Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

Suboptimal Variants of the Conflict-Based Search Algorithm
for the Multi-Agent Pathfinding Problem

Max Barer Guni Sharon
ISE Department ISE Department
Ben-Gurion University Ben-Gurion University
Israel Israel

max.barer@gmail.com gunisharon @gmail.com

Abstract

The task in the multi-agent path finding problem (MAPF) is
to find paths for multiple agents, each with a different start
and goal position, such that agents do not collide. A success-
ful optimal MAPF solver is the conflict-based search (CBS)
algorithm. CBS is a two level algorithm where special con-
ditions ensure it returns the optimal solution. Solving MAPF
optimally is proven to be NP-hard, hence CBS and all other
optimal solvers do not scale up. We propose several ways to
relax the optimality conditions of CBS trading solution qual-
ity for runtime as well as bounded-suboptimal variants, where
the returned solution is guaranteed to be within a constant fac-
tor from optimal solution cost. Experimental results show the
benefits of our new approach; a massive reduction in running
time is presented while sacrificing a minor loss in solution
quality. Our new algorithms outperform other existing algo-
rithms in most of the cases.

Introduction

A multi-agent path finding (MAPF) problem is defined by a
graph, G = (V, F), and a set of k agents labeled a; . .. ax,
where each agent a; has a start position s; € V and goal
position g; € V. At each time step an agent can either move
to an adjacent location or wait in its current location, both
actions cost 1.0. The task is to plan a sequence of move/wait
actions for each agent a;, moving it from s; to g; while
avoiding conflicts with other agents (i.e., without occupy-
ing the same location at the same time) while aiming to
minimize a cumulative cost function. MAPF has practical
applications in video games, traffic control (Silver 2005;
Dresner and Stone 2008), robotics (Bennewitz, Burgard, and
Thrun 2002) and aviation (Pallottino et al. 2007).

Solving MAPF optimally (i.e., finding a conflict-free so-
lution of minimal cost) is NP-Complete (Yu and LaValle
2013b). Therefore, optimal MAPF solvers suffer from a
scalability problem. Suboptimal MAPF solvers run rela-
tively fast but have no guarantee on the quality of the re-
turned solution and some of them are not complete. Bounded
suboptimal algorithms guarantee a solution which is no
larger than a given constant factor over the optimal solution
cost (Wagner and Choset 2011).

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

19

Roni Stern Ariel Felner

ISE Department ISE Department
Ben-Gurion University Ben-Gurion University
Israel Israel

roni.stern @ gmail.com felner @bgu.ac.il

The Conflict-Based Search (CBS) algorithm (Sharon et al.
2012a) is a two-level algorithm for solving MAPF problems
optimally. The high level searches for a set of constraints to
impose on the individual agents to ensure finding an opti-
mal solution. The low level searches for optimal solutions to
single agent problems under the constraints imposed by the
high level.

In this paper we present several CBS-based unbounded-
and bounded-suboptimal MAPF solvers which relax the
high- and/or the low-level searches, allowing them to re-
turn suboptimal solution. First we introduce Greedy-CBS
(GCBS), a CBS-based MAPF solver designed for finding a
(possibly suboptimal) solution as fast as possible. Then, we
propose Bounded CBS (BCBS) that uses a focal-list mech-
anism in both the low- and high-level of CBS. This ensures
that the returned solution is within a given suboptimality
bound (which is the product of the bounds of the two lev-
els). Finally, we present Enhanced CBS (ECBS), a bounded
suboptimal MAPF solver in which the high- and low-levels
share a joint suboptimality bound.

Experimental results show substantial speedup over CBS
for all variants. For example, in one of the domains (DAO)
CBS was able to solve problems of up to 50 agents, while
GBCS solved all problems with 250 agents, and ECBS
solved more than half of the problems with 200 agents while
guaranteeing a solution that is at most 1% worse than the op-
timal solution. Comparing against other suboptimal MAPF
solvers, we observe that ECBS almost always outperforms
alternative bounded suboptimal solvers, while GCBS per-
formed best in many domains but not in all of them.

Terminology and Background

A sequence of single agent wait/move actions leading an
agent from s; to g; is referred to as a path, and we use the
term solution to refer to a set of k paths, one for each agent.
A conflict between two paths is a tuple (a;,a;,v,t) where
agent a; and agent a; are planned to occupy vertex v at time
point t.! We define the cost of a path as the number of ac-
tions in it, and the cost of a solution as the sum of the costs of
its constituent paths. A solution is valid if it is conflict-free.

