Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

Extended Framework for Target Oriented Network Intelligence Collection

Liron Samama-Kachko

Rami Puzis

Roni Stern Ariel Felner

Information Systems Engineering Department, Ben Gurion University, Beer Sheva, Israel

Abstract

The Target Oriented Network Intelligence Collection
(TONIC) problem is the problem of finding profiles in a so-
cial network that contain publicly available information about
a given target profile via automated crawling. Such profiles
are called leads. Leads can be found by crawling the network
using the profiles’ friend lists (immediate neighborhood) in
order to decide which profile will be crawled next.
Assuming that leads tend to cluster together, prior work lim-
ited the search for new leads only to immediate neighbors of
the leads previously found. In this paper we relax this limita-
tion, and extend the scope of the search to a wider neighbor-
hood, including the possibility of crawling to non-leads, i.e.,
profiles that have no publicly available information about the
target. We propose a set of heuristics that guide this search.
Experimental results show that with the new setting more
leads can be found and leads are found faster. In addition,
we perform a cost benefit analysis of the search, weighing
the reward of finding leads with the costs of the search.

Introduction

Online Social Networks (OSNs) are an increasing part of our
lives. They are used to connect friends, share information
and interests, play games and more. The increasing use of
OSNs results in an abundance of personal data available on-
line and accessible to third parties. This data can be useful in
many ways. OSN researchers use it to study the global com-
munity and online relationships amongst people. Commer-
cial companies utilize it to recommend relevant commodi-
ties and entertainment to users to improve their browsing
experience. The data also helps law enforcement investiga-
tions and provides information about criminals. This paper
addresses the problem of searching for data about a given
OSN profile denoted as target.

Information contained in a profile as well as its list of
friends (LOF) can be acquired by querying an application
program interface (API) provided by the OSN or by scrap-
ing the OSN web pages associated with the profile.!

Some information about farget can be directly obtained
from its public OSN profile but this information may be in-
sufficient. Moreover, depending on privacy settings, the con-

"'User license agreement of many OSNs prohibit access of auto-
matic crawlers to the profile pages. For such cases explicit written
permission of the OSN service owner is required.
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tent of farget’s profile including its LOF may be inaccessible
to third parties. In such cases, much more information about
target can be obtained by crawling profiles of target’s friends
and other related profiles (Altshuler et al. 2013). However,
since the rarget’s profile is inaccessible, it’s LOF is unknown
thus turning the problem of finding the farget’s friends to a
challenge.

We denote by lead a profile that contains information
(e.g., photos, comments, events, etc.) related to target. Find-
ing leads in an OSN is not a trivial task. An OSN crawler
that searches for leads can be a very effective solution. How-
ever, most OSNs limit the number of queries that can be ex-
ecuted by a crawler and the large OSNs charge for excess
queries. Thus, crawlers should be designed with care and re-
duce overcharges by focusing the search on those part of the
OSNs which are likely to contain leads.

To this end, Stern et al. (2013) defined the Target Ori-
ented Network Intelligence Collection (TONIC) problem —
the problem of finding leads in an OSN while aiming to min-
imize the incurred costs. The output of a TONIC solver is a
list of leads. Information about the target can be extracted
from theses leads using standard techniques (Chang et al.
2006; Tang et al. 2010; Pawlas, Domanski, and Domanska
2012). The information extraction phase is beyond the scope
of this paper and is a large field of research of its own.

Stern et al. (2013) modeled TONIC as a search problem
in an unknown graph and proposed several heuristics for a
search-based solver. Others used TONIC as a benchmark
to evaluate the volatile multi-arm bandit (VMAB) model,
showing comparable results to Stern et al., even without
a sophisticated heuristic (Bnaya et al. 2013). All previous
work on TONIC relied on the natural clustering of OSNs,
assuming that leads are clustered together in tightly con-
nected group of OSN friends and that focusing solely on
leads would be sufficient for finding information about tar-
get. Thus, in order to avoid unnecessary waste of resources
on exploration of non-leads they restricted the crawling to
the immediate neighborhood of known leads.

