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Introduction
Pareto optimization, that includes the simultaneous opti-
mization of multiple conflict objectives, has been employed
as a high level strategy to reduce the effect of local op-
tima (Segura et al. 2013). This approach was first introduced
in (Louis and Rawlins 1993), and later reinvestigated and
termed as multi-objectivization in (Knowles, Watson, and
Corne 2001). Since then it has been studied by many re-
searchers actively. The idea of multi-objectivization is to
translate the target single-objective optimization problem
into a multi-objective one, and then to solve the later using
a Preto optimization technique.

There have been several studies on multi-objectivization
with various applications (Segura et al. 2013), resulting in
two main groups of multi-objectivization: methods that de-
compose the primary objective into multiple conflicting ob-
jectives (Knowles, Watson, and Corne 2001), and meth-
ods that optimizes at least one additional “helper” objective
simultaneously with the primary objective (Jensen 2004).
Both approaches rely on devising new effective problem-
dependent objectives, which is normally a tedious task.

This paper briefly presents the application of Pareto lo-
cal search (PLS) (Paquete, Chiarandini, and Stützle 2004),
as a Pareto optimization technique, to the single-objective
quadratic assignment problem. The idea is to use PLS in-
stead of local search, to optimize the primary objective to-
gether with an additional augmented function. The aug-
mented objective function is defined using a general penalty-
based approach, an idea that comes from Guided Local
Search (GLS) (Voudouris, Tsang, and Alsheddy 2010). This
results in a multi-objectivization approach that is simple and
general.

The Proposed Approach
We will begin with a brief overview of PLS and GLS,
and then describe the proposed penalty-based multi-
objectivization approach.

PLS is a direct generalization of local search to handle
more than one objective. Generally, PLS maintains a set
of potentially efficient solutions, called archive, and iter-
atively improves this set by exploring all or part of its solu-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tions’ neighbourhood. The acceptance criterion in PLS de-
pends on the notion of Pareto optimality. PLS stops when
the neighbourhoods of all solutions in the archive have been
explored, i.e. reaching a Pareto local optimum set.

In GLS, the primary objective of local search is aug-
mented with penalties to direct the search away from local
optima. Every time the local search settles in a local opti-
mum, GLS penalizes a selected feature of the candidate so-
lution. Therefore, to apply GLS, the solution features need
to be defined in order to distinguish between solutions with
different characteristics. Each feature is associated with a
cost to help GLS choose bad features to penalize them. GLS
replaces the main objective function g(s) with an augmented
function h(s):

h(s) = g(s) + λ
∑
i∈F

pi ∗ Ii(s) (1)

In this formula, λ is a parameter of GLS, F is the set of all
features, pi is the penalty of feature i, and Ii(s) is equal to 1
only if s exhibits feature i; 0 otherwise.

Assuming a single-objective optimization problem with
an objective g(s), we propose multi-objectivizing by adding
a helper objective that is defined using the GLS’s augmented
objective function h(s) (Equation 1). PLS is applied to op-
timize h(s) together with g(s). Every time PLS reaches a
local Pareto optimum set, h(s) will be updated by the penal-
ization phase, and PLS is restarted again. We name this algo-
rithm as Guided Multi-objectivized Local Search (GMLS).
GMLS modifies the penalization scheme of GLS by penal-
izing a set of K features exhibited by any solution in the
archive.

GMLS for the QAP
The QAP (Burkard, Karisch, and Rendl 1997), in its sim-
plest form, is described as follows. Given a setN = 1, 2, ..., n
and n× n matrices A= [aij ] and B = [bkl]:

minimizef(π) =
N∑
i=1

N∑
j=1

Aij ·Bπiπj
(2)

where π is a permutation of N .
The implementation of GLS for the QAP was reported in

(Mills, Tsang, and Ford 2003), we follow the same approach
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Table 1: The performance of GMLS, GLS and RMLS on QAPLIB instances

GMLS GLS RMLS
Instance δ Ropt times δ Ropt times δ Ropt times

els19 0.00 10 7.8 0.00 10 4.4 0.00 10 0.1
nug30 0.00 10 2.1 0.00 10 2.8 0.20 3 29.9
kra30a 0.00 10 6.4 0.00 10 1.9 0.30 8 18.4
tho30 0.00 10 7.0 0.07 7 13.0 0.24 3 29.3
ste36a 0.07 6 19.7 0.18 2 35.9 1.30 0 40.0
sko42 0.00 10 34.6 0.02 3 72.4 0.50 0 100.0
sko49 0.05 2 90.1 0.12 0 100.0 0.56 0 100.0
sko56 0.08 0 100.0 0.12 0 100.0 0.68 0 100.0
tai60a 1.03 0 150.0 1.68 0 150.0 2.71 0 150.0
sko64 0.09 1 99.1 0.13 0 100.0 0.82 0 100.0
tai80a 1.14 0 240.0 1.55 0 240.0 2.62 0 240.0

sko100a 0.20 0 400.0 0.26 0 400.0 0.74 0 400.0
tai100a 1.18 0 400.0 1.58 0 400.0 2.58 0 400.0
tho150 0.68 0 800.0 0.69 0 800.0 1.16 0 800.0
bur26a 0.00 10 0.3 0.00 10 0.3 0.00 10 1.3

to implement GMLS for the QAP. QAP solutions are repre-
sented by permutations. The neighbourhood operator used
for the problem is simply to exchange (i.e. swap) the con-
tents of two permutation positions. The features used for the
QAP were all the possible location facility pairs.

The performance of GMLS is examined on a set of
QAPLIB test instances1, and compared to GLS as a single-
objective optimizer, and a PLS algorithm, referred to as
RMLS, that uses a random value as the additional helper
objective as another multi-objectivization approach.

The results are given in Table 1 that gives, for each combi-
nation of algorithm and problem instance, the average best
solution as a percentage over the best known solution (δ),
the optimal runs (i.e. runs where the algorithm obtains an
optimal solution) out of ten (Ropt), and the average time in
seconds (Times). The results show that GMLS obtains bet-
ter results than GLS on 11 instances out of 15 QAPLIB in-
stances. The differences are statistically significant on three
out of the 11 instances. The results of GLS are (insignifi-
cantly) better than that of GMLS in three instances, whereas
both algorithms always obtain the best known value in four
instances. In addition, GMLS finds the optimal solution,
with respect to the best known value, in at least one run over
the 10 runs for 9 instances, compared to 8 instances for GLS.
The results also confirm the outperformance of GMLS over
RMLS. GMLS obtains better results than RMLS on 13 in-
stances, 11 of which are statistically significant. Both algo-
rithms always obtain the best known value in the other two
instances.

Conclusion
This paper briefly describes a study on the application of
PLS, which is a straightforward extension to local search,
to tackle the single-objective quadratic assignment problem.
This is achieved by adopting a new multi-objectivization

1https://www.seas.upenn.edu/qaplib/

method, that is problem-dependant, yet simple and general.
It employs the GLS strategy, which is the augmentation of
the primary objective by penalties associated to solution fea-
tures, in defining the additional helper objective. Then, PLS
is applied to optimize both the primary objective and the ad-
ditional augmented objective function simultaneously. Pre-
liminary results on the QAP confirm the effectiveness and
potential of the proposed multi-objectivization approach.
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