
Latent Features for Algorithm Selection

Yuri Malitsky and Barry O’Sullivan
Insight Centre for Data Analytics

Department of Computer Science, University College Cork, Ireland
(yuri.malitsky, barry.osullivan)@insight-centre.org

Abstract

The success and power of algorithm selection tech-
niques has been empirically demonstrated on numerous
occasions, most noticeably in the competition settings
like those for SAT, CSP, MaxSAT, QBF, etc. Yet while
there is now a plethora of competing approaches, all of
them are dependent on the quality of a set of structural
features they use to distinguish amongst the instances.
Over the years, each domain has defined and refined its
own set of features, yet at their core they are mostly a
collection of everything that was considered useful in
the past. As an alternative to this shotgun generation of
features, this paper instead proposes a more systematic
approach. Specifically, the paper shows how latent fea-
tures gathered from matrix decomposition are enough
for a linear model to achieve a level of performance
comparable to a perfect Oracle portfolio. This informa-
tion can, in turn, help guide researchers to the kinds of
structural features they should be looking for, or even
just identifying when such features are missing.

Introduction
Over the last decade, algorithm selection has led to some
very impressive results in a wide variety of fields, like satis-
fiability (SAT) (Xu et al. 2012b; Kadioglu et al. 2011), con-
straint satisfaction (CSP) (O’Mahony et al. 2008), and ma-
chine learning (Thornton et al. 2013). The underlying princi-
ple guiding this research is that there is no single algorithm
that performs optimally on every instance. That whenever
a solver is developed to perform well in the general case,
it can only do so by sacrificing quality on some instances.
Algorithm selection therefore studies each instance’s struc-
tural properties through a collection of numeric features to
try to predict the algorithm that will perform best on it. The
ways in which these decisions are made is constantly grow-
ing, with only a small number referred to in the following
sections, but the results have been dominating international
competitions of SAT, CSP, MaxSAT, and others over the last
few years. For a general overview of some of the portfolio
methodologies, we refer the reader to a recent literature re-
view (Kotthoff, Gent, and Miguel 2012).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To get a better handle on this field, consider the semian-
nual SAT Competition domain, where in 2012 there were
65 solvers submitted by 27 research groups. If we consider
just the top 29 solvers and evaluate each with a 5,000 sec-
ond timeout on 4,260 instances, we would observe that the
best solver can find a solution to 2,697 instances, or 63.3%.
Ignoring the runner-up, which was an alternate version of
the winner, the next best solver could only solve 1,861 in-
stances (43.7%). However, if we instead introduce an Ora-
cle solver, that would always choose the fastest solver for
each instance, an additional 979 instances could be solved,
23% more than the best solver. Furthermore, if we look at
the solvers chosen by this oracle in this particular case, we
would observe that the best solver is never chosen. This
means that while the best solver is good overall, it is never
the fastest for any given instance. Closing this gap between
the best single solver and the oracle is the objective of algo-
rithm selection.

Yet, while the performance of algorithm selection tech-
niques is continually improving, it does so at the cost of
transparency of the employed models. The new version of
SATzilla, the winning portfolio in 2012, trains a tree to pre-
dict the winner between every pair of solvers (Xu et al.
2012b). CSHC, the 2013 winner, takes an alternate approach
of introducing a new splitting criterion for trees that makes
sure that each subtree is more consistent on the preferred
solver than its root (Malitsky et al. 2013). But in order to
make the approach competitive, many of these trees need to
be grouped into a forest. Yet other approaches create sched-
ules of solvers to improve the chances of solving each in-
stance (Kadioglu et al. 2011; Helmert, Röger, and Karpas
2011). Unfortunately, even though all these approaches are
highly effective at solving instances, once they are trained
they are nearly impossible to use to get a better understand-
ing of the fundamental issues of a particular problem do-
main. In short, we can now answer what we should do when
we see a new instance, the new question should therefore be
why a particular solver is chosen and we should use this in-
formation to spur the development of a new wave of solvers.