However, most people have more than one tightly con-
nected group of OSN friends e.g., family, co-workers, and
college friends. These groups (sometimes called social cir-
cles) may not share any common member except the target.
Thus, shortsighted crawling decision, as done by previous
TONIC solvers, may result in exploring a single social cir-



cle leaving others under-explored. In this paper we remedy
this problem and propose an Extended TONIC Framework
(ETF) in which exploration of non-leads is allowed, while
still focusing on profiles related to the target. While a non-
lead does not provide information about the target during the
information extraction phase, it has potential to reveal more
social circles. Additional social circles will in turn enable
finding more leads and as a consequence gathering more in-
formation about the target.

Nevertheless, a crawler cannot be allowed to acquire non-
leads unrestrictedly. Traditional crawling methods such as
forest fire (Leskovec, Kleinberg, and Faloutsos 2007) or
snowball (Lee, Kim, and Jeong 2006) may obtain many
OSN profiles with few leads among them. To this end, we
propose several heuristics for guiding ETF intelligently. ETF
with the Extended Bayesian Promising (EBysP) heuristic
proposed in this paper finds leads faster and eventually finds
many more leads. For example, 50% and 60% of leads
are found 2 and 4 times faster than using the previous ap-
proaches.

Additionally, we evaluate the cost versus the benefit of
using the TONIC heuristics. We conclude that ETF with
EBysP performs best for short searches where the reward
for finding a lead is high.

Problem description

The basic entity in TONIC is the profile of a person in a
specific OSN (e.g., Facebook or Google+). Profiles are con-
nected to each other via a “friendship” relation. The list of
friends of a given profile p is denoted by LOF(p). Given a
target profile, a lead is a profile that contains information
about the target. Practically there could be many ways to
determine who is a lead. For example, a profile p can be re-
garded as a lead if (1) the target is contained in LOF (p), or
(2) p contains a post by the target, or (3) the target is tagged
in one of the photos shown in p. Other criteria for determin-
ing whether a profile is a lead, e.g., using sophisticated IE
techniques, are also possible.

In this work we assume that two high-level OSN queries
can be applied on a profile p:

1) IsLead(p): This is a binary query that returns whether p is
a lead or not. In our experiments we used a simple IsLead(p)
function which returns True if target € LOF(p) and
False otherwise. The assumption is that if p is a friend of
target then it probably contains other information on target.
Nevertheless, our algorithms are applicable across different
implementations and definitions of IsLead().

2) Acquire(p): This is a heavier query which extracts sub-
stantial information from p. In particular, it returns pointers
to new profiles found in LOF (p).

Given a set of profiles to start with, one can search the
OSN for leads by calling the IsLead() and Acquire() queries.
The input to TONIC is a target and a set of initial leads. The
initial leads are profiles were found manually, using previous
knowledge about target. These initial leads provide a start-
ing point for the automated phase of the search. The output
of TONIC is a collection of leads, found and acquired using
the IsLead() and Acquire() queries.
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Acquired Non Lead

Figure 1: An example of a search for leads. Edges denote a friend-
ship relation. Dotted edges denote friends of target.

We consider three types of profiles: leads, non-leads,
and potential leads. Leads and non-leads are profiles that
IsLead() identified as being or not being leads, respectively.
Potential leads are known profiles that were not (yet) eval-
vated by IsLead(). When a profile is acquired, its LOF is
extracted, possibly revealing new potential leads. Figure 1
shows an example of several steps of this process. There is
a single initial lead a connected to farget (step 1). Acquiring
a reveals that its LOF contains two potential leads b and ¢
(step 2). Performing IsLead(c) reveals that c is a non-lead
(step 3) and IsLead(b) reveals that b is a lead. Acquire(b) re-
turns its LOF, which contains a new potential lead d (step
4). This search process can continue, finding and acquiring
more and more leads.