"Based on the setting, a conflict may also occur over an edge,
when two agents traverse the same edge in opposite directions.

MAPF algorithms for finding valid solutions can be clas-
sified into three classes: optimal solvers, suboptimal solvers
and bounded suboptimal solvers. We cover each of them
next. A more detailed survey of these and other MAPF algo-
rithms can be found in (Sharon et al. 2013).

Optimal solvers

A number of MAPF optimal solvers that are based on the
A* algorithm have been introduced. The state-space in-
cludes all permutations of placing k£ agents in V' locations
(= (}) = O(V*)). Standley (Standley 2010) presented
the independence detection (ID) framework. ID partitions
the problem into smaller independent subproblems, if possi-
ble, and solves each problem separately. Standley also intro-
duced operator decomposition (OD) which considers mov-
ing a single agent at a time. OD reduces the branching fac-
tor at the cost of increasing the depth of the solution in the
search tree. Another relevant A* variant is Enhanced Partial
Expansion A* (EPEA*) (Felner et al. 2012). EPEA* uses a
priori domain knowledge to sort all successors of a given
state according to their f values. When a state is expanded
only successors that are surely needed by A* (those with
f < C*) are generated.

M* (Wagner and Choset 2011) is an A*-based algorithm
that dynamically changes the branching factor based on con-
flicts. In general, nodes are expanded with only one child
where each agent makes its optimal move towards the goal.
When conflicts occur between ¢ agents, the branching fac-
tor is increased to capture all internal possibilities. An en-
hanced version, called Recursive M* (RM*) divides the ¢
conflicting agents into subgroups of agents each with inde-
pendent conflicts. Then, RM* is called recursively on each
of these groups. A variant called ODRM* (Ferner, Wagner,
and Choset 2013) combines Standley’s OD on top of RM*.

Recently, two optimal MAPF search algorithms were
proposed that are not based on A*. (1) The increasing
cost tree search (ICTS) algorithm solves MAPF optimally
by converting it into a set of fast-to-solve decision prob-
lems (Sharon et al. 2013). (2) The conflict based search
(CBS) (Sharon et al. 2012a) and its extension meta-agent
CBS (MA-CBS)(Sharon et al. 2012b). CBS is the main fo-
cus of this paper and is detailed below.

Another approach for solving MAPF that was taken re-
cently is to reduce it to other problems that are well studied
in computer science. Prominent examples include reducing
the MAPF problem to Boolean Satisfiability (SAT) (Surynek
2012), Integer Linear Programming (ILP) (Yu and LaValle
2013a) and Answer Set Programming (ASP) (Erdem et al.
2013). These methods are usually designed for the makespan
cost function. They are less efficient or even not applicable
for the sum of cost function. In addition, these algorithms
are usually highly efficient only on small graphs. On large
graphs the translation process from a MAPF instance to the
required problem has a large overhead. Adapting these algo-
rithms to be bounded/suboptimal for the sum of cost func-
tion is not trivial.

20

Unbounded Suboptimal Solvers

Many existing MAPF solvers aim at finding a solution fast
while allowing the returned solution to be suboptimal. Most
suboptimal MAPF solvers are unbounded, i.e., they do not
provide any guarantee on the quality of the returned path.

Early work presented a theoretical polynomial-time al-
gorithm for finding valid solutions to MAPF (Kornhauser,
Miller, and Spirakis 1984). This algorithm is complete for
any MAPF problem. However, the solution it returns can be
far from optimal and the returned plan moves agents subse-
quently, i.e. one at each time step.

Many other suboptimal solvers, that work well in practice,
were presented in research and industry.

An important group of suboptimal MAPF algorithms are
based on search. A prominent example is the Cooperative A*
(CA¥*) algorithm and its variants HCA* and WHCA* (Sil-
ver 2005). CA* and its variants plan a path for each indi-
vidual agent sequentially. Every planned path is written to
a global reservation table and subsequent agents are not al-
lowed to plan a path that conflicts with the paths in the reser-
vation table. Importantly, CA* and its variants are not com-
plete. Standley and Korf (Standley and Korf 2011) proposed
a complete suboptimal MAPF solver called MSGI that is a
relaxed version of Standley’s A*-based algorithm mentioned
above.