The focus of this paper is therefore to present a new port-
folio approach that can achieve similar performance to lead-
ing portfolios while also presenting a human interpretable
model. Specifically, this is done with the help of matrix de-
composition. The paper shows that instead of using the cur-

123

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)



rent set of features, which have been generated sporadically
and manually by including anything that may be of use, it
is necessary to instead turn to latent features generated by
studying the matrix detailing the performance of each solver
on each instance. It is argued that these latent features cap-
ture the differences between solvers by observing their ac-
tual performances. It is then shown that a portfolio trained on
these features can significantly outperform the best existing
approaches. Of course, because in the regular setting these
features are not actually available, the paper shows how the
currently existing features can be used to approximate these
latent features. This has the additional benefit of revealing
the absence of some crucial information if the existing fea-
tures are unable to accurately predict a latent feature. This
information can in turn be used to guide future research
in getting a better understanding of what it is exactly that
causes one solver to outperform another.

The remainder of the paper is broken down into three sec-
tions. First, we present an assortment of algorithm selection
techniques and apply them to problems in three separate do-
mains. The section therefore demonstrates both the effec-
tiveness and the drawbacks of current techniques. The fol-
lowing section then presents the concept of latent features
and how they are computed using singular value decompo-
sition. This section goes into detail about the strengths and
applications of the new approach. The paper concludes with
a general discussion of the further avenues of research that
become accessible using the described technique.

Algorithm Selection
Although the term was first introduced by Rice in 1976 (Rice
1976), it is only recently that the study of algorithm selection
has begun to take off. A survey by Kotthoff et.al. touches on
many of the recent works (Kotthoff, Gent, and Miguel 2012).
Unfortunately, at this time many of the top approaches are
either not open source or are very closely linked to a spe-
cific dataset or format. This makes an exhaustive compari-
son with the state of the art impractical. There are currently
a number of steps being taken to unify the field, such as
the COnfiguration and SElection of ALgorithms (COSEAL)
project (COSEAL 2014), but this paper will instead focus
on the standard machine learning approaches to algorithm
selection. Yet, as was recently shown (Hutter et al. 2014),
one of the most effective approaches is to rely on a random
forest to predict the best performing solver. This random for-
est approach is one of the techniques presented here.

This section will first introduce the three problem do-
mains that will be explored in the paper and the features used
to analyze them. The section will then proceed to present the
results of standard algorithm selection techniques and the re-
sults of feature filtering. All presented experiments were run
on two X Intel Xeon E5430 processors (2.66 GHz).

Satisfiability
Satisfiability testing (SAT) is one of the premier domains
where algorithm portfolios have been shown to excel. Ever
since SATzilla (Xu et al. 2008) was first entered in the 2007
SAT competition, a portfolio approach has always placed in

each subsequent competition. SAT tackles the problem of
assigning a truth value to a collection of boolean variables
so as to satisfy a conjunction of clauses, where each clause
is a disjunction of the variables. It is a classical NP-complete
problem that is widely studied due to its application to for-
mal verification, scheduling, and planning, to name just a
few.

Since 2007, the set of features used to describe the SAT
instances has been steadily expanding to now number 138
in total. These features are meant to capture the structural
properties of an instance, like the number of variables, num-
ber of clauses, number of variables per clause, frequency
with which two variables appear in the same clause, or
two clauses share a variable. These features also include a
number of stochastic features gathered after running a few
solvers for a short time. These features include the number
of propagations, the number of steps to a local optimum,
and the number of learned clauses. In the interest of space,
we refer the reader to the official paper (Xu et al. 2012a) for
a complete list of these features. Yet as expansive as this list
is, it was generated by including everything that was thought
useful, resulting in many features that are not usually very
informative and are usually removed through feature filter-
ing (Kroer and Malitsky 2011).

The dataset investigated in this paper is comprised of
1,098 industrial instances gathered from SAT Competitions
dating back to 2006. We focus solely on industrial instances
as these are of more general interest in practice. Each in-
stance was evaluated with the top 28 solvers in the 2012
competition with a timeout of 5,000 seconds. These solvers
are: clasp.2.1.1 jumpy, clasp2.1.1 trendy, ebminisat, gluem-
inisat, lingeling, lrglshr, picosat, restartsat, circminisat,
clasp1, cryptominisat 2011, eagleup, gnoveltyp2, march rw,
mphaseSAT, mphaseSATm, precosat, qutersat, sapperlot,
sat4j.2.3.2, sattimep, sparrow, tnm, cryptominisat295, min-
isatPSM, sattime2011, ccasat, and glucose 21.