Performing IsLead() and Acquire() queries incur costs
in terms of both computational resources and network
activity. In addition, most OSN services limit automatic
web scraping attempts as well as massive exploitation of
their API. We denote by cost(Acquire()) and cost(IsLead())
the costs of Acquire() and IsLead(), respectively. Usu-
ally, cost(IsLead())<cost(Acquire()) because IsLead() only
checks the internal page of the profile while Acquire() needs
to pull out other pages and URL addresses of the friends.
The TONIC problem is defined as follows:

Definition 1 (The TONIC Problem) Given a target pro-
file, a set of initial leads and a budget b, the TONIC problem
is to find as many leads as possible without exhausting the
budget b.

Other variants of TONIC can also be formulated. For exam-
ple, finding a fixed number of leads while minimizing the
total cost of the executed queries, or an “anytime” variant
where an end-user may stop the search unexpectedly.
Definition 1 slightly differs from previous definitions of
TONIC (Stern et al. 2013; Bnaya et al. 2013). They did
not distinguish between the IsLead() and Acquire() queries,
assuming a unified profile acquisition query. Applying that
unified query to a potential lead p first performs IsLead(p).



Algorithm 1: BFS for TONIC (BTF and ETE(n))

Input: rarget the target profile
Input: b, the max total queries allowed
Input: Initial Leads, the set of initial leads
Output: L, the leads found

1 L < InitialLeads, PL < 0, NL + (),
CKG+ LUNLUPL

2 foreach [ in InitialLeads do

3 LOF < Acquire(l)

4 Add LOF to OPEN andto PL

5 while OPEN # () AND b > 0 do
6 best < ChooseBest(OPEN)
7 bestislead <IsLead(best)
8
9

b + b — cost(isLead())
PL + PL\ {best}
10 if best € PL A bestislead then

11 Add best to L and CKG
12 LOF < Acquire(best)
13 b < b — cost(acquire())
14 Add LOF\ CKGto OPEN, PL,CKG
E15 Add LOFNNLto OPEN
E 16 else if best € PL N —bestislead then
/* best is a new non lead =/
E17 Add bestto NL and CKG
E18 Add best to OPEN
E19 else if best ¢ PL A dp(best) < n then
/* best is a known non-lead x/
E 20 LOF +Acquire(best)
E21 b < b — cost(acquire())
E22 Add LOF\ CKGto OPEN, PL,CKG
E 23 Add LOFNNLto OPEN
24 return L

If p is a lead it is acquired, otherwise it is discarded. While
the unified profile acquisition query is sufficient to describe
the basic TONIC framework (BTF) described next, the sep-
aration of IsLead() and Acquire() is required to describe the
extended TONIC framework (ETF) described later.

Previous work: Basic TONIC Framework

TONIC can be modeled as a search problem in unknown
graphs. In such problems the underlying graph is only par-
tially known and is further explored by expanding nodes us-
ing an external expansion query where the task is to mini-
mize the total cost of these queries (Stern, Kalech, and Fel-
ner 2012). In TONIC, the searched graph G = (V, E) is the
searched OSN where vertices V' represent profiles and edges
E represent the friendship relationships, i.e. (v1,v2) €
E iff v, € LOF(v1). The expansion action in TONIC
corresponds to applying the IsLead(p) query followed by
Acquire(p) if p is a lead. Otherwise, p is discarded.

Search problems in unknown graphs can be solved with a
best-first search (BFS) approach. The Basic TONIC Frame-
work (BTF) follows this modeling, and implements a BFS
for TONIC as described in Algorithm 1 (Stern et al. 2013).
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Lines with a preceding E (15-23) are to be ignored for now;
they are only relevant for the Extended TONIC Framework
(ETF) introduced later.

BTF maintains the following entities:

(1) OPEN, which consists of all the current potential leads.
(2) L, NL and PL, which are the sets of leads, non-leads
and potential leads found so far, respectively.

(3) The currently known subgraph of the OSN, denoted
CKG = (V¢ E*), which contains all known profiles V* =
LUNLU PL (see line 1), and edges of profiles that were
already expanded E‘ = {(u,v) € Elu € L}.

In every iteration, a single profile (best) is chosen from
OPEN (line 6). After best is chosen, IsLead(best) query is
performed and best is removed from PL and from OPEN. If
best is a lead then its LOF is obtained by the Acquire(best)
query and all newly discovered potential leads are added to
OPEN and to PL.