Another group of suboptimal algorithms are rule based;
they include specific movement rules for different scenar-
i0s. Rule-based solvers are usually complete under some re-
strictions and they aim to find a valid solution fast, but the
quality of the returned solution can be far from optimal. The
push and swap (PS) algorithm (Luna and Bekris 2011) uses
two “macro” operators which “push” an agent to an empty
location, and “swap” the locations of two agents. PS is com-
plete for graphs with at least two empty locations. Parallel
push and swap (PPS) (Sajid, Luna, and Bekris 2012) is an
advanced variant of PS that plans parallel routes for the dif-
ferent agents instead of moving only one agent at a time. 2
Hybrids of search-based and rule-based algorithms also ex-
ist (see (Sharon et al. 2013) for details).

Bounded Suboptimal Solvers

A bounded suboptimal search algorithm accepts a parame-
ter w (sometimes known as 1 + €) and returns a solution
that is guaranteed to be less than or equal to w - C*, where
C™ is the cost of the optimal solution. Bounded suboptimal
search algorithms provide a middle ground between optimal
algorithms and unbounded suboptimal algorithms. Setting
different values of w allows the user to control the tradeoff
between runtime and solution quality.

Several general-purpose bounded suboptimal search al-
gorithms exist such as WA* (Pohl 1970) and others (Pearl
and Kim 1982; Ghallab and Allard 1983; Thayer and Ruml
2008; 2011; Hatem, Stern, and Ruml 2013). These algo-
rithms usually extend optimal search algorithms (e.g., A*

2PS and PPS were found to have a shortcoming which caused
it to be incomplete in some cases. A variant of PS called push and
rotate PR (de Wilde, ter Mors, and Witteveen 2013) was shown to
solve this problem and is thus complete.

or IDA*) by considering an inflated version of an admis-
sible heuristic. Thus, one can apply these algorithms to
any A*-based MAPF solver, such as EPEA* (Felner et al.
2012), A* with OD (Standley 2010), and M* (Wagner and
Choset 2011). We implemented and experimented with such
bounded suboptimal MAPF solvers below.

It is not clear, however, how to modify MAPF solvers that
are not based on A* to (bounded) suboptimal versions. In
particular, the method of inflating the heuristic is not ap-
plicable in CBS as it does not use heuristic. In this paper
we show how to extend CBS to unbounded- and bounded
suboptimal MAPF algorithms. As a preliminary, we first de-
scribe the basic CBS algorithm and then move to our new
unbounded- and bounded versions of CBS.

The Conflict Based Search (CBS) Algorithm

In CBS, agents are associated with constraints. A constraint
for agent a; is a tuple (a;, v, t) where agent a; is prohibited
from occupying vertex v at time step t.> A consistent path
for agent a; is a path that satisfies all of a;’s constraints, and
a consistent solution is a solution composed of only consis-
tent paths. Note that a consistent solution can be invalid if
despite the fact that the paths are consistent with the individ-
ual agent constraints, they still have inter-agent conflicts.

CBS works in two levels. At the high-level, constraints are
generated for the different agents. At the low-level, paths for
individual agents are found that are consistent with their re-
spective constraints. If these paths conflict, new constraints
are added to resolve one of the conflicts and the low-level is
invoked again.

The high-level: At the high-level, CBS searches the con-
straint tree (CT). The CT is a binary tree. Each node N in
the CT contains:

(1) A set of constraints (N.constraints), imposed on each
agent.

(2) A solution (N.solution). A single consistent solu-
tion, i.e., one path for each agent that is consistent with
N.constraints.

(3) The total cost (IN.cost). The cost of the current solution.

The root of the CT contains an empty set of constraints. A
successor of a node in the CT inherits the constraints of the
parent and adds a single new constraint for a single agent.
N.solution is found by the low-level search described be-
low. A CT node N is a goal node when N.solution is valid,
i.e., the set of paths for all agents have no conflicts. The high-
level of CBS performs a best-first search on the CT where
nodes are ordered by their costs.

Processing a node in the CT: Given a CT node NN, the
low-level search is invoked for individual agents to return
an optimal path that is consistent with their individual con-
straints in N. Any optimal single-agent path-finding algo-
rithm can be modified for the low level of CBS. We used
A* with the true shortest distance heuristic (ignoring con-
straints). Once a consistent path has been found (by the low
level) for each agent, these paths are validated with respect
to the other agents by simulating the movement of the agents

3Depending on the problem’s setting constraints on edges are
also possible.

