Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

Anytime Tree-Restoring Weighted A* Graph Search

Kalin Gochev

University of Pennsylvania

Abstract

Incremental graph search methods reuse information from
previous searches in order to minimize redundant computa-
tion and to find solutions to series of similar search queries
much faster than it is possible by solving each query from
scratch. In this work, we present a simple, but very ef-
fective, technique for performing incremental weighted A*
graph search in an anytime fashion. On the theoretical side,
we show that our anytime incremental algorithm preserves
the strong theoretical guarantees provided by the weighted
A* algorithm, such as completeness and bounds on solution
cost sub-optimality. We also show that our algorithm can
handle a variety of changes to the underlying graph, such as
both increasing and decreasing edge costs, and changes in
the heuristic. On the experimental side, we demonstrate the
effectiveness of our algorithm in the context of (x,y,z,yaw)
navigation planning for an unmanned aerial vehicle and com-
pare our algorithm to popular incremental and anytime graph
search algorithms.

Keywords: Path Planning, Heuristic Search, Incremental
Graph Search, Anytime Graph Search

Introduction

Many search algorithms exist for solving path planning
problems in a graph-theoretical context. The main goal of
these algorithms is to perform the search as fast as possi-
ble. A variety of techniques have been developed to speed
up graph search, such as using heuristics to focus the search
towards the goal, and trading off between search time and
the cost of the resulting path. In this work, we discuss a
different way of speeding up searches—incremental search.

Incremental search is a technique for continual planning
that reuses information from previous searches to find so-
lutions to a series of similar search problems potentially
faster than it is possible by solving each search problem
from scratch. In many situations, a system has to contin-
uously adapt its plan to changes in its environment or in its
knowledge of the environment. In such cases, the original

Copyright (© 2014, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.
This work was supported by NSF Grant IIS-1018486

and DARPA Computer Science Study Group (CSSG) grant
D11AP00275.

Alla Safonova
University of Pennsylvania

80

Maxim Likhachev

Carnegie Mellon University

plan might no longer be valid, and thus, the system needs
to replan for the new situation. In these situations, solving
the new search problem independently of previous search ef-
forts (planning from scratch) can be very inefficient. This
is especially true for situations when the changes of the
search problem are small or very localized. For example,
a robot might have to replan when it detects a previously
unknown obstacle, which generally affects the graph struc-
ture and edge costs in a very localized fashion. Incremental
graph search methods aim to re-use information from previ-
ous searches in order to minimize redundant computation.
In this work, we present a simple, but very effective, tech-
nique for performing incremental weighted A* graph search
in an anytime fashion. The algorithm employs a heuris-
tic to focus the search and allows for trading off bounded
path cost sub-optimality for faster search, just like weighted
A*. In addition, the algorithm re-uses information from pre-
vious search queries in order to improve planning times.
Moreover, the algorithm can be used for anytime search,
similarly to the Anytime Repairing A* (ARA*) algorithm
(Likhachev, Gordon, and Thrun 2003) starting the search
with a large heuristic inflation factor € to produce an initial
solution faster, and continuously decreasing € to 1 as time
permits to find paths of lower sub-optimality bound. On the
theoretical side, we show that our anytime incremental algo-
rithm preserves the strong theoretical guarantees provided
by the weighted A* and ARA* algorithms, such as com-
pleteness and bounds on solution cost sub-optimality. This
work is an extension to (Gochev, Safonova, and Likhachev
2013), which allows the algorithm to handle a variety of
changes to the underlying graph, such as both increasing and
decreasing edge costs, and changes in the heuristic. On the
experimental side, we demonstrate the effectiveness of our
algorithm in the context of (X,y,z,yaw) navigation planning
for an unmanned aerial vehicle and compare our algorithm
to popular incremental and anytime graph search algorithms.

Related Work

Researchers have developed various methods for performing
incremental heuristic searches, based on the observation that
information computed during previous search queries can be
used to perform the current search faster. Generally, incre-
mental heuristic search algorithms fall into three categories.

The first class of algorithms, such as Lifelong Plan-

ning A* (Koenig, Likhachev, and Furcy 2004), D* (Stentz
1995), D*-Lite (Koenig and Likhachev 2002), Anytime D*
(Likhachev et al. 2005), and Anytime Truncated D* (Aine
and Likhachev 2013), aim to identify and repair inconsisten-
cies in a previously-generated search tree. These approaches
are very general and don’t make limiting assumptions about
the structure or behavior of the underlying graph. They also
demonstrate excellent performance by repairing search tree
inconsistencies that are relevant to the current search task.
The main drawback of these algorithms is the book-keeping
overhead required, which sometimes may significantly off-
set the benefits of avoiding redundant computation.