MaxSAT
MaxSAT is the optimization version of the SAT problem,
aiming to find a variable setting that maximizes the num-
ber of satisfied clauses. With applications in bioinformat-
ics, timetabling, scheduling, and many others, the problem
domain is of particular interest for research as it can rea-
son about both optimality and feasibility. The particular
dataset used in this paper focuses on the regular and partial
Weighted MaxSAT (WMS and WPMS respectively) prob-
lem. This means that the problem clauses are split and clas-
sified as either hard or soft. The objective of a WPMS solver
is to satisfy all of the “hard” clauses while also maximizing
the cumulative weight of the satisfied “soft” clauses. WMS
has a similar objective except that all the “soft” clauses have
the same weight.

The investigated dataset is comprised of 1,077 instances
gathered from the 2013 MaxSAT Evaluation. Each of the
instances is identified by a total of 37 features intro-
duced as part of a recently dominating MaxSAT portfo-
lio (Ansótegui, Malitsky, and Sellmann 2014). These are
a subset of the 32 deterministic features used to clas-
sify SAT instances. The other 5 features measure the

124



Table 1: Performance of algorithm selection techniques on SAT, MaxSAT and CSP datasets. The algorithms are compared using
the average runtime (AVG), the timeout penalized runtime (PAR10), and the number of instances not solved (NS).

SAT MaxSAT CSP
AVG PAR10 NS AVG PAR10 NS AVG PAR10 NS

BSS 672 3,620 69 739 6,919 412 1,156 9,851 362
Tree 630 3,114 57 107 709 40 379 2,444 86
Linear 521 2,176 38 104 661 37 321 1,978 69
SVM (radial) 609 3,487 66 542 5,028 299 284 1,533 52
K-NN 463 1,985 35 50.3 292 16 272 1,521 52
Forest-500 384 1,473 25 45.9 226 12 220 940 30
VBS 245 245 0 26.6 26.6 0 131 131 0

percentage of clauses that are soft, and the statistics of
the distribution of weights: avg, min, max, stdev. Each
of the instances is evaluated with 15 top solvers from
2013 for 1800 seconds. The solvers are: ahmaxsat, ak-
maxsat ls, ckmax small, ILP 2013, maxsatz2013f, MSUn-
Core, scip maxsat, shinmaxsat, WMaxSatz+, WMaxSatz09,
WPM1 2013, WPM2 2013, WPM2shuc b, QMaxSAT2 m,
pwbo2.33, and six parameterizations of wpm2 found
in (Ansótegui, Malitsky, and Sellmann 2014).

Constraint Satisfaction
A constraint satisfaction problem (CSP) is a powerful for-
mulation that can model a large number of practical prob-
lems such as planning, routing, and configuration. Such
problem instances are represented by a set of variables, each
with their own domain of possible assignments. The actual
assignments are determined by adherence to a set of con-
straints. A typical example of such a constraint is the all-
different constraint which symbolizes that no two variables
take the same value.

In this paper we consider the 2,207 instances used to train
the Proteus portfolio approach (Hurley et al. 2014). This
is a subset of instances from the CSP solver competition1

containing Graph Coloring, Random, Quasi-random, Black
Hole, Quasi-group Completion, Quasi-group with Holes,
Langford, Towers of Hanoi and Pigeon Hole problems. Each
instance was solved with a 3,600 second timeout by the four
top solvers: mistral, gecode, choco, and abscon. A total of 36
features were used for each instance using mistral (Hebrard
2008). The set includes static features like statistics about
the types of constraints used, average and maximum domain
size; and dynamic statistics recorded by running mistral for 2
seconds: average and standard deviation of variable weights,
number of nodes, number of propagations and a few others.

Numerical Evaluation
As a baseline for each of the datasets described above we
present the performance of the best single solver (BSS) as
well as that of the virtual best performance of an oracle
virtual best solver (VBS). We then evaluate a number of
machine learning techniques for algorithm selection, each

1CSP solver competition instances: http://www.cril.univ-artois.
fr/∼lecoutre/benchmarks.html

of which will try to predict the runtime of each solver, se-
lecting the expected best. The evaluations are done using
LLAMA (Kotthoff 2013), a freely available R package for
fast prototyping of algorithm selection techniques. Addi-
tionally, the parameters of each of the machine learning ap-
proaches were tuned using the R caret (Kuhn 2014) library,
which uses grid based search and cross validation to find the
best parameters for each technique.