21

i

Con: {}

Sol: (1-S1,A1,C,G1
{2— SZ,Bl,C,GZ}

Cost: 6

Con: {(1,C.2) Con: (2,C2))

Sol: {1— $1,A1,A1,C,G1 } Sol: {1- S$1,A1,C,G1 }
2-52,B1,C,G2 2- 52,B1, B1,C,G2
Cost: 7 Cost: 7
GOAL GOAL

Figure 1: (i) MAPF example (ii) CT

along their planned paths (IN.solution). If all agents reach
their goal without any conflict, this CT node [V is declared
as the goal node, and N.solution is returned. If, however,
while performing the validation a conflict, (a;,a;,v,t), is
found for two (or more) agents a; and a;, the validation halts
and the node is declared as non-goal.

Resolving a conflict: Given a non-goal CT node,
N, whose solution, N.solution, includes a conflict,
(ai,a;,v,t), we know that in any valid solution at most one
of the conflicting agents, a; or aj, may occupy vertex v at
time ¢. Therefore, at least one of the constraints, (a;, v, t) or
(aj,v,t), must hold. consequently, CBS generates two new
CT nodes as children of N, each adding one of these con-
straints to the previously set of constraints, N.constraints.
Note that for each CT node (except for the root) the low-
level search is only activated for one single agent — the agent
for which the new constraint was added.

CBS Example

Pseudo-code for CBS is shown in Algorithm 1. We cover it
using the example in Figure 1(i), where the mice need to get
to their respective pieces of cheese. The corresponding CT
is shown in Figure 1(ii). The root contains an empty set of
constraints. At the beginning, the low-level returns an op-
timal solution for each agent, (S, A;,C,G4) for a; and
(S2, B1,C, G5) for ay (line 2). Thus, the total cost of this
node is 6. All this information is kept inside this node. The
root is then inserted into the sorted OPEN list and will be
expanded next.

When validating the two-agents solution (line 7), a con-
flict is found when both agents arrive to vertex C at time
step 2. This creates the conflict (a1, as, C,2). As a result,
the root is declared as non-goal and two children are gener-
ated in order to resolve the conflict (Line 11). The left child,
adds the constraint (a;, C,2) while the right child adds the
constraint (ay, C,2). The low-level search is now invoked
(Line 15) for the left child to find an optimal path that also
satisfies the new constraint. For this, a; must wait one time
step either at Sy (or at A;) and the path (S1, 41, A1, C, G1)
is returned for a;. The path for as, (Sa, B1, C, G3) remains
unchanged in the left child. The cost of the left child is now
7, where the cost is computed as the sum of the individ-
ual single-agent cost (SIC). In a similar way, the right child
is generated, also with cost 7. Both children are added to

Algorithm 1: high-level of CBS

Input: MAPF instance

1 R.constraints =

2 R.solution = find individual paths using the low-level()
3 R.cost = SIC(R.solution)
4 insert R to OPEN

s while OPEN not empty do
6

7

8

9

P < best node from OPEN // lowest solution cost
Validate the paths in P until a conflict occurs.
if P has no conflict then

| return Psolution // P is goal

10 C < first conflict (a;, a;,v,t) in P

1 foreach agent a; in C do

12 A < new node

13 A.constraints < P.constraints + (a;, s, t)

14 A.solution <— P.solution.

15 Update A.solution by invoking low-level(a;)
16 A.cost = SIC(A.solution)

17 Insert A to OPEN

OPEN (Line 17). In the final step the left child is chosen for
expansion, and the underlying paths are validated. Since no
conflicts exist, the left child is declared as a goal node (Line
9) and its solution is returned. CBS was proven to be both
optimal and complete(See (Sharon et al. 2012a)).

Greedy-CBS (GCBS): Suboptimal CBS

To guarantee optimality, both the high- and the low-level of
CBS run an optimal best-first search: the low level searches
for an optimal single-agent path that is consistent with the
given agent’s constraints, and the high level searches for
the lowest cost CT goal node. As any best-first search, this
causes extra work due to abandoning nodes which might
have solutions very close below them, only because their
cost is high. Greedy CBS (GCBS) uses the same frame-
work of CBS but allows a more flexible search in both the
high- and/or the low-level, preferring to expand nodes that
are more likely to produce a valid (yet possibly suboptimal)
solution fast.

