Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

How Do You Know Your Search Algorithm and Code Are Correct?

Richard E. Korf
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095
korf@cs.ucla.edu

Abstract

Algorithm design and implementation are notoriously
error-prone. As researchers, it is incumbent upon us to
maximize the probability that our algorithms, their im-
plementations, and the results we report are correct. In
this position paper, I argue that the main technique for
doing this is confirmation of results from multiple in-
dependent sources, and provide a number of concrete
suggestions for how to achieve this in the context of
combinatorial search algorithms.

Introduction and Overview

Combinatorial search results can be theoretical or experi-
mental. Theoretical results often consist of correctness, com-
pleteness, the quality of solutions returned, and asymptotic
time and space complexities. Experimental results typically
consist of the number and quality of the solutions returned,
the number of nodes generated, and the running time of the
algorithm. In the remainder of this paper, we first consider
the role of proofs in verifying results, then the issues of so-
lution correctness, both optimal and sub-optimal solution
quality, nodes generated, and finally running time.

Mathematical Proofs

One approach to this problem is to prove various proper-
ties of an algorithm and implementation. While a proof is
certainly very strong evidence of the correctness of an al-
gorithm, it shouldn’t be considered absolute. Constructing
a proof is also a complex process, and error-prone as well,
but at least a formal proof can be checked automatically. In
any case, the process of proving an algorithm correct is suffi-
ciently different from the process of designing the algorithm
that proving correctness is extremely useful, since the kinds
of errors made in a proof are likely to be different from those
made in designing an algorithm.

The notion of a correctness proof can also be extended
to the code used to implement the algorithm. In this case,
the task is to show formally that the implementation corre-
sponds to the specification of the algorithm. Unfortunately,
this is generally a more difficult task than proving an algo-
rithm correct, and may not be feasible for a large program.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

200

Is a Given Solution Correct?

The first question to ask of a search algorithm is whether the
candidate solutions it returns are valid solutions. The algo-
rithm should output each solution, and a separate program
should check its correctness. For any problem in NP, check-
ing candidate solutions can be done in polynomial time.

Is a Given Solution Optimal?

Next we consider whether the solutions returned are opti-
mal. In most cases, there are multiple very different algo-
rithms that compute optimal solutions, starting with sim-
ple brute-force algorithms, and progressing through increas-
ingly complex and more efficient algorithms. Thus, one can
compare the solution costs returned by the different algo-
rithms, which should all be the same. This can be done in
a bootstrapping process, where the simplest algorithms are
only run on smaller problem instances, and more efficient
algorithms are run on larger instances as well. In general,
simpler algorithms are more likely to be correct. Further-
more, if the algorithms are significantly different from each
other, they are unlikely to make the same errors.

This method can be enhanced by computing all optimal
solutions. This can often be done with only a small change
to a search algorithm, such as continuing to search after the
first optimal solution is found, and pruning partial solutions
only when their cost strictly exceeds that of the best solution
found so far. For a best-first search such as A*, one would
need to maintain a pointer to each optimal parent of a given
node, and then trace all optimal paths back from the goal
nodes to the start node. Given all optimal solutions, one can
check that different algorithms all return the same set of so-
lutions. Even if this is not feasible on large problems, it can
be done on small problems for testing purposes.

Many algorithms present choices that affect efficiency, but
not correctness. For example, in alpha-beta minimax, the or-
der in which children are explored affects performance, but
not the minimax value computed. One can check that the
same value is computed under different orderings. This is
often useful because many programs contain “silent bugs”
which never manifest themselves, because they are masked
by other properties of the code. For example, a program may
work correctly if an array is sorted in increasing order, but
fail if it is sorted in decreasing order. Changing a sorted or-
der is usually as simple as reversing a comparison operator.



Sub-Optimal Solution Quality Correctness

Finding and verifying optimal solutions is computationally
much more expensive than finding sub-optimal solutions.
However, it is usually easier to check that an implemen-
tation of an optimal algorithm is indeed returning optimal
solutions, than it is to check that an implementation of a
sub-optimal algorithm is returning solutions of the expected
quality, given a correct implementation of the algorithm. The
reason is that while there are often multiple very different al-
gorithms that find optimal solutions, it is rare to find multiple
different suboptimal algorithms that return solutions of the
same cost to compare against each other.