The second class of algorithms, such as Fringe-Saving A*
(Sun, Yeoh, and Koenig 2009) and Differential A* (Trovato
and Dorst 2002), also try to re-use a previously-generated
search tree, but rather than attempting to repair it, these ap-
proaches aim to identify the largest portion of the search tree
that is unaffected by the changes (and thus is still valid),
and resume searching from there. These approaches tend
to be less general and to make limiting assumptions. The
Fringe-Saving A*, for example, is very similar in nature
to our approach, but it only works on 2D grids with unit
cost transitions between neighboring cells. It uses geomet-
ric techniques to reconstruct the search frontier based on the
2D grid structure of the graph. The assumptions made by
these algorithms allow them to perform very well in scenar-
ios that meet these assumptions. The algorithm presented in
this work falls into this class of incremental heuristic search
algorithms. Our approach is an extension to (Gochev, Sa-
fonova, and Likhachev 2013), which only handles increas-
ing edge costs. The main advantage of our approach is that
it is general and is able to handle arbitrary graphs and a vari-
ety of changes to the graph—increasing and decreasing edge
costs, changes in the heuristic, and changes in the search
goal state. We also extend the algorithm to be able to per-
form anytime search.

The third class of incremental heuristic search algorithms,
such as Generalized Adaptive A* (Sun, Koenig, and Yeoh
2008), aim to compute more accurate heuristic values by
using information from previous searches. As the heuris-
tic becomes more informative, search tasks are performed
faster. The main challenge for such algorithms is maintain-
ing the admissibility or consistency of the heuristic when
edge costs are allowed to decrease. Path- and Tree-Adaptive
A* (Hernandez et al. 2011) algorithms, for example, rely
on the fact that optimal search is performed on a graph and
edge costs are only allowed to increase. Our algorithm can
handle changes in the heuristic, and therefore, it can theo-
retically be combined with such approaches that compute a
better-informed heuristic, as long as the heuristic remains
admissible.

Problem Definition

We are assuming that the planning problem is represented
by a finite state-space S and a set of transitions 7" =
{(Xi,X,)|X;, X; € S}. Each transition is associated with
a positive cost ¢(X;, X;). The state-space S and the transi-
tion set 7' define an edge-weighted graph G = (S, T') with
a vertex set S and edge set 7. We will use the notation

81

[AN
]
- |5 % s w8 -l |- -
\ e
8 -|8%9]8 -|ss -
v [
314 9 -|9 -|o7ig{d
A%
¥
3 10"~ [idfualro
ﬁ/ A
11 - [t -
¥ Y
12 il

(b) The first modified state is
generated at step 5. Restoring
the weighted A™ search state
at step 4 produces a valid A*
search state.

(a) Tree-restoring A* search
showing the creation time
(bottom left) and expansion
time (bottom right) of each
state. A dash indicates co.

Figure 1: Simple 8-connected grid tree-restoring weighted
A* example (assuming a perfect heuristic for simplic-
ity). Light gray: CLOSED list (expanded states), dark
gray: OPEN list, striped: modified states, black: ob-
stacles/invalid states, solid arrows: valid back-pointer tree,
dashed arrows: invalid back-pointer tree.

ma(Xi, X;) to denote a path from state X; to state X; in
G, and its cost will be denoted by c(mg(X;, X;)). We will
use 5 (X;, X;) to denote a least-cost path and 7§ (X;, X;)
for € > 1 to denote a path of bounded cost sub-optimality:
c(m& (X5, X)) < e-e(nf (X, X;)). The goal of the plan-
ner is to find a least-cost path in G from a given start state
X to a single goal state X . Alternatively, given a desired
sub-optimality bound € > 1, the goal of the planner is to
find a path 7§, (X g, X¢). The costs of transitions (edges) in
G are allowed to change between search queries. We call
a state X modified if the cost of any of its outgoing tran-
sitions (X, X') € T, change between search queries. The
way to efficiently identify modified states is domain depen-
dent, but in general one has to iterate through all the edges
with changed costs and grab the source states.

Tree-Restoring Weighted A* Search
Algorithm

The state of a weighted A* search can be defined by the
OPEN list, the CLOSED list, the g-values of all states,
and the back-pointer tree. Note the distinction between a
state of a search and a state in the graph being searched; we
will use “state” when referring to a state of a search. The
idea of our approach to incremental weighted A* planning
is to keep track of the state of the search, so that when the
graph structure is modified, we can restore a valid previous
search state and resume searching from there.

We call a state of a weighted A* search valid with respect
to a set of modified states, if the OPEN and CLOSED
lists, and the back-pointer tree do not contain any of the
modified states and the g-values of all states are correct with
respect to the back-pointer tree.

At any one time during a weighted A* search, each state

falls in exactly one of the following categories:

e unseen - the state has not yet been encountered during
the search; its g-value is infinite; the state is not in the
back-pointer tree.

e inOPEN - the state is currently in the OPEN list; the
state has been encountered (generated), but has not yet
been expanded; its g-value is finite (assuming that when
states with infinite g-values are encountered, they are not
put in the OPEN list); the state is in the back-pointer
tree.

e inCLOSED - the state is currently in the CLOSED
list; the state has been generated and expanded; its g-value
is finite; the state is in the back-pointer tree.