Relaxing the High-Level: The main idea in GCBS is to
prioritize CT nodes that seem closer to a goal node (in terms
of depth in the CT, AKA distance-to-go (Thayer and Ruml
2011)). Every non-goal CT node contains an invalid solu-
tion that contains internal conflicts. We developed a number
of conflict heuristics (designated as h.) that enables to prefer
”less conflicting” CT nodes which are more likely to lead to
a goal node. The high-level in GCBS favors nodes with min-
imal conflict heuristic, i.e., it chooses the node with minimal
h¢. We experimented with the following heuristics for A,

o h1: Number of conflicts: this heuristic counts the number
of conflicts that are encountered in a specific CT node.

e ho: Number of conflicting agents: this heuristic counts
the number of agents (out of k) that have at least one con-
flict.

e h3: Number of pairs: this heuristic counts the number of
pairs of agents (out of (’2“)) that have at least one conflict

22

between them.

h4: Vertex cover: we define a graph where the agents are
the nodes and edges exist between agents that have at least
one conflict between them. In fact, i identifies the nodes
and hg identifies the edges of this graph. A4 computes a
vertex-cover of this graph.

hs Alternating heuristic: (Roger and Helmert 2010;
Thayer, Dionne, and Ruml 2011) showed that when more
than one heuristic exists, better performance can be at-
tained by alternating through the set of different heuristics
in a round robin fashion. This approach is known as Al-
ternating Search. It requires implementing several heuris-
tic functions and maintaining a unique open list for each,
making it more complex to encode.

We experimented with these heuristics and found that the
alternating heuristic (hs) is the best in performance. Ver-
tex cover heuristic (h4) produces better quality solutions but
requires a large computational overhead. Number of con-
flicting agents heuristic (h2) runs fast on some problem in-
stances but is very slow on other instances. Number of con-
flicts heuristic (hq) runs slightly faster than number of pairs
heuristic (h3) on average but h3 is more robust across differ-
ent instances. Since the difference in performance between
the different heuristics was minor we choose to only report
hs, because it gives the best balance between simplicity and
performance. Therefore, whenever we refer to h. we relate
to hs. Note that all the heuristics above are not admissible
and not even bounded admissible. Consequently, perform-
ing a greedy search according to them will not result in an
optimal or bounded solution.

Relaxing the Low Level: Another way to relax the opti-
mality conditions of CBS is to use a sub-optimal low-level
solver. One might be tempted to use WA* or greedy-BFS
(which favors nodes with low h-values) for the low level.
This will certainly return a solution faster than any optimal
low-level solver. However, this is not enough. Such algo-
rithms return longer paths with many new future conflicts.
This may significantly increase the number of future high-
level nodes and proved ineffective in our experiments.

An effective alternative is to again use conflict heuristics
for the low-level. In optimal CBS, the low-level for agent
a; returns the shortest individual path that is consistent with
all the known constraints of a;. We suggest modifying the
low-level search for agent a; to a best-first search that prior-
itizes a path with minimum number of conflicts with other
agents assigned path. That is, we run A* for a single agent
where states that are not in conflict with other agents paths
are preferred. For example, assume agent a; is assigned a
path (S1, A, G1) and a different agent, as, is now considered
by the low-level. The A* low-level search would give pref-
erence to any location except for location A on the first step,
even if optimality is sacrificed. By doing so the low-level re-
turns a path that has the minimal number of conflicts* with
other previously assigned agents.

Completeness of GCBS: GCBS is not optimal but is
complete if an upper bound B exists on the cost of a valid

“Number of conflicts may refer to any of the previously defined
heuristics h1, hz, hs, ha, hs.

100 PP B BB B
m

100 - 00 B
% % s s . ~ o
80 \ 80 \ \ 80

g \ g \ LN \ g NN a
in ~ N\ in \ ~ L\ — \ N A\
2 50 | —ecBS Y \\)%\M % 50 || —e—CBS \ A\ E 50 | —e-CBS AN \ \
5 40 | —m-GeesL £ 40 1 —m-GeasL \ b\ A 5 40 | -m-GeesL \ \-
2 30 X\ N 2 s \ N\ \ g 30 \ X
% g0 || —<GeBSH AL T % 30 || o«ccesH W N\ § 5 || -«ccssH \ \

1g | —#-GCBS-LH \‘\‘Q= ‘‘‘‘‘ 13 | =#-GCBS-LH \‘ \“\‘= ‘\f ‘ 13 | =#-GCBS-LH .\‘ vvvvv ‘\X\‘; “““

2 3 a4 5 6 7 8 10 12 14 16 18
#AGENTS

(a) 5 x 5-20% obstacles

5 10 15 20 30 40 50 60 70 80 90 100 130 150
#AGENTS

(b) 32 x 32 - 20% obstacles

5 10 15 20 25 30 40 50 70 100 130 150 200 250
#AGENTS

(c) DAO Map - BRC202

Figure 2: Greedy CBS - Success Rate. Comparison between all the greedy versions and optimal CBS

solution and assuming that GCBS will prune CT nodes
with cost higher than B. As shown for CBS by Sharon et
al. (Sharon et al. 2012a), any valid solution is consistent
with at least one CT node in OPEN. As GCBS is a best-
first search, it will eventually expand all the CT nodes with
cost < B, finding any valid solution below that cost.