Every query decrements the budget b by the respective
cost of the query (lines 8 and 13). This process continues un-
til the budget b was exhausted by the queries or until OPEN
is empty, meaning that all reachable profiles have been ac-
quired. The efficiency of BTF depends on the method of
choosing best from OPEN.

Heuristics for BTF

The best profile chosen for expansion (line 6) is determined
by analyzing the CKG, which contains all the expanded
nodes and their neighbors. The following two heuristics for
choosing best were proved effective for BTF (Stern et al.
2013).

Known Degree (KD). The KD heuristic chooses to ex-
pand the potential lead with the highest degree. Since the
degree in G of a potential lead is only known after it is
acquired, KD uses instead the degree of that potential lead
in CKG. The intuition behind this is that highly connected
nodes in proximity of the farget have higher chances to con-
tain some information about the target.

Bayesian Promising (BysP). This heuristic estimates the
probability that a potential lead will turn out to be a lead.
This is done as follows. For every lead m € L we parti-
tion its LOF to leads, non-leads and potential leads, denoted
as L(m), NL(m) and PL(m), respectively. The promising
factor of a profile m, denoted by pf(m) is the fraction of

(%)2 pf(m)

is intended to estimate the probability that a potential lead in
m’s LOF is a lead. A given potential lead may be connected
to many leads, each having a different pf(-). The BysP(+)
aggregates the promising factors based on a Naive Bayes ap-
proach to aggregate probabilities as follows:

BysP(pl)=1— [[ (1-pf(m))

meL(pl)

lead friends out of known friends

The BysP heuristic chooses to expand the potential lead pl
with the highest BysP(pl). BysP was shown to outperform
all other heuristics in BTF (Stern et al. 2013).3.

2If L(m) + NL(m) = 0 then pf(m) is set to 0.5.
*Bnaya et al.(2013) proposed a very sophisticated algorithm
which showed very marginal improvement over BysP so we do not



Regardless of the heuristic used, non-leads are never ex-
panded in BTF. If IsLead(p) finds out that p is a non-lead, p
is discarded. This may preclude reaching some of the leads.
Consider the example in Figure 1. Node e is a lead, but it
will never be acquired by BTF because its only neighbor
c was found to be a non-lead and was discarded. The Ex-
tended TONIC Framework (ETF) described next overcomes
this limitation by considering to expand some of the non-
leads in order to find more leads.

Extended TONIC Framework

ETF is a generalization of BTF that allows acquisition of
non leads. By extending the range of reachable profiles, ETF
finds new leads that were unreachable by BTF. For example,
in Figure 1 the profile e belongs to a different social cir-
cle than a and would not be identified by BTF because ¢
is a non-lead. ETF assumes that more leads are reachable
through the extended social circles of target (e.g. friends of
friends) and thus allows expanding non-leads.

Similar to any unconstrained crawling, ETF can poten-
tially span to the entire OSN resulting in unreasonable waste
of resources. We, therefore, make some restrictions on EFT
and do not allow exploring the OSN farther than a few hops
away from the farget. This restriction has several advan-
tages. First, it provides a clear stopping criteria to the search
that may occur before reaching the budget b. Second, it may
focus the search towards areas of the OSN where leads are
more likely to be found, “protecting” to some extent the
search from misleading heuristics.

Since target is not part of the CKG, we apply the restric-
tion on ETF based on known leads as a reference point. Let
dr,(p) be the shortest distance in the CKG between a profile
p and the closest acquired lead. ETF(n) is a TONIC frame-
work, where a profile p may only be acquired if dy,(p) < n.
Otherwise, it is discarded. BTF is, therefore, ETF(0), a spe-
cial case where the acquisition of profiles is limited to leads
only. We use the term tier n to denote the set of profiles that
may be acquired by ETF(n).