We assume that the weighted A* search expands each
state at most once, which preserves the sub-optimality guar-
antees of the algorithm as proven in (Likhachev, Gordon,
and Thrun 2003). The Tree-Restoring Weighted A* algo-
rithm (T RA*) keeps a discrete time variable step that is
initialized at 1 and incremented by 1 after every state ex-
pansion. Thus, if we record the step C'(X) in which a state
X is generated (first placed in the OPEN list, C(X) = o0
if state has not yet been generated) and the step E(X) in
which a state is expanded (placed in the CLOSED list,
E(X) = oo if the state has not yet been expanded), we
can reconstruct the OPEN and CLOSED lists at the end
of any step s (Fig. 1).

CLOSED, = {X|E(X) < s}
OPEN, = {X|C(X) < sand E(X) > s}

Note that C'(X) < E(X) (i.e. a state’s creation time is
before the state’s expansion time), and if F(X) = F(X')
then X = X’ (i.e. no two states could have been expanded
during the same step).

In order to be able to reconstruct the back-pointer tree and
g-values for all states at the end of a previous step s, each
state must store a history of its parents and g-values. Every
time a better g-value g and parent X, are found for a state
X (when X, is being expanded), a pair (X, g) is stored
for the state X. Note that the pair stores the g-value of the
state X itself, not the g-value of its parent X,. Thus, we can
compute the parent Ps(X) and g-value g4(X) of a state X
at the end of a previous step s by going through X’s list L x
of stored parent/g-value pairs.

(Ps(X),95(X)) =
(Xp’g)ELX‘V(X/ﬂg/)ELX : E(X/) S E(Xp) S S

In other words, the valid parent/g-value pair of X at step s
is the pair containing the parent that was expanded last (most
recently), but before or during step s. Storing the history in
a list or array and searching it backwards seems to be very
effective in quickly identifying the most recent valid parent
and g-value.

When a set of states M get modified between search
episodes by changes in the costs of some of their transitions,
we identify the earliest step ¢, in which a modified state

82

was created: i, = min(C(X)|X € M). If we then re-
store the search state at the end of step ¢, — 1, we will
end up with a valid search state with respect to the modified
states, and thus, we can resume searching from there, pro-
vided the heuristic has not changed or does not need to be
recomputed.

An important contribution of this work is allowing the al-
gorithm to handle decreasing edge costs, which in turn, re-
quire the heuristic to be recomputed so that it remains ad-
missible. In such cases, we might have to restore the search
State to an even earlier step than ¢,,;,, — 1 in order to ensure
that correct expansion order is maintained with respect to
the new heuristic values. We maintain correct expansion or-
der by identifying all possible states that might have been
expanded out-of-order relative to the current search state
and the new heuristic values. An expanded state X might
have been expanded out-of-order relative to the current best
candidate for expansion X’ from OPEN, if X’s f-value
at the time of its expansion was lower than the current f-
value of X', and also, at the step when X was selected
for expansion X’ had been created and was in OPEN (i.e.
C(X') < E(X)). In other words, at time E(X) — 1 both
X and X’ were in OPEN and X' had potentially bet-
ter f-value than X, and therefore X might have been ex-
panded incorrectly before X’. If we don’t find any such
states, then the current search state is valid with respect to
the new heuristic and does not violate the proper expansion
order. On the other hand, if we find a set of states I, that
were potentially expanded out-of-order, we identify the state
X = argminyer(E (X)) with the earliest expansion time
and restore the search state at step E(Xy) — 1, right before
the potentially incorrectly expanded state X ; was selected
for expansion. We repeat this process of restoring previous
search states until the current search state does not have any
states that might have been expanded out-of-order.

We note that the TRA* algorithm can be extended to al-
low for re-expansion of states by keeping multiple records of
C and F values for each state for every time a state is placed
on OPEN and every time a state is expanded, respectively.
However, such an extension will additionally increase the
memory overhead of the algorithm. If re-expansions are al-
lowed, however, maintaining correct expansion order is no
longer necessary, as re-expansions of states will correctly
propagate any inconsistencies in the search tree within the
current search iteration.

Algorithms 1 and 2 give the pseudo code for all the im-
portant functions in the TRA* algorithm.

Theoretical Properties
Theorem 1 All states X with C(X) > ¢ will become
unseen after the function restoreSearch(c) is called.

Proof Follows trivially from definition. OJ

Theorem 2 The contents of the OPEN and CLOSED
lists after the function restoreSearch(c) is called are iden-
tical to what they were at the end of step c of the algorithm.

Proof (sketch) Let OPEN, and CLOSED. be the OPEN

and CLOSED lists at the end of step c of the algorithm. Let
OPEN’ and CLOSED' be the OPEN and CLOSED lists

after the function restoreSearch(c) is called. In can be eas-
ily shown that X € OPEN, iff X € OPEN’' and X €
CLOSED, iff X € CLOSED'. Thus, OPEN. = OPEN'’
and CLOSED.=CLOSED’. O

Theorem 3 All states X with C(X) < ¢ will have
correct parent pointers and corresponding g-values after
restoreSearch(c) is called.