Table 1 presents a comparison of a small subset of algo-
rithm portfolio techniques on the three datasets. Here, all
of the algorithms are evaluated using 10-fold cross valida-
tion, presenting the average runtime (AVG), the timeout pe-
nalized average runtime (PAR10), and the number of not
solved instances (NS). Note that for AVG, unsolved tasks
are counted with the timeout. For PAR10, if a solver times-
out on an instance, the time taken is recorded as 10 times
the timeout, otherwise the regular time is recorded. The ta-
ble compares the performances of training a tree, a linear
model, a support vector machine with a radial basis kernel,
a k-nearest neighbor, and a random forest consisting of 500
trees. For these particular datasets, the instances where no
solver finished within the timeout are removed, hence the 0
unsolved instances for VBS.

Note that in the presented results, all approaches perform
better than any single solver, highlighting once again the
power of algorithm selection. Note also that among the cho-
sen approaches, the tree and linear models are arguably the
most easily interpretable. Yet they are not the best perform-
ing portfolios, so it is not clear whether it is safe to make
judgments based on their results. After all, it is impossible
to tell why they get certain instances wrong. It would be
much better if the predictions of the preferred solver were
more accurate.

On the other end of the spectrum, k-nearest neighbor and
a random forest are much stronger predictors. Forests in par-
ticular are now commonly referred to in the literature as
the best approach for algorithm selection. Yet as a price for
this improved performance, the resulting models are increas-
ingly opaque. Looking at the 500 generated trees, it is im-
possible to say why one solver is better than another for
a particular type of instance or the exact changes among
features that highlight this difference. The same is true for
k-nearest neighbor. Of course it is possible to look at all
the neighboring instances that impact a solver’s decision,
but this only highlights the potentially similar instances, not

125



Table 2: Performance of algorithm selection techniques after feature filtering on SAT, MaxSAT and CSP datasets. The algo-
rithms are compared using the average runtime (AVG), the timeout penalized runtime (PAR10), and the number of instances
not solved (NS).

SAT MaxSAT CSP
AVG PAR10 NS AVG PAR10 NS AVG PAR10 NS

BSS 672 3,620 69 739 6,919 412 1,156 9,851 362
Tree 632 3,239 60 107 709 40 379 2,444 86
Linear 520 2,219 39 104 661 37 323 2,004 70
SVM (radial) 621 3,412 64 55.7 281 15 282 1,507 51
K-NN 475 2,172 39 48.9 290 16 274 1,523 52
Forest-500 381 1,382 23 47.1 227 12 225 994 32
VBS 245 245 0 26.6 26.6 0 131 131 0

specifically what those differences are.

Feature Filtering
In practice, it is well accepted that dealing with problems
with large feature vectors is often ill-advised. One of the
reasons for this is that the more numerous the feature set, the
more instances are needed to differentiate useful data from
noise that happens to look beneficial. After all in a collection
of thousands randomly generated features and only one hun-
dred instances, there is a high probability that at least one of
the features will correspond with the target value. This issue
is mitigated through the use of feature filtering.

There are numerous techniques designed to isolate and
remove unhelpful or even adverse features. In this paper we
utilize four common filtering techniques made available by
the FSelector R library (Romanski 2013): Chi-squared, in-
formation gain, gain ratio, and symmetrical uncertainty. Be-
cause all these approaches depend on a classification for
each instance, we use the name of the best solver for that
purpose.

Chi-squared. The Chi-squared test is a correlation-based
filter and makes use of “contingency tables”. One advantage
of this function is that it does not need the discretization of
continuous features. It is defined as:

χ2 =
∑
ij

(Mij −mij)
2/mij where mij =Mi.M.j/m

Mij is the number of times instances with target value
Y = yj and feature value X = xi appear in a dataset, where
y are the class and x are features. Here, m denotes the total
number of instances.

Information gain. Information gain is based on information
theory and is often used in decision trees and is based on the
calculation of entropy of the data as a whole and for each
class. For this ranking function continuous features must be
discretized in advance.

