Henceforth, we refer to this
problem as the Dynamic Redeployment and Routing Prob-
lem (DRRP).

DRRP is an NP-Hard problem and therefore, we focus
on principled approximations. Specifically, our key contri-
butions are as follows (1) A mixed integer and linear op-
timization formulation to maximize profit for the bike shar-
ing company by trading off between: (a) computing the opti-
mal re-deployment strategy (i.e., how many vehicles have to
be picked or dropped from each base station and when) for
bikes; and (b) computing the optimal routing policy (i.e.,
what is the order of base stations according to which rede-
ployment happens) for the carriers. (2) A Lagrangian dual
decomposition method to exploit the weak dependency be-
tween the component which computes re-deployment strat-
egy for bikes and the component which computes rout-
ing policy for carriers. (3) An abstraction mechanism that
groups nearby base stations to reduce the size of the deci-
sion problem and consequently, improve scalability.

2 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and rout-
ing strategies on a testing data set. Note that we only have
the information about successful bike trips, thus we employ
a standard method adopted in (Shu et al. 2013) to predict
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the actual demand, where the demand is represented using
a Poisson distribution with mean computed from historical
data. Specifically, we develop a Mixed Integer Linear Prob-
lem (MILP) formulation for solving DRRP with expected
demand values, that are obtained from the training data set.

Given the customer demand of bikes between different
stations, the goal is to maximize profit or alternatively mini-
mize loss of the bike sharing company by redeploying bikes
using carrier vehicles (to satisfy customer demand). How-
ever, because carriers incure a significant cost in redeploy-
ment, we represent the trade-off between lost demand (or
equivalently revenue from bike jobs) and cost of employing
carrier vehicles, using the dollar value of both quantities and
combine them into overall profit. The key to this formula-
tion for solving DRRP are the following flow preservation,
movement and capacity constraints for bikes, stations and
carriers. (1) Flow of bikes in and out of stations is preserved.
(2) Flow of bikes between any two stations follows the tran-
sition dynamics observed in the data. (3) Flow of bikes in
and out of carriers is preserved (4) Flow of carriers in and
out of stations is preserved. (5) Only one carrier can be in
one station at a time step. (6) Carrier can pick up or drop
off bikes from a station by being at the station. (7) Station
capacity and Carrier capacity is not exceeded when rede-
ploying bikes.

2.1 Decomposition Approach for Solving DRRP
We exploit the minimal dependency that exists in the global
MILP between the routing problem and the redeployment
problem , to decompose the global MILP into two slaves.
The routing and redeployment problems have a separate
structure except that they are coupled through the com-
plicating constraint (6), i.e., the redeployment strategy is
controlled by the routing decision of the carriers. There-
fore, we dualize this complicating constraint using the
well known Lagrangian Dual Decomposition [LDD] (Fisher
1985). Thus, we have a decomposition of the dual problem
into two slaves, where each of the slaves has a simple struc-
ture and is easy to solve. To obtain the final dual solution,
we solved the master optimization problem iteratively using
sub-gradient descent on dual variables. The infeasibility in
the dual solution arises because routes of the carriers (com-
puted by routing slave) may not be consistent with redeploy-
ment of bikes (computed by redeployment slave). However,
solution of the routing slave is always feasible and can be
fixed in the global MIP to obtain a feasible primal solution.

2.2 Abstraction Approach for Solving DRRP
Even after applying LDD, we can only scale to problems
with at most 60 stations, 38 time-step and 6 carriers. To en-
sure scalability for bigger cities, we propose a heuristic ap-
proach that employs abstraction. Specifically, we have used
the following key steps (1) Create an abstract DRRP with ab-
stract stations, each of which is a grouping of original base
stations. (2) Solve the abstract DRRP using LDD and obtain
routing and redeployment strategy over abstract stations. (3)
Derive the routing and redeployment strategies for the orig-
inal DRRP from the routing and redeployment strategies for
abstract DRRP.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand
reduce

Revenue
gain

Lost
demand
reduce

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 1: Revenue and lost demand comparison on Capital-
Bikeshare Dataset

3 Experimental Results
We evaluate our approaches on real world data of Capital-
BikeShare company from US which provides the following
key information: (1) Customer trip records that are indica-
tive of successful bookings. We predict demand from these
trip records. (2) Number of active docks in each station (i.e.
station capacity) and initial distribution of bikes in the sta-
tion at the beginning of a day. (3) Geographical locations of
base stations. From the longitude and latitude information of
stations, we calculate the relative distance between two sta-
tions. (4) Revenue model of the agency and cost of fuel for
carriers.

CapitalBikeShare data set has 305 active stations and
we consider 50 abstract stations (obtained through k-means
clustering). The planning horizon is 38 ( 30 minute intervals
during the working hours from 5AM-12AM). To predict the
demands we have used 3-months of trip history records (3rd
quarter of 2013). We provide the performance comparison
between our approaches and current practice (i.e., no rede-
ployment during the day) with respect to lost demand and
revenue generated for the bike-sharing company. We gen-
erate the overall mean demand as well as the demand for
individual weekdays from historical data of trips. We com-
pute the results for the entire time horizon 5 AM to 12 AM
and also for one of the peak durations from 5 AM to 12 PM.
Table:1 shows the percentage gain in revenue and the per-
centage reduction in lost demand in comparison with current
practice. With respect to both revenue gain and lost demand,
our approach (abstraction + LDD + MILP) was able to out-
perform current practice during the peak time as well as over
the entire day. We reduce the lost demand in all the cases by
at least 20%, a significant improvement over current prac-
tice.
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