Proof (sketch) We construct a proof by contradiction. Suppose a
state X has an incorrect parent pointer, i.e there exists a state P’ €
CLOSED such that g(P’) + cost(P', X) < g(P) + cost(P, X)
(a better parent P’ for X exists in the CLOSED list). We argue
that P’ must have been expanded before P, and since P’ provides
better g-value than P, then P cannot have been recorded as a parent
for X—contradiction. [

Theorem 4 Let M be the set of all modified states after
a successful incremental A* search episode. Let Cpip =
min(C(X)|X € M). restoreSearch(c) for any ¢ < ¢pmin
results in a search state that is valid with respect to the mod-

ified states M.
Proof The result follows directly from the above theorems. [J

If edge costs cannot decrease, the heuristic remains ad-
missible between search episodes and does not need to be
re-computed. However, the heuristic does need to be re-
computed when edge costs decrease, in order to ensure
that the current search is performed with admissible heuris-
tic values. Changes in the heuristic values, however, af-
fect the ordering of states in the OPEN list and the or-
der of state expansions during the search. As we only al-
low states to be expanded once, it is necessary to main-
tain correct expansion order. Thus, although by Theorem
4 restoreSearch(cmin — 1) produces a search state that is
valid with respect to the modified states, that search state is
not necessarily valid with respect to the new heuristic val-
ues, as the order of expansions might be no longer correct.
heuristicChanged() is the function that maintains the cor-
rect expansion order when the heuristic changes. As de-
scribed above, the idea of this function is to keep restor-
ing the search to earlier search state until there are no states
that could have been expanded in incorrect order. In the
worst case, the change in the heuristic is such that expan-
sion order changes from the very beginning, in which case
heuristicChanged() will restore the search state to the end
of step O-right after the start state was expanded, which
would be equivalent to starting the search from scratch.

Theorem 5 The function heuristicChanged() terminates
and at the time of its termination the search is restored to
a search state that is valid with respect to the new heuristic
values. That is, no state has been expanded out-of-order
with respect to the new f-values.

Proof Let Xy be the state with lowest f-value in OPEN in the
current search state. X was first putin OPEN at step C'(Xo).
Consider the set I computed in heuristicChanged(). As in
(Likhachev, Gordon, and Thrun 2003), v(X) stores the value of
g(X) at the time X was expanded. Therefore v(X) + € - h(X)
represents the f-value of X at the time of its expansion E(X),
but also accounting for the new heuristic values. I = {X; €
CLOSED|v(X;) +e- h(X;) > f(Xo) AN C(Xo) < E(X;)}.

83

In other words, I contains all expanded states that had higher f-
values at the time of their expansion than the current candidate for
expansion X, and that were expanded while X, was in OPEN.
As such, I contains all possible states that might have been ex-
panded incorrectly before X according to the new f-values. Note
that it is possible that the current f(Xo) is lower than the value
of f(Xo) at step E(X;), as g(Xo) might have decreased as the
search progressed after step F/(X;). Therefore, it is possible that
f(X3) < f(Xo) was true at step E(X;) and that f(X;) was
correctly selected for expansion before Xo. Thus, states in [are
not necessarily expanded incorrectly, but they are the only possi-
ble states that might have been expanded incorrectly. Let s’ =
min(E(X")| X’ € I) — 1 as computed in heuristicChanged().
Restoring the search state to step s’ ensures that no states have
been expanded incorrectly before Xo. At the end of the while loop
I = (, thus no states in CLOSED could have been expanded
incorrectly with respect to the current expansion candidate Xo.

To prove that heuristicChanged() terminates, we argue that
the integer s’ strictly decreases through the execution of the while
loop. If s” becomes 0, then CLOSED = () making I = §. O

By Theorem 5, TRA* algorithm maintains the same
expansion order (up to tie-breaking) as non-incremental
weighted A* and thus, both algorithms have the same theo-
retical guarantees for completeness, termination, and upper
bounds on path cost sub-optimality, assuming that an admis-
sible heuristic is used.

Theorem 6 T RA* expands each state at most once per
search query and never expands more states than Weighted
A* from scratch (up to tie-breaking).

Proof It is easy to verify that each state can be expanded at most
once per search query, as once a state has been expanded and put
in CLOSED it can never be placed in OPEN. The fact that
TRA™ does not expand more states than performing Weighted
A* from scratch follows almost trivially from the fact that the
two algorithms produce the same order of state expansions (up to
tie-breaking), but TRA™ is able to resume searching from a step
s > 0, thus not performing the first s expansions that Weighted A*
from scratch would have to perform. [J

Anytime Tree-Restoring Weighted A*

In many situations, producing a lower-quality initial solu-
tion very quickly, and then improving the solution as time
permits, is a desirable property of a planning algorithm.

By following the concept of the ARA* search algorithm,
we can extend the TR A* algorithm to perform in an anytime
fashion. ARA* runs a series of searches with decreasing
heuristic weighting factor € until the allocated time runs out
or an optimal solution is found for € = 1. It keeps track of an
INCONSISTENT list of all states that have been expanded
already during the current search iteration (in CLOSED), yet
a better parent and lower g-value for them was found af-
ter their expansion. The states in INCONS. are moved to
OPEN at the beginning of every search iteration, OPEN is
re-ordered based on the new e value, and the search pro-
ceeds.