The pseudocode of ETF(n) is also given in Algorithm 1
with several modifications (lines 15-23 preceded with E).
The key difference between BTF and ETF is how non-leads
are handled. In BTF, a potential lead found to be a non-lead
is discarded. In ETF(n), discovered non-leads are reinserted
into OPEN (lines 15, 18, and 23), to be later considered for
expansion if their dz,(-) < n (lines 19-23). Note that d(+)
can change as the search progresses. A non-lead p that was
discarded in line 19 since dr,(p) > n can be reinserted into
the OPEN (line 15) when a shorter path connecting it to a
lead is discovered.

Figure 1 shows an example of 6 iterations of ETF. Steps
1-4 are similar to BTF. In step 5, node ¢, which is a non-lead,
is expanded and e € LOF(¢) is added to OPEN (Line 18).
Then, in step 6, IsLead(e) is performed and e is found to be
a lead. Recall that e could not be found with BTF.

The average distance between profiles in online OSN
is between four and five (Ugander et al. 2011) making
ETF(4) ~ ETF(c0) since there would rarely be more than

consider it here
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tiers 0 1 2 3
1 initial lead | 61.34% | 82.78% | 82.78% | 83.10%
2 initial leads | 67.94% | 86.75% | 86.75% | 87.07%
3 initial leads | 70.51% | 88.28% | 88.28% | 88.60%
4 initial leads | 72.19% | 88.52% | 88.52% | 88.84%
5 initial leads | 73.81% | 88.82% | 88.82% | 89.11%

Table 1: % of reachable leads from different number initial leads

four nodes between any two profiles and in particular more
than four non-leads between any two leads. Table 1 shows
the percentage of leads at a given tier (out of the entire set of
leads) for a given number of initial leads. Even with 5 initial
leads, the marginal contribution of moving from tier zero to
one is not negligible (35% more leads are found for one ini-
tial lead and 20% for 5 initial leads). By contrast, even with
a single initial lead, the marginal contribution of any addi-
tional tier above 1 is negligible. We thus limit our experi-
mental results below to tier 1 (ETF(1)) only. The numbers
converge to 89% as there were around 11% of leads which
were unreachable by this set of initial leads.

As we report below, besides the advantages that many
more leads are now available by ETF(1), these leads are
found much faster than BTF.

ETF Heuristics

Since the amount of reachable profiles (and reachable non-
leads) with ETF is much larger than with BTF, ETF can
potentially perform worse than BTF. Thus, the benefit of
ETF depends on having an effective heuristic for choosing
the best node to expand. In this section we describe several
heuristics for ETF.

EFIFO This simple baseline heuristic chooses best for ex-
pansion in a first-in-first-out (FIFO) order. If a potential lead
was chosen as best and discovered as a non lead, it is re-
moved from the OPEN and reinserted as non lead at the end
of OPEN. Figure 2 shows the performance of EFIFO versus
that of BysP, the best BTF heuristic. The z-axis is the num-
ber of IsLead() calls. The y-axis is the number of leads found
by IsLead() up to that point.* As can be seen, EFIFO dis-
covers leads slower than BysP but eventually reaches more
leads. 2.

Hybrid Heuristic To enjoy the complementary benefits of
BysP, which finds leads fasts by effectively focusing on clus-
ters of leads, and the extended reachability of EFIFO, we
propose an adaptive hybrid heuristic that starts the search
with BysP and eventually switches to EFIFO. Ideally, we
would like to switch as soon as BysP exhausted the set
of leads it can reach. To determine the exact switching
point we define a bound U which determines the number
of IsLead(-) queries allowed since the last lead was found.
If U unsuccessful IsLead(-) queries were done by BysP, the
hybrid heuristic assumes that BysP has discovered the set of
leads it can reach and switches to EFIFO.

“The exact setting of this this experiment is provided below in
the experimental section.
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Figure 2: BysP(0), EFIFO(1) and the hybrid heuristic. The x-axis
is the is the number of IsLead() calls. The y-axis is the number of
leads found by IsLead() up to that point.
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Figure 3: Example for the KD and KDL heuristics.

We have tried many values for U and have found that the
best option is to increment U dynamically according to the
following assignment schedule. U is initially set to a some
constant. Upon acquisition of a lead (with BysP), U is reset
to be the number of IsLead(-) queries done so far. Empirical
evaluation (see Figure 2) shows that hybrid switches heuris-
tics when EFIFO starts to outperform BysP thus performing
as the best of the two throughout the search.