Some search algorithms guarantee bounded sub-optimal
solutions. For example, given a parameter w, weighted-A*
(Pohl 1973) guarantees solutions that are no worse than w
times optimal. For such algorithms the cost of solutions can
be compared to w times the optimal solution cost. Unfor-
tunately, this is often not a sufficient test of their solution
quality, since many such algorithms actually return solutions
much better than their guaranteed solution quality.

Are the Node Generations Correct?

The next question is whether a program generates the correct
number of nodes, based on the algorithm it implements.

One technique to address this question is to analyze the
asymptotic complexity of the algorithm. For example, if the
complexity is O(b?), then the ratio of the number of nodes
at successive depths d should approach b at large depths.

For some algorithms, it may be possible to compute the
exact number of nodes generated in certain cases, such as the
best or worst case. One can then generate these cases, and
compare the experimental results to the theoretical predic-
tion. For example, the exact number of leaf nodes evaluated
by alpha-beta minimax in the best case for a tree with uni-
form branching factor and depth is easily computed. Further-
more, the best case occurs when all leaf nodes have the same
value. Thus one can run alpha-beta on a uniform tree with
identical leaf values, count the number of leaf nodes eval-
uated, and compare this to the predicted value. This would
also expose the common error of pruning only on strict in-
equality, rather than on equality as well.

As another example, an exhaustive breadth-first search of
a finite combinatorial problem outputs the number of unique
states at each depth. For example, this has been done for
the 15-Puzzle (Korf and Schultze 2005). Since there are sev-
eral different ways to implement a breadth-first search, the
results from shallow searches can be compared among al-
ternative implementations. For large depths, however, most
algorithms become infeasible due to memory limits. How-
ever, we often know the exact number of unique states. For
example, the Fifteen Puzzle contains 16!/2 reachable states.
Thus, the sum of the number of unique states at each depth
must equal the total number of states.

Are the Running Times Correct?

The next question is whether the running time of a pro-
gram matches the expected running time of the algorithm.

201

Given an asymptotic analysis of the running time of the al-
gorithm, one can check that the actual running time of the
program agrees with the analysis for large problems. For ex-
ample, if an analysis indicates that the running time should
be O(nlogn), where n is the number of node generations,
one can count the number of node generations n, and check
to see that the running time is proportional to n log n.

Independent Implementations

While many of the techniques above can be very useful,
the gold standard for scientific accuracy is reproduction of
results by independent researchers. This is often practical,
even within a single research group, since many heuris-
tic search algorithms are relatively simple, and can be im-
plemented and debugged in a few weeks. It may be prac-
tical for a member of the group who is not directly in-
volved in a project to independently implement the same
algorithm. This allows comparison of all experimental re-
sults, including solution quality, node generations and run-
ning times. This valuable service could be compensated by
co-authorship of the paper, and of course reciprocating when
the roles are reversed.

An additional benefit of this strategy is that it can result in
a better implementation of the algorithm. Given two differ-
ent implementations of the same algorithm, any discrepan-
cies in the number of node generations is likely due to one
implementation pruning nodes it shouldn’t, which is a cor-
rectness bug, or generating nodes that it shouldn’t, which is a
performance bug, or both. Since correctness bugs are easier
to find, particularly for algorithms that return optimal solu-
tions, most bugs are performance bugs. A similar argument
applies to significant discrepancies in the running times of
two implementations of the same algorithm. In general, hav-
ing two people implement the same algorithm often results
in new insights into how to do it more efficiently.

Summary and Conclusions

The design and implementation of algorithms, including
search algorithms, is an inherently error-prone process. Our
main defense against errors is to have multiple, redundant
checks on all our results, as independent of each other as
possible. These checks can include theoretical proofs of cor-
rectness, comparison of theoretical analyses to experimental
results, experimental comparisons between different algo-
rithms computing the same results, and experimental com-
parisons between independent implementations of the same
algorithm. If you don’t have a reasonably independent way
of checking the correctness of your algorithm, code, or re-
sults, you should probably assume they are wrong, since that
is the most likely scenario.

References

Korf, R., and Schultze, P. 2005. Large-scale, parallel
breadth-first search. In AAAI-2005, 1380-1385.

Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In IJCAI-73,
12-17.