To make TTRA* an anytime algorithm similar to ARA*,
we need to be able to reconstruct the INCONS. list at a par-
ticular time step. Thus, we have to record the step at which a
state X is inserted into INCONS., I(X). Also, since ARA*
allows re-expansions of states between search iterations (the

V

(a) Computing all graph edges
affected by a change in a map
cell. The figure shows a
sub-set of the edges (arrows)
affected by a change in the
shaded cell. Dashed polygons

(b) ATRA™ algorithm stor-
ing the expansion step s for
which each cell is encountered
first, done during the expan-
sion and collision checking of
each edge (arrow).

represent the robot’s perimeter.

Figure 2: Computing affected graph edges from changed
map cells.

ones from INCONS. list), we also need to maintain separate
creation C(X), expansion F.(X), and inconsistent I (X)
records for each e value. Thus, the memory overhead intro-
duced by the algorithm for each state increases proportion-
ally to the number of times it is expanded.

We can reconstruct INCONS. at a desired step s by noting
that a state X is in INCONS. from the step I, (X) when the
state was inserted into INCONS. for a particular €1, until it
was inserted in OPEN at the beginning of the next planning
iteration (for e3). Thus, X € INCONS. iff I, (X) < s <
Ce, (X).

Then, given a desired target restore step s, we can re-
construct the contents of OPEN, CLOSED, and INCONS.
lists, the back-pointer tree, g-values, and the €, value of the
search state at step s. For every state we drop the creation
C.(X), expansion E.(X), and inconsistent I.(X) records
for € < €5, only maintaining the records up to the current
heuristic inflation value €.

The proposed Anytime Tree-Restoring Weighted A*
(AT RA*) search algorithm preserves the theoretical prop-
erties of the ARA* algorithm, such as completeness with
respect to the graph encoding the problem and bounds on
solution cost sub-optimality.

Detecting Changes in the Graph

In the context of navigation planning, lattice-based graphs
are often used to encode the search problem by dis-
cretizing the configuration space of the robot, and using
pre-computed kinodynamically feasible transitions between
states (Likhachev and Ferguson 2008). On the other hand,
the map data and obstacle information is usually stored on
a grid. Thus, most incremental search algorithms, such as
D*, D*-Lite, and Anytime D*, need to be able to translate
changes in the map grid to the actual graph edges that are af-
fected by the changes. In other words, the algorithm needs to
consider all edges in the graph that cause the robot’s perime-
ter to pass through the changed cell (Fig. 2(a)). This pro-
cedure can be prohibitively expensive for graphs with high
edge density and for large robot perimeters, often signifi-

84

(a) Example environment (top
view)

(b) Initial partially-known
map provided to the robot (top
view)

Figure 3: Example environment and corresponding initial
map. The start and goal locations are marked by S and G,
respectively.

cantly diminishing or completely eliminating the benefit of
using incremental graph search.

Our approach, however, does not rely on knowing all af-
fected edges, but rather just the expansion step at which the
first affected edge was encountered during the search. Thus,
for each cell on the map grid, we can record the earliest ex-
pansion step for which the search encountered an edge that
passes through this cell (Fig. 2(b)). This introduces a small
memory overhead to the size of the map grid data stored (ad-
ditional integer per cell). However, the performance over-
head is negligible, as the collision-checking procedure al-
ready enumerates all map cells that an edge passes through
to make sure they are obstacle-free. With this extension,
when a map cell changes, we can very quickly look up the
earliest expansion step for which this cell affected an edge
in the graph. Taking the minimum expansion step s across
all changed cells in the map and restoring the search state
to step s — 1 produces a valid search tree with respect to
the modified map cells, and thus, their respective modified
graph edges.

As shown in our experiments, this approach significantly
reduces the time needed for T RA* and AT RA* to compute
the changes to the graph, and subsequently, the overhead of
performing incremental search.

Experimental Setup

To validate the AT RA* algorithm we implemented it for
4-DoF (x,y,z,yaw) path planning for an unmanned aerial ve-
hicle. The graph representing the problem was constructed
as a lattice-based graph, similar to the approach taken in
(Likhachev and Ferguson 2008), except we used constant
resolution for all lattices. In lattice-based planning, each
state consists of a vertex encoding a state vector and edges
corresponding to feasible transitions to other states. The set
of edges incident to a state are computed based on a set of
pre-computed motion primitives, which are executable by
the robot. The state-space was obtained by uniformly dis-
cretizing the environment into 5¢m X 5em X S5cm cells and
the heading values were uniformly discretized into 16 on the
interval [0, 27). The robot was tasked to navigate to a fixed
goal location. Search was performed backwards from the
goal state and the start state changed as the vehicle navi-
gated through the environment. Whenever a path to the goal