Known Degree Variants KD, described above for BTF,
expands the potential lead with the highest degree in the
CKG. Next we discuss how to adapt it to ETF. Let K D(p)
be the degree of p in the CKG, and let K D L(p) be the num-
ber of leads adjacent to p in the CKG. Since only leads are
acquired in BTF, there is at least one lead in every edge of
the CKG. Consequently, in BTF K D(p) = KDL(p) for
every potential lead. In ETF, KD(p) and K DL(p) can be
different, as a potential lead may be connected to leads and
to non-leads. This results in two possible ETF heuristics, KD
and KDL, each expanding the node (either potential lead or
non-lead) in OPEN with the highest KX D(-) and K DL(-),
respectively.

Figure 3 depicts a CKG that demonstrates the difference
between KD and KDL. The legend for this figure is the same
legend shown in Figure 1. There are three profiles that can
be expanded: NL1, P1 and P2. KD will expand P1 since
KD(P1) =4, KD(NL1) = 1, and KD(P2) = 3, while
KDL will expand P2 since K DL(P2) = 3, KDL(P1) = 2,
and KDL(NL1) = 1.
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Figure 4: Example for the EBysP heuristic

The intuition behind KD and KDL differ. KD is based on
the assumption that leads tend to cluster together, and thus a
profile with many adjacent leads suggests that this profile is
itself lead or is adjacent to many other leads. KDL is based
on the assumption that a profile with a high degree in the
CKG has a high degree in the underlying graph (the OSN),
and thus expanding it would result in finding many other
profiles, some of which would be leads. Our experiments
showed that KD performs significantly better than KDL in
ETF(1) (as shown in Figure 5 explained in the experimental
section).

EBysP BysP was the best performing heuristic for
BTF (Stern et al. 2013). BysP chooses to expand the po-
tential lead pl € OPEN having the highest BysP(pl) =
1=TLnern (1 —pf(m)). A small modification is required
in order to apply it to ETF as follows:

I

meL(p)UNL(p)

The key difference between BysP(p) and EBysP(p) is
that BysP(p) only aggregates the pf(-) values of the leads
that are adjacent to p (L(p)) while EBysP(p) aggregates
over all the acquired neighbors of p (L(p) UN L(p)). We use
EBysP to denote the ETF heuristic that expand the profile p
with the highest EBysP(-) in OPEN, regardless if p is a
potential lead or a non lead.

To illustrate EBysP, consider Figure 4. OPEN contains
P1, NL1, NL2, and NL3. These profiles are connected to
two acquired profiles, ANL1 and L1, having pf(-) values of
% and %, respectively. As a result, P1, NL1, NL2, and NL

have EBysP values of 2, 2, I, and %, respectively, and
therefore EBysP expands NL1.

Friends Measure (FM) The TONIC problem bears some
resemblance to the link prediction problem (Liben-Nowell
and Kleinberg 2007), where the goal is to predict whether
two profiles are connected. Link prediction algorithms re-
turn the likelihood of a link to exist between two profiles.
This suggests the possibility of employing a link prediction
algorithms for TONIC, by ranking nodes in OPEN accord-
ing to the likelihood of a link to exist between a node and
target.

In particular, we propose an ETF heuristic that is based
on the Friends Measure, which estimates the likelihood of a
connection between two profiles by counting the number of
common friends and the number of links between the friends
of the two profiles (Fire et al. 2013). Formally, the friends

EBysP(p) =1 — (1 —=pf(m))
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measure (fm) between profiles ¢ and p is:

fm(t,p) = Z Z (5(1‘,3})

zel  yl(p,y)EE

where L is the set of leads and §(z, y) is defined as:

1 ifx=yor(z,y) € Eor(y,z) € E
0 Otherwise

6(z,y) = { (1)

The ETF heuristic that is based on the Friend Measure
is called FM and chooses as best the candidate p with the
highest fm(target, p). Experimentally, we show later (see
Figure 5) that fm performs reasonably well as a TONIC
heuristic.