Greedy-CBS: Experiments

We experimented on many types of grids and maps. We re-
port results on the following domains which are good repre-
sentatives of the other domains:

e 4-connected grids with 20% obstacles - Grids of size
5x5 and 32x32 were used.

e Dragon Age Origins (DAO) Maps - we experimented
with many maps from Sturtevant’s repository (Sturtevant
2012) but report results on the BRC202D map which has
relatively many conflicts due to corridors and bottlenecks.
The trends reported below were also observed for other
maps.

Figure 2 compares three variants of GCBS to the original
CBS:

1. GCBS-H which uses h, for choosing CT nodes at the high
level but the low level runs ordinary A*.

2. GCBS-L which, similar to the original CBS, uses the g-
values for choosing CT nodes at the high level but the low
level uses h, for its expansions.

3. GCBS-HL which uses h, for both levels.

Figure 2 shows the percentage of instances solved within
a time limit of 5 minutes (similar to (Sharon et al. 2013;
Standley 2010)) as a function of the number of agents.

Clearly, optimal CBS is the weakest. GCBS-HL was the
best for the 5x5 grid and for the DAO map, while GCBS-
H slightly outperformed it for the 32x32 grid. The relative
performance of GCBS-H and GBCS-L varies on these do-
mains. The 5x5 grid is very dense with agents and there
are many conflicts. The low level cannot find a solution for
a single agent that avoids this large set of time-space dense
conflicts. The high level has a more global view and it directs
the search towards areas with less conflicts. By contrast, the
DAO maps are larger and even when many conflicts exist
they are distributed both in time and in space. Therefore it is
easier for the low level to bypass conflicts. GBCS-HL was

23

Domain |Agnts|Inst.| CBS|GCBS-L|GCBS-H|GCBS-LH
5x5 8| 48 37 40 41 45
32x32 30| 67| 669 675 672 675
DAO 30| 49|12,067| 12,071 12,072 12,071

Table 1: Comparison of cost

weak in the 32x32 grid because its low-level may return
long paths in order to avoid conflicts. This further constrains
the motion of other agents and may cause more highl-level
conflicts. In general, GCBS-LH is more robust than GCBS-
H and GCBS-L, and we recommend it for general usage.

Table 1 shows the average solution cost over all instances
(column 3) that were solved by all variants. GCBS-H and
GCBS-L tend to provide solutions within 10% of optimal.
For the 5 x 5 grid GCBH-HL provides longer solutions
because it relaxes the optimality conditions of both levels.
Since the DAO maps and the 32x32 grids are less dense, all
variants provided solutions within 5% of optimal.

Bounded Suboptimal CBS

A commonly used and general bounded-suboptimal search
algorithm is Weighted A* (WA*) (Pohl 1970). Since the
high-level of CBS does not use heuristic guidance WA* is
not applicable to CBS. We thus use Focal search, an alter-
native approach to obtain bounded suboptimal search algo-
rithms, based on the A} (Pearl and Kim 1982) and A, (Ghal-
lab and Allard 1983) algorithms.

Focal search maintains two lists of nodes: OPEN and FO-
CAL. OPEN is the regular OPEN-list of A*. FOCAL con-
tains a subset of nodes from OPEN. Focal search uses two
arbitrary functions f; and fo. f; defines which nodes are in
FOCAL, as follows. Let f;_, be the minimal f; value in
OPEN. Given a suboptimality factor w, FOCAL contains all
nodes n in OPEN for which fi(n) < w - fi,, . f2 is used
to choose which node from FOCAL to expand. We denote
this as focal-search(f1, f2). If f1 is admissible then we are
guaranteed that the returned solution is at most w - C*.>

Importantly, fs is not restricted to measure cost and it can
use other relevant measures. For example, explicit estima-

SA* (Pear] and Kim 1982) can be written as focal-search(f.h),
that is, A} chooses to expand the node in FOCAL with the minimal
h-value.

tion search (EES) (Thayer and Ruml 2011) considers an es-
timation of the distance-to-go, d (i.e., the number of hops to
the goal) as well as an inadmissible heuristic.