Algorithm Avg. Sub-optimality | Compute Changes | Repair/Restore | % Iters finished | # Expansions per Re-plan Avg. Path
Bound Achieved Avg. Time (s) Avg. Time (s) within Is avg std dev Cost Ratio
ATRA* 2.2720 0.0000 0.1615 95.95% 52029 29826 1.0 (baseline)
Anytime D* 2.2324 0.6214 0.3240 91.01% 50052 47874 0.98
ARA* 24211 0 (n/a) 0 (n/a) 93.70% 77377 16786 1.21
Anytime Truncated D* 2.1124 0.6271 0.3952 91.67% 48853 46904 0.95
Beam-Stack Search (n/a) 0 (n/a) 0 (n/a) 98.07% 65149 21479 1.32
ATRA* 1.8185 0.0000 0.1501 99.63% 47230 20194 1.0 (baseline)
Anytime D* 1.8176 0.4874 0.4067 96.40% 53976 39737 1.03
ARA* 2.1600 0 (n/a) 0 (n/a) 99.20% 82041 17681 1.17
Anytime Truncated D* 1.7802 0.4753 0.4247 97.73% 50974 38225 0.98
Beam-Stack Search (n/a) 0 (n/a) 0 (n/a) 99.54% 69203 22405 1.24

Table 1:

Simulation results on a set of 50 unknown maps (top) and 50 partially-known maps (bottom) for 4-DoF (x,y,z,yaw) path planning

for an unmanned aerial vehicle performing anytime planning with time limit of 1 second.

Algorithm Sub-optimality | Compute Changes | Repair/Restore | Re-planning Time (s) | # Expansions per Re-plan
Bound Avg. Time (s) Avg. Time (s) avg std dev avg std dev
ATRA* 5.0 0.0000 0.0327 0.2105 0.4643 11065 21499
Anytime D* 5.0 0.4063 0.0194 0.5973 3.7712 12799 44616
ARA* 5.0 0 (n/a) 0 (n/a) 0.2770 0.3163 22666 21602
Anytime Truncated D* 5.0 0.4177 0.0231 0.5031 1.6433 11533 36551
ATRA* 2.0 0.0000 0.0895 0.3583 0.6435 19994 30477
Anytime D* 2.0 0.6111 0.2109 0.3397 0.8574 21580 54726
ARA* 2.0 0 (n/a) 0 (n/a) 0.5004 0.4017 44352 26316
Anytime Truncated D* 2.0 0.6093 0.2242 0.3088 0.6881 18306 28487
ATRA* 1.25 0.0000 0.1593 1.6718 5.9480 70116 225425
Anytime D* 1.25 1.5722 1.5150 4.0458 11.565 213777 592017
ARA* 1.25 0 (n/a) 0 (n/a) 5.6696 16.038 384546 904201
Anytime Truncated D* 1.25 1.5983 1.5311 2.3184 8.1722 107634 472733
ATRA* 5.0 0.0000 0.0258 0.0322 0.1260 2338 8248
Anytime D* 5.0 0.1986 0.0207 0.1326 0.6359 5427 25114
ARA* 5.0 0 (n/a) 0 (n/a) 03118 0.2125 30705 19612
Anytime Truncated D* 5.0 0.2043 0.0313 0.1196 0.5363 5214 22756
ATRA* 2.0 0.0000 0.0698 0.2635 1.0427 14178 50706
Anytime D* 2.0 0.3367 0.1338 0.2531 1.2339 16042 85201
ARA* 2.0 0 (n/a) 0 (n/a) 0.7860 0.8860 70229 64742
Anytime Truncated D* 2.0 0.3274 0.1459 0.2364 1.1491 14954 76638
ATRA* 1.25 0.0000 0.4295 1.5719 10.448 66014 395437
Anytime D* 1.25 0.6864 0.9521 1.9882 8.1290 120754 467172
ARA* 1.25 0 (n/a) 0 (n/a) 4.1886 9.5945 271330 548481
Anytime Truncated D* 1.25 0.6593 0.9361 1.7318 6.9560 97811 422109

Table 2:

Simulation results on a set of 50 unknown maps (top) and 50 partially-known maps (bottom) for 4-DoF (x,y,z,yaw) path planning

for an unmanned aerial vehicle performing fixed-e planning until first solution for various sub-optimality bounds.

was computed, the robot advanced by one edge along the
path to a new start state; sensed any previously unknown ob-
stacles or gaps through obstacles in its vicinity and updated
its environment map; then re-planned for a new path to the
goal accounting for the changes in the environment. The
appearing and disappearing of obstacles in the map caused,
respectively, increasing and decreasing of edge costs in the
graph. This, in turn, required a set of modified states to be
computed and the heuristic to be re-computed. Moreover, it
was necessary re-compute the heuristic at the beginning of
every re-planning iteration, as the robot moved through the
environment and the start state changed. The heuristic was
computed using 3D BFS search from the (x,y,z) position of
the start state on an 26-connected 3D grid accounting for ob-
stacles. The heuristic was not perfect as did not account for
the orientation of the robot or its perimeter shape. Thus,
some scenarios exhibited pronounced heuristic local min-
ima. We ran the planner on 50 maps of size 25m X 25m x 2m
(500 x 500 x 40 cells) (example shown in Fig. 3). For

85

each of the environments, the planner was run on both an
unknown initial map, and a partially-known initial map. An
example of a partially-known initial map is shown in Fig.
3(b). The maps were generated semi-randomly to resemble
floor plans. The partially-known initial maps were gener-
ated by randomly adding and removing obstacles from the
true map. The start and goal states for each environment
were in diagonally opposite corners of the map. We used
a set of pre-computed transitions obeying minimal turning
radius constraints. The vehicle was also allowed to turn
in-place, but the cost of such transitions was penalized by
a factor of 5. The non-holonomic transitions and the high
penalty factor for turning in-place made the path planning
problem very challenging. For sensing obstacles, we sim-
ulated a forward-facing tilting laser range finder with 180°
horizontal and 90° vertical field of view, and a maximum
sensing range of 2.0m.