Experimental Evaluation

We evaluated the performance of ETF with the proposed
heuristics on Google+, one of the largest social networks,
having more than 540M registered users and 300M users
that are active monthly (according to Wikipedia). The ex-
act definition of a /ead in our experiments is a profile that is
a friend of target. Thus, IsLead(p) returns T'rue if target €
LOF(P) and False otherwise. In every experiment a single
Google+ profile was set as target and three random neigh-
bors of farget as the initial leads. We used the benchmark
set of targets and initial leads used by Stern et al. (2013).
The target degrees range from 30 to 86 while the number of
vertices and edges considered in ETF(1) range from 146 to
4088 and from 104 to 4776 respectively. The full data set
was made available by Fire et al. (2013) and contains 211K
Google+ profiles with 1.5M links between them.

Performance of ETF heuristics

Figure 5 compares the number of leads found (the y-axis)
by each of the proposed ETF heuristics as a function of
the total number of nodes expanded. For reference, we also
present the results for BysP (which is a BTF heuristic). At
the very beginning of the search, all heuristics perform sim-
ilarly because the CKG is too small to be informative and
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Figure 6: The net gain by BysP and EBysP when

cost(Acquire())=1 and Rjeqq = 40.

the search is almost blind. As the search progresses and
the CKG grows,the intelligent heuristics and in particular
the EBysP heuristic, uses the topological information ob-
tained to better guide the search, thus performing better find-
ing more leads faster. In particular, EBysP substantially out-
performs the previous state-of-the-art BysP throughout the
search. For example, after 45 node expansions, BysP found
slightly more than 40% of the leads, while EBysP found
approximately 60%. This result demonstrates that intelli-
gent acquisition of non-leads not only enables reaching more
leads eventually (as shown in Table 1), but also significantly
speeds up the acquisition of leads during the early stages of
the search. At the end of the search all heuristics converge at
the point in which no more leads can be found.

All studied heuristics are computationally efficient as they
analyze the neighborhood of the evaluated profile p only up
to two hops away. KD is the simplest heuristic that only con-
siders the connectivity of p. Surprisingly, its performance
is comparable to the performance of the more sophisticated
heuristics EBysP and FM and much better than the perfor-
mance of KDL which is more focused toward leads.

Cost-Benefit analysis of TONIC heuristics

The task in TONIC according to Definition 1 is to maxi-
mize the number of leads found within a given budget that
is decremented when applying the OSN queries of IsLead()
and Acquire(). Consider an application of TONIC where the
monetary reward of finding a lead (Rpeqq) (and passing it
to the information extraction phase for further analysis) is
known. In some cases the cost of Acquire() (cost(Acquire())
can also be estimated in monetary terms allowing measur-
ing the net gain of the search process throughout the search.
We assume that cost(IsLead()) is negligible compared to
cost(Acquire()), as Acquire() is often a heavier operation. We
define the net gain (N G) of a search as the total reward from
finding leads minus the total cost of all Acquire() queries.

During late stages of the search the frequency of leads
decreases as can be seen from the slopes of all heuristics in
Figure 5. Therefore, the gain may drop to a point where the
search process is not worthwhile.

Figure 6 demonstrates this, showing the net gain (y-axis)



Reward BysP EBysP
100 2529.45 | 3100.89
10 229.95 250.55

5 102.20 104.96

3 51.10 49.17

2 25.55 22.50

1 0 0

Table 2: Maximal gain for different R scquire values

as the search progresses (x-axis) for BysP and EBysP. These
heuristics were chosen because BysP is the best heuris-
tic for BTF(=ETF(0)) and EBysP is the best heuristic for
ETF(1). First, observe that the gain of BysP does not de-
crease throughout the search. This is because BTF allow to
acquire only leads, and thus whenever a cost is spent on Ac-
quire() it is immediately followed by a reward (of passing
this profile to the information extraction phase). Thus, the
gain in BTF cannot decrease unless either cost(Acquire())>
Rjeqq or cost(IsLead()) is not negligible.