Gain ratio. This function is a modified version of the infor-
mation gain and it takes into account the mutual informa-
tion for giving equal weight to features with many values
and features with few values. It is considered to be a stable
evaluation.

Symmetrical uncertainty. The symmetrical uncertainty is
built on top of the mutual information and entropy measures.

It is particularly noted for its low bias for multivalued fea-
tures.

Each of these filtering techniques assigns a “relevance”
score to each of the features, with higher values signifying
greater information quality. To select the final subset of fea-
tures, we order the features based on these scores and use
the biggest difference drop as a place to cut the important
from the remainder.

In the interest of space, Table 2 only shows the perfor-
mances of the algorithm selection techniques after the most
empirically effective approach: Chi-squared filtering. Ap-
plying the filtering technique on the datasets certainly has
the desired effect of maintaining (or even improving) per-
formance while reducing the feature set. In the case of SAT,
we observe that only 59 of the 138 features are needed. For
MaxSAT the reduction is smaller (34 of 37), while for CSP
it is 31 of 36. Yet as can be clearly seen from the table, while
these filtering techniques can focus us on more informative
features, it does not greatly improve the performance of the
transparent models, leaving the opaque random forest model
the clear winner.

Latent Features
A latent variable is by definition something that is not di-
rectly observable but rather inferred from observations. This
is a concept that is highly related to that of hidden variables,
and is employed in a number of disciplines including eco-
nomics (Rutz, Bucklin, and Sonnier 2012), medicine (Yang
et al. 2012) and machine learning (Ghahramani, Griffiths,
and Sollich 2006). This section introduces the idea of col-
lecting latent variables that best describe the changes in
the actual performance of solvers on instances. Thereby in-
stead of composing a large set of structural features that
might possibly correlate with the performance, this paper
proposes a top down approach. Specifically, the paper pro-
poses that matrix factorization like singular value decompo-
sition (SVD) can be used for this purpose.

Singular Value Decomposition
The ideas behind Singular Value Decomposition herald back
to the late 1800’s when they were independently discov-
ered by five mathematicians: Eugenio Beltrami, Camille Jor-
dan, James Joseph Sylvester, Erhard Schmidt, and Hermann

126



Table 3: Performance of algorithm selection techniques using the latent features computed after singular value decomposition on
SAT, MaxSAT and CSP datasets. The algorithms are compared using the average runtime (AVG), the timeout penalized runtime
(PAR10), and the number of instances not solved (NS). We therefore observe that a linear model using the SVD features could
potentially perform as well as an oracle.

SAT MaxSAT CSP
AVG PAR10 NS AVG PAR10 NS AVG PAR10 NS

BSS 672 3,620 69 739 6,919 412 1,156 9,851 362
Standard portfolio Forest-500 (orig) 381 1,382 23 47.1 227 12 225 994 32

VBS 245 245 0 26.6 26.6 0 131 131 0
Tree 508 1,635 26 98.0 563 31 167 287 5
Linear 245 245 0 26.6 26.6 0 131 131 0

SVD based portfolio SVM (radial) 286 373 2 38.8 114 5 134 134 0
K-NN 331 589 6 34.1 109 5 135 159 1
Forest-500 300 386 2 32.0 77.0 3 135 231 4

Weyl. In practice, the technique is now currently embraced
for tasks like image compression (Prasantha 2007) and data
mining (Martin and Porter 2012) by reducing massive sys-
tems to manageable problems by eliminating redundant in-
formation and retaining data critical to the system.

At its essence, Singular Value Decomposition is a method
for identifying and ordering the dimensions along which
data points exhibit the most variation, which is mathemat-
ically represented by the following equation:

M = UΣV T ,

where M is the m×n matrix representing the original data.
Here, there are m instances each described by n values. The
columns of U are the orthonormal eigenvectors of MMT ,
the columns of V are orthonormal eigenvectors of MTM ,
and Σ is a diagonal matrix containing the square roots of
eigenvalues from U or V in descending order.

Note that if m > n then, being a diagonal matrix, most
of the rows in Σ will be zeros. This means that after multi-
plication, only the first n columns of U are needed. So for
all intents and purposes, for m > n, U is an m × n matrix,
while both Σ and V T are n× n.