Algorithm 1 Tree-Restoring Weighted A*

Algorithm 2 Tree-Restoring Weighted A*

CLOSED : Set
OPEN : MinHeap
CREATED : Array
step : Integer
function INITIALIZESEARCH(X s X g)
CLOSED «+ 0
OPEN + {Xs}
9(Xs) <0
f(Xs) + g(Xs) +e- h(Xs)
step <— 1
C(Xs) 0
insert(CREATED, Xg)
E(Xs) — o0
end function
function RESUMESEARCH()
if needed to recompute heuristic then
recompute admissible heuristic
heuristicChanged()
end if
while OPEN # () do
X <+ extractMin(OPEN)
if f(Xg) > f(X) then
return reconstructPath()
end if
Expand(X)
end while
return no path exists
end function
function HEURISTICCHANGED
update f-values for created states and re-order OPEN
while not done do
Let X be the state with lowest f-value in OPEN
I+ {X € CLOSED|v(X)+ e h(X) > f(Xo) AN C(Xp) <
B(X)}
if I =10 then
done
else
s' + min(E(X')| X" eI)-1
restoreSearch(s’)
end if
end while
end function
function UPDATEPARENTS(X, s)
latestG < 0
latestParent < &
latestParentStep < 0
for all (X, g) in stored parent/g-value pairs of X do
if £(X,) < sthen > X, is a valid parent for step s
if E(Xp) > latestParentStep then
> Found more recent parent
latestParentStep < E(Xp)
latestParent < X,
latestG <+ gp
end if
else > X, is not a valid parent for step s
Remove (X, gp) from stored parent/g-value pairs
end if
end for
return (latest Parent, latestG)
end function

86

function RESTORESEARCH(S)
> restores the search state to just after the expansion at step s
OPEN «+ 0
CLOSED «+ 0
CREATED’ «+
if s < 0 then
initializeSearch(X g, X g)
return
end if
forall X ¢ CREATED do
if E(X) < s then
(Xp, g) < updateParents(X, s)
9(X) g
parent(X) + X,
insert(CLOSED, X)
insert(CREATED’, X)
elseif C'(X) < s then
(Xp, g) < updateParents(X, s)
9(X) g
v(X) + o
parent(X) + X,
FX) g+ e h(X)
insertOpen(X, f(X))
E(X) + oo
insert(CREATED’, X)
else
clearParents(X)
g(X) < oo
v(X) « oo
parent(X) < &
C(X) + oo
E(X) + oo
end if
end for
CREATED < CREATED’
step < s+ 1
end function
function EXPAND(X)
v(X) g(X)
forall X’ € successors of X do

> state created and expanded

> state created, not expanded

> state not created

if X’ was not visited before then
9(X') =00
end if
g+ g(X) + cost(X, X")
if g < g(X') then
9(X') ¢
storeParent(X’,(X, g’),step)
FX) g’ + e h(X)
if X’ ¢ CLOSED then
if X’ ¢ OPEN then
insertOPEN(X’, f(X"))
C(X') «+ step
insert(CREATED, X')
else
updateOPEN(X’, f(X"))
end if
end if
end if
end for
E(X) < step
insertt(CLOSED, X)
step < step + 1
end function

> record state put in OPEN

> record state expanded

We ran our planner in anytime mode with an initial sub-
optimality bound of ¢ = 5.0 with 1 second allowed for plan-
ning. In cases when no plan was found within the time limit,
the planner was allowed to continue planning for an addi-
tional 1 second for up to 10 times until a solution is found.
We also ran our planner in fixed-e¢ mode, planning until the
first solution satisfying the specified sub-optimality bound is
found.

Results

We compared the AT RA* algorithm to other incremen-
tal and anytime graph search algorithms—Anytime D*
(Koenig and Likhachev 2002), ARA* (Likhachev, Gor-
don, and Thrun 2003), Anytime Truncated D* (Aine
and Likhachev 2013), and Beam-Stack Search (Zhou and
Hansen 2005). The non-incremental algorithms ARA* and
Beam-Stack Search performed planning from scratch at each
iteration. In order to replicate the planning conditions across
all planners for fair performance comparison, the vehicle
followed a predefined path through the environment regard-
less of the paths produced by the planners. Thus, each of
the planners performed the same number of re-planning it-
erations with identical map information. All planners used
the same heuristic, recomputed for every re-planning itera-
tion. The time reported as “Compute Changes” is the time
each incremental algorithm required to translate changes in
the map grid into relevant changes to the graph (computing
modified edges for Anytime D* and Anytime Truncated D*,
and computing the target restore step for AT RA*). The time
reported as ‘“Repair/Restore” is the time each incremental
algorithm took to update its search state with the new edge
costs and heuristic values, so that a new search iteration can
be started.