ETF(1) allows acquiring non-leads. When a non lead is
acquired, its acquisition is not followed by immediate re-
ward. However, the acquisition of non leads can be viewed
as a long-term investment, leading to higher rewards and
gain in the future. Indeed, as shown in Figure 6 the acqui-
sition of non leads by EBysP results in much more frequent
discovery of leads at the first stages of the search and over-
all higher gain in comparison with BysP. However, when
leads are exhausted, EBysP looses the previously accumu-
lated reward on useless exploration of the network and may
eventually reach negative gain. In order to gain the most
from EBysP one needs to determine when the search process
should be halted. While we leave development of sophisti-
cated stop conditions for future work, we illustrate next the
potential gain of having such a mechanism.

Table 2 shows the maximal gain achievable for BysP
and EBysP, for different values of Rj.,q and assuming that
cost(Acquire())=1. According to Table 2 BysP reaches a
maximal gain higher than EBysP when Rj..q < 3, and this
reverses when Rj.q,q > 5. This is reasonable because larger
Rjeqq makes the long term investment of EBysP in acquiring
of non leads worthwhile.

To gain a deeper understanding of the gains of BysP and
EBysP throughout the search, Figure 7 shows the differ-
ence between the gains of EBysP and BysP (vertical-axis
1) as a function of Rj..q (horizontal-axis ') and the num-
ber of iterations (depth-axis N\ ). For example, the solid line
at Rj.qq = 40 represents the difference between gains of
EBysP and BysP as depicted in Figure 6. The dashed line
represents the relation between R;.,q and iterations where
the gains of both heuristics are equal. EBysP benefits from
higher rewards and suffers for longer executions. Thus, the
choice of between BysP and EBysP could be determined up-
front if one knows the number of iterations the search will
be run, Rjeqq, and cost(Acquire()).
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Figure 7: The difference in net gain between BysP(0) and BysP(1)

Conclusions and Future Work

We presented ETF, a new framework for solving TONIC
which generalizes BTF by allowing non leads to be acquired.
We demonstrated that this facilitates finding more leads.
Then, we presented several heuristics for guiding ETF to-
wards finding leads faster. Empirical evaluation on Google+
showed that (1) using ETF results in substantially more leads
than BTF, and (2) ETF with the EBysP heuristic finds leads
faster than BTF with BysP.

There are many exciting directions for future work. One
of them is to create heuristics that consider a profile’s textual
data (hobbies, demographic information, etc.) and not just
the topology of the CKG as the current heuristics do.

Another direction is to consider leads with different re-
wards, where finding a lead that provides more informa-
tion about target is preferred. This raises a complex task
of how to quantify information. Furthermore, information
found from one lead can affect the value of information from
other leads, as some information may overlap. In addition,
we assumed that IsLead() and Acquire() are always appli-
cable. Future work can consider network errors that may
cause queries to fail with some probability, introducing un-
certainty.

An important future work is to evaluate the proposed
heuristics on several OSNs, such as Facebook and Twitter,
and studying relations between various OSN properties and
effectiveness of ETF heuristics. Even inside a specific OSN,
it may be the case that specific heuristics work better in dif-
ferent parts of the network. A preliminary study of this was
done by Stern et al. (2013) for BTF.

Ethical Aspects in TONIC

As a final note, we would like to raise the ethical issues con-
cerning the investigation of efficient TONIC solvers. It is
general knowledge that people and organization use OSNs
and other publicly available sources to gather information
about specific entities (e.g., people, organizations, and other
social groups). Social networks are also useful for monitor-
ing the affiliates of known criminals. This often occurs man-



ually, for example, before hiring a person. Although this in-
formation is publicly available, some ethical concerns may
be raised.

We emphasize that the use of an efficient TONIC solver
can be done for many good purposes. It can serve as an help-
ful tool for law enforcement agencies, For example, imagine
a search for information about a paedophile in an OSN. In
fact, the social network paradigm has been successfully used
to investigate organised crime in the Netherlands (Klerks
2001). Alternatively, an efficient TONIC solver can be used
as a tool for preserving privacy, by allowing a person to
find how much publicly available information exists about
him/her in a given OSN and change his/her privacy setting
accordingly.
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