BCBS

To obtain a bounded suboptimal variant of CBS we can im-
plement both levels of CBS as a focal search:

High level focal search: apply focal-search(g,h.) to search
the CT, where g(n) is the cost of the CT node n, and h.(n)
is the conflict heuristic described above.

Low level focal search: apply focal-search(f,h.) to find
a consistent single agent path, where f(n) is the regular
f(n) = g(n) + h(n) of A*, and h.(n) is the conflict heuris-
tic described above, considering the partial path up to node
n for the agent that the low level is planning for.

We use the term BCBS(wg,wy,) to denote CBS using a
high level focal search with wy and a low level focal search
with wy. BCBS(w, 1) and BCBS(1,w) are special cases
of BCBS(wg,wp) where focal search is only used for the
high or low level. In addition, GCBS is a special case that
uses w = oo for one or both levels, i.e., BCBS(c0,00) is
GCBS-LH. In this case, FOCAL is identical to OPEN.

Theorem 1 For any wy,wy > 1, the cost of the solution
returned by BCBS(wp,wr) is at most wy - wy, - C*

Proof: Let N be a CT node expanded by the high level.
Let cost™(N) denote the sum of the lowest cost path for each
agent to its goal, under the constraints in IV, and let C* be
the cost of the optimal solution. Until a goal is found, C* is
larger than or equal to min,copgn cost*(z), and N.cost <
wy, - cost™ (N, since the low level solver used a focal search
with wy,. N is a member of FOCAL. Therefore:

N.cost <wpg - min x.cost €))]
reOPEN

N.cost x.cost

<wg - min)
wr, z€OPEN wy,

< . i t* < -C* 3
Swn iy ot (@) Swn 01 O)
N.cost < wy, -wgy - C* 4
Q)

Thus, when expanding a node N, N.cost is guaranteed to be
at most wy, - wy - C* O

Based on Theorem 1, to find a solution that is guaranteed
to be at most w - C* one can run BCBS(wy, wy,) for any
values of wy and wy, for which wg - wr, = w.

Enhanced CBS

How to distribute w between wpy and wy, is not trivial.
The best performing distribution is domain dependent. Fur-
thermore, BCBS fixes wy and wj, throughout the search;
this might be inefficient. To address these issues we pro-
pose Enhanced CBS (ECBS). ECBS runs the same low level
search as BCBS(1,w). Let OPEN; denote the OPEN used
in CBS’s low level when searching for a path for agent
a;. The minimal f value in OPEN;, denoted by fin(7) is
a lower bound on the cost of the optimal consistent path

24

for a; (for the current CT node). For a CT node n, let
LB(n) = Zle fmin(2). It is easy to see that LB(n) <
n.cost < LB(n) - w.

In ECBS, for every generated CT node n, the low level re-
turns two values to the high level: (1) n.cost and (2) LB(n).
Let LB = min(LB(n)n € OPEN) where OPEN refers
to OPEN of the high level. Clearly, LB is a lower bound on
the optimal solution of the entire problem (C*). FOCAL in
ECBS is defined with respect to LB and n.cost as follows:

FOCAL = {n|n € OPEN,n.cost < LB - w}

Since LB is a lower bound on C*, all nodes in FOCAL have
costs that are within w from the optimal solution. Thus, once
a solution is found it is guaranteed to have cost that is at most
w - C*.

The advantage of ECBS over BCBS is that while allowing
the low level the same flexibility as BCBS(1,w), it pro-
vides additional flexibility in the high level when the low
level finds low cost solutions (i.e, when LB(n) is close to
n.cost). This theoretical advantage is also observed in prac-
tice in the experimental results section below.

Both BCBS and ECBS never expand nodes with cost
higher than w times the optimal solution. In addition, all
valid solutions are always consistent with at least one of the
CT nodes in OPEN. As such, and since both are systematic
searches, they will eventually find a solution if such exists.
Thus, BCBS and ECBS are complete.

Experimental results

Next, we experimentally compare our CBS-based bounded
suboptimal solvers on a range of suboptimality bounds (w)
and domains. Specifically, for every value of w we run
experiments on (1) BCBS(w,1), (2) BCBS(1,w), (3)
BCBS(vw, /w), and (4) ECBS(w). We also added CBS
(=BCBS(1,1)) as a baseline. Different w values are pre-
sented for the different domains, as the impact of w varies
greatly between domains. For example, extremely small
w values allowed faster solution times in DAO, while in
smaller domains only larger w values had a substantial im-
pact.