The results we observed for anytime planning for each
of the planners for unknown and partially-known maps are
summarized in Table 1. As seen from the results, AT RA* is
able to detect graph changes and restore the search tree sig-
nificantly faster than Anytime D* and Anytime Truncated
D, while achieving nearly identical sub-optimality bounds
and path costs, on average, on both unknown and partially-
known maps. Beam Stack Search was able to meet the 1-
second deadline in the highest number of iterations at the
expense of about 20-30% higher solution cost and no theo-
retical sub-optimality bound guarantees.

The results we observed for planning until the first solu-
tion satisfying a fixed sub-optimality bound for each of the
planners for unknown and partially-known maps are sum-
marized in Table 2. Beam Stack Search was not included
in these experiments as it does not provide theoretical sub-
optimality bounds on intermediate solutions. The results il-
lustrate the benefit of using incremental graph search as the
desired sub-optimality bound decreases. Overall, ATRA*
performed significantly better than the rest of the planners
by both reducing the overhead of performing incremental
search and reducing the number of expansions (and thus re-
planning time) required for each iteration.

We observed that AT RA* is able to outperform plan-
ning from scratch most significantly on the difficult plan-
ning scenarios (ones exhibiting heuristic local minima, or

87

ones with low sub-optimality bound), as it is able to avoid
re-expanding a large number of states between iterations
in such cases. The most significant performance gain of
AT RA* over the two D*-based algorithms, apart from the
reduced overhead in computing changes in the graph, were
in scenarios when increasing edge costs cause a large num-
ber of expansions of under-consistent states (significantly
more expensive than regular over-consistent expansions) in
the D*-based algorithms. On the other hand, our approach
suffers most in situations where the search sfate needs to be
restored to a very early step , in which cases the overhead of
performing repeated tree restoring eliminates the benefits of
avoiding relatively few re-expansions.

Conclusion

In this work we have presented a novel algorithm for per-
forming anytime incremental weighted A* search. The ap-
proach is general and can handle a variety of changes to the
graph, such as increasing and decreasing edge costs, changes
in the heuristic values, and changing search goals. We have
shown that the algorithm preserves the theoretical guaran-
tees of weighted A* and ARA* algorithms, on which it is
based, such as completeness, termination, and bounds on
path cost sub-optimality. Some of the advantages of the
Anytime Tree-Restoring Weighted A* algorithm over D*-
Lite-based algorithms are the relative simplicity of our ap-
proach and the reduced overhead of performing incremental
search. The main drawback of our approach is the increased
memory overhead required. Our experimental results sug-
gest that our algorithm is able to outperform popular state-
of-the-art incremental and anytime search algorithms such
as Anytime D*, Anytime Truncated D*, and ARA*, mak-
ing it a viable alternative for performing incremental graph
search with bounded solution cost sub-optimality.

References

Aine, S., and Likhachev, M. 2013. Anytime truncated D*
: Anytime replanning with truncation. In Helmert, M., and
Rger, G., eds., SOCS. AAAI Press.

Gochev, K.; Safonova, A.; and Likhachev, M. 2013. Incre-
mental planning with adaptive dimensionality. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling (ICAPS).

Hernandez, C.; Sun, X.; Koenig, S.; and Meseguer, P. 2011.
Tree adaptive A*. In The 10th International Conference
on Autonomous Agents and Multiagent Systems - Volume 1,
AAMAS ’11, 123-130. Richland, SC: International Foun-
dation for Autonomous Agents and Multiagent Systems.
Koenig, S., and Likhachev, M. 2002. D#*-lite. In Eigh-
teenth national conference on Artificial intelligence, 476—
483. Menlo Park, CA, USA: American Association for Ar-
tificial Intelligence.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A*. Artif. Intell. 155(1-2):93-146.

Likhachev, M., and Ferguson, D. 2008. Planning long
dynamically-feasible maneuvers for autonomous vehicles.
In Proceedings of Robotics: Science and Systems (RSS).

Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime dynamic a*: An anytime, replan-
ning algorithm. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS).

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Advances in Neural Information Processing Systems (NIPS).
Cambridge, MA: MIT Press.

Stentz, A. 1995. The focussed D* algorithm for real-time
replanning. In Proceedings of the 14th international joint
conference on Artificial intelligence - Volume 2, IICAT’95,
1652—-1659. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized
adaptive A*. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems -
Volume 1, AAMAS °08, 469-476. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Sun, X.; Yeoh, W.; and Koenig, S. 2009. Dynamic fringe-
saving A*. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’09, 891-898. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Trovato, K. I., and Dorst, L. 2002. Differential A*. IEEE
Trans. on Knowl. and Data Eng. 14(6):1218-1229.

Zhou, R., and Hansen, E. A. 2005. Beam-stack search:
Integrating backtracking with beam search. In Proceedings

of the International Conference on Automated Planning and
Scheduling (ICAPS).

88