Because U and V are orthonormal, intuitively one can in-
terpret the columns of these matrices as a linear vector in the
problem space that captures most of the variance in the orig-
inal matrix M . The values in Σ then specify how much of
the variance each column captures. The lower the value in Σ,
the less important a particular column is. This is where the
concept of compression comes into play, when the amount
of columns in U and V can be reduced while still capturing
most of the variability in the original matrix.

From the perspective of data mining, the columns of the
U matrix and the rows of the V matrix have an additional
interpretation. Let us assume that our matrix M records the
performance of n solvers over m instances. In such a case
it is usually safe to assume that m > n. So each row of the
U matrix still describes each of the original instances in M .
But now each column can be interpreted as a latent topic
or feature that describes that instance. Meanwhile, each col-
umn of the V T matrix refers to each solver, while each row
presents how active, or important a particular topic is for that
solver.

These latent features in U give us exactly the information
necessary to determine the runtime of each solver. This is
because once the three matrices are multiplied out we are
able to reconstruct the original performance matrix M . So if
we are given a new instance i, if we are able to identify its
latent features, we could multiply by the existing Σ and V T

matrices to get back the performance of each solver.
Therefore, if we had the latent features for an instance as

computed after the Singular Value Decomposition, it would
be possible to train a linear model to accurately predict the
performance of every solver. A linear model where we can
see exactly which features influence the performance of each
solver. This is exactly what Table 3 presents. Like before
here, we perform 10-fold cross validation. For each train-
ing set we compute matrices U , V and Σ and train each
model to use the latent features in U to predict the solver
performances. For the test instances, we use the runtimes,
P , to compute what the values of U should be by computing
PV Σ−1. These latent features are then used by the trained
models to predict the best solver.

Unfortunately, these latent features are only available by
decomposing the original performance matrix. This is infor-
mation that we only have available after all the solvers have
been run on an instance. Information that once computed
means we already know which solver should have been run.

Yet, note that the performance of the models is much bet-
ter than it was using the original features, especially for the
linear model. This is again a completely unfair comparison,
but it is not as obvious as it first appears. What we can gather
from these results is that the matrix V and Σ are still rele-
vant even when applied to previously unseen instances. This
means that the differences between solvers can in fact be
differentiated by a linear model, provided it has the correct
structural information about the instance. This also means
that if we are able to replicate the latent features of a new
instance, the supporting matrices computed by the decom-
position will be able to establish the performances.

Recall also that the values in Σ are based on the eigenval-
ues of M . This means that the columns associated with the
lower valued entries in Σ encapsulate less of the variance in
the data than the higher valued entries. Figure 1 therefore
shows the performance of the linear model as more of the

127



Table 4: Performance of an algorithm selection technique that predicts the latent features of each instance using a random forest
on the SAT, MaxSAT and CSP datasets. The algorithms are compared using the average runtime (AVG), the timeout penalized
runtime (PAR10), and the number of instances not solved (NS). Note that even using predicted latent features, a linear model
of “SVD (predicted)” can achieve the same level of performance as the more powerful, but more opaque, random forest.

SAT MaxSAT CSP
AVG PAR10 NS AVG PAR10 NS AVG PAR10 NS

BSS 672 3,620 69 739 6,919 412 1,156 9,851 362
Forest-500 (orig) 381 1,382 23 47.1 227 12 225 994 32
VBS 245 245 0 26.6 26.6 0 131 131 0
SVD (predicted) 379 1277 21 49.6 274 15 219 964 31

Figure 1: Number of unsolved instances remaining after us-
ing a linear model trained on the latent features after sin-
gular value decomposition. The features were removed with
those with lowest eigenvalues first. The data is collected on
the WPMS dataset. This means that even removing over half
the latent features, a portfolio can be trained that solves all
but 4 instances.

latent features are removed under the WPMS dataset. We
just use the WPMS dataset for the example because the CSP
dataset only has 4 solvers and the results for the SAT dataset
are similar to those presented. Note that while all of the la-
tent features are necessary to recreate the performance of the
VBS, it is possible to remove over half the latent features and
still be able to solve all but 4 instances.

Estimating Latent Features
Although we do not have direct access to the latent features
for a previously unseen instance, we can still estimate them
using the original set of features.

Note that while it is possible to use the result of ΣV ′ as a
means of computing the final times, training a linear model
on top of the latent features is the better option. True, both
approaches would be performing a linear transformation of
the features, but the linear model will also be able to auto-
matically take into account any small errors in the predic-
tions of the latent features. Therefore, the method proposed
in this section would use a variety of models to predict each
latent feature using the original features. The resulting pre-
dicted features will then be used to train a set of linear mod-
els to predict the runtime of each solver. The solver with the
best predicted runtime will be evaluated.

To predict each of our latent features it is of course pos-
sible to use any regression based approach available in ma-
chine learning. From running just the five approaches that
we have utilized in the previous sections, unsurprisingly
we observe that a random forest provides the highest qual-
ity prediction. The results are presented in Table 4. Here
SVD predicted uses a random forest to predict the values of
each latent feature and then trains a secondary linear model
over the latent features to predict the runtime of each solver.

From the numbers we observe that this portfolio behaves
similarly to the original Random Forest approach that sim-
ply predicts the runtime of each solver. This is to be expected
since the entire procedure as we described so far can be seen
as simply adding a single meta layer to the model. After all,
one of the nice properties of forests is that they are able to
capture highly nonlinear relations between the features and
target value. All we are doing here is adding several forests
that are then linearly combined into a single value. But this
procedure does provide one crucial piece of new informa-
tion.

Whereas before there was little feedback as to which fea-
tures were causing the issues, we now know that if we have a
perfect prediction of the latent features we can dramatically
improve the performance of the resulting portfolio. Further-
more, we know that we don’t even need to focus on all of the
latent features equally, since Figure 1 revealed that we can
survive with less than half of them.

Therefore, using singular value decomposition we can
now identify the latent features that are hard to predict, the
ones resulting in the highest error. We can then subsequently
use this information to claim that the reason we are unable
to predict this value is because the regular features we have
available are not properly capturing all of the structural nu-
ances that are needed to distinguish instances. This obser-
vation can subsequently be used to split the instances into
two groups, one where the random forest over predicts and
one where it under predicts. This is information that can then
help guide researchers to identify new features that do cap-
ture the needed value to differentiate the two groups. This
therefore introduces a more systematic approach to generat-
ing new features.

Just from the results in Table 4 we know that our current
feature vectors are not enough when compared to what is
achievable in Table 3. We also see that for the well studied
SAT and CSP instances, the performance is better than for
MaxSAT where the feature vectors have only recently been

128



introduced.
We can then just aim to observe the next latent feature to

focus on. This can be simply done by iterating over each la-
tent feature and artificially assigning it the “correct” value
while maintaining all the other predictions. Whichever fea-
ture thus corrected results in the most noticeable gains is
the one that should be focused on next. Whenever two la-
tent features tie in the possible gains, we should also focus
on matching the one with the lower index, since mathemati-
cally, that is the feature that captures more of the variance.

If we go by instance names as a descriptive marker,
surprisingly following our approach results in a sep-
aration where both subsets have instances with the
same names. So following the latent feature suggested
for the MaxSAT dataset we observe that there is a
difference between “ped2.G.recomb10-0.10-8.wcnf’ and
“ped2.G.recomb1-0.20-14.wcnf”. For CSP, we are told that
“fapp26-2300-8.xml” and “fapp26-2300-3.xml” should be
different. This means that the performance of a solver on an
instance goes beyond just the way that instance was gener-
ated. There are still some fundamental structural differences
between instances that our current features are not able to
identify. This only highlights the need for a systematic way
in which to continue to expand our feature sets.

Conclusions
Algorithm selection is an extremely powerful tool that can
be used to distinguish between variations among problem in-
stances and using this information to recommend the solver
most likely to yield the best performance. Over just the last
few years this field of research has flourished with numerous
new algorithms being introduced that consistently dominate
international competitions. Yet the entire success and failure
of these approaches is fundamentally tied to the quality of
the features used to distinguish between instances. Despite
its obvious importance, there has been remarkably little re-
search devoted to the creation and study of these features.
Instead researchers prefer to utilize a shotgun approach of
including everything they imagine might be remotely useful,
relying on feature filtering to remove the unhelpful values.
While this approach has worked out fine by capturing most
of the key structural differences, at its core it depends on
luck.

This paper therefore aims to introduce a more systematic
way of coming up with a feature set for a new problem do-
main. Specifically, it is suggested that a matrix decomposi-
tion approach, like singular value decomposition (SVD), be
used to analyze the performances on a number of solvers
on a representative set of instances. This procedure will
therefore generate a set of latent features that best separate
the data and identify when a particular solver is preferred.
Through experimental results on three diverse datasets, the
paper shows that if we had access to these latent features, a
straightforward linear model can achieve a level of perfor-
mance identical to that of the perfect oracle portfolio.

While in practice we do not have access to these features,
the paper further shows that we can still predict their val-
ues using our original features. A portfolio that uses these

predicted values is able to achieve the same level of perfor-
mance as one of the best portfolio approaches, if not slightly
better. Furthermore, any latent feature where the prediction
error is high helps identify the instances that the researcher
must focus on differentiating. This will then lead to a more
systematic method of generating features, and will later help
us understand why certain instances can be solved by certain
approaches, leading to a new wave of algorithm develop-
ment.

Acknowledgments. This publication has emanated from
research supported in part by a research grant from
Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289.

It is also funded, in part, by the FP7-funded FET-Open
project called Inductive Constraint Programming (ICON),
Grant Agreement 284715.

References
Ansótegui, C.; Malitsky, Y.; and Sellmann, M. 2014.
MaxSAT by improved instance-specific algorithm configu-
ration. AAAI.
COSEAL. 2014. Configuration and selection of algorithms
project. https://code.google.com/p/coseal/.
Ghahramani, Z.; Griffiths, T. L.; and Sollich, P. 2006.
Bayesian nonparametric latent feature models. World Meet-
ing on Bayesian Statistics.
Hebrard, E. 2008. Mistral, a constraint satisfaction library.
Proceedings of the Third International CSP Solver Compe-
tition.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
ICAPS.
Hurley, B.; Kotthoff, L.; Malitsky, Y.; and O’Sullivan, B.
2014. Proteus: A hierarchical portfolio of solvers and trans-
formations. CPAIOR.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm runtime prediction: Methods & evaluation. Arti-
ficial Intelligence 206:79–111.
Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm selection and schedul-
ing. CP 454–469.
Kotthoff, L.; Gent, I.; and Miguel, I. P. 2012. An evalu-
ation of machine learning in algorithm selection for search
problems. AI Communications 25:257–270.
Kotthoff, L. 2013. LLAMA: leveraging learning
to automatically manage algorithms. Technical Report
arXiv:1306.1031. http://arxiv.org/abs/1306.1031.
Kroer, C., and Malitsky, Y. 2011. Feature filtering for
instance-specific algorithm configuration. ICTAI 849–855.
Kuhn, M. 2014. Classification and regression training. http:
//cran.r-project.org/web/packages/caret/caret.pdf.
Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and Sellmann,
M. 2013. Algorithm portfolios based on cost-sensitive hier-
archical clustering. IJCAI.

129



Martin, C., and Porter, M. 2012. The extraordinary SVD.
Mathematical Association of America 838–851.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. AICS.
Prasantha, H. 2007. Image compression using SVD. Con-
ference on Computational Intelligence and Multimedia Ap-
plications 143–145.
Rice, J. 1976. The algorithm selection problem. Advances
in Computers 15:65–118.
Romanski, P. 2013. Fselector. CRAN - R Library.
Rutz, O. J.; Bucklin, R. E.; and Sonnier, G. P. 2012. A
latent instrumental variables approach to modeling keyword
conversion in paid search advertising. Journal of Marketing
Research 49:306–319.
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown,
K. 2013. Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms. KDD
847–855.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based algorithm selection for SAT. JAIR
32:565–606.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2012a.
Features for SAT. http://www.cs.ubc.ca/labs/beta/Projects/
SATzilla/Report SAT features.pdf.
Xu, L.; Hutter, F.; Shen, J.; Hoos, H. H.; and Leyton-Brown,
K. 2012b. SATzilla2012: Improved algorithm selection
based on cost-sensitive classification models. SAT Compe-
tition.
Yang, W.; Yi, D.; Xie, Y.; and Tian, F. 2012. Statistical
identification of syndromes feature and structure of disease
of western medicine based on general latent structure mode.
Chinese Journal of Integrative Medicine 18:850–861.

130