The success rates on the same three domains are shown
in Figure 3. The most evident observation is that ECBS out-
performs all the other variants. This is reasonable as having
w shared among the low and high level allows ECBS to be
more flexible than the static distribution of w to wy, and wx
used by the different BCBS variants.

Comparing the performance of the different
BCBS versions (BCBS(w,1), BCBS(1,w), and
BCBS(y/w,+/w)) provides an insight into the effect
of w on the different CBS levels. Setting w in the high level
(BCBS(1,w)) performed best in the 5 x 5 and 32 x 32 grid,
while setting w in the low level (BCBS(w, 1)) performed
best in the DAO map. We explain this by considering the
properties of the different domains. The 5x5 and 32x32
grids are substantially smaller than the large DAO map.
Thus the paths found by the agents are longer. On the other
hand, the DAO maps are less dense, and thus less conflicts
occur. When agents have longer paths and conflicts are rare,

100

100

X\

N

100

920 90

90 -

] ANEAN N
g 80 q 80 o 80
g % g % \, X g 7 Ay N\ N\
E 60 - —e—CBS % 5 60 | —e—cBS \ \ \‘\\“\ E 60 - ——cBS \\ X\ \” \;\
2
H ig T —m—BeBs(w,) H ig 1] —=-scesw) v\ AN g 30 T -=-sceswi) X \ \
2 3 BCBS(Vw,vw) ~x % 2 30 1 BCBS(w,w) |\ X\ 2 40 T o costHpwvw) \ X \
2 8 3 30
® 20 || —<BCBS(LW) AN %ﬂ R 20 || —<BCBS(LW) \ K \ R 20 || —BCBS(LW) \ \ \
10 | —*—ECBS \‘ 10 | —*—ECBS \ \ \ 10 | —*—ECBS \ \ X
0 0 - e S AR AT 0 AN N P

2 3 4 5 6 7 8
#AGENTS

(a) 5 x 5-20% obstacles. w = 1.5

Figure

100

90 { ——CBS

A

5 10 15 20 30 40 50 60 70 80 90 100 110
AGENTS

(b) 32 x 32 -20% obstacles. w = 1.1

5 10 15 20 25 30 40 50 70 100 130 150 200 250
#AGENTS

(c) DAO Map - BRC202. w = 1.01

3: Success rate of Bounded CBS versions.

100

Iy am—

ECBS(1.5) i jAYA

80

—

60

i A
—+—GCBS ‘I\ I “ Atﬁ/—

% SOLVED INSTANCES

60
, A S W
4% %g@@ﬂ/— i
O 30

40
—4—ECBS

% SOLVED INSTANCES

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86
Instances

(a) Cost comparison, 8 agents, w = 1.5

5 10 15 20 30 40 50 60 70 80 90 100 110
AGENTS

(b) Bounded algorithms, w = 1.1

20

~#—EPERM*

OPTIMAL 1.01 1.05 11

. 15 2
BOUND (W)

GREEDY

(c) Different w values

Figure 4: Various results comparing ECBS to other bounded suboptimal algorithms

adding w to the low level allows it to circumvent potential
conflicts. By contrast, in smaller and denser maps avoiding
conflicts is harder and therefore the low level is not able
to avoid all conflicts even if allowed to take a longer path.
In such cases, w would be more effective in the high level,
allowing it to ignore more conflicts.

In our experiments, we observed that GCBS often returns
low cost solutions even though its solution quality is theoret-
ically unbounded. The difference, on average, between the
costs of the solution found by GCBS and by ECBS were of-
ten small, in our domains. Figure 4(a) shows the costs of the
solution returned by CBS, GCBS and ECBS with w = 1.5
on 89 instances of the 5 x 5 grid with 8 agents. Every data
point represents the cost of the solution to a single 5 x 5 in-
stance. The instances are ordered according to the optimal
solution found by CBS. Instances 56-89 were not solved by
CBS, and are ordered according to the solution cost found
by ECBS. While GCBS often returned close to optimal re-
sults, it had a larger variance compared to the bounded solver
ECBS. This illustrates the choice to be made by an applica-
tion designer requiring a MAPF solver. If the main purpose
is runtime and occasional high cost solution is tolerable, then
GCBS would be the algorithm of choice, as it is often faster
than ECBS. However, if stability, reliability and guarantee-
ing the bound is important — ECBS provides a more appro-
priate solver.

Comparison to other MAPF solvers

Based on our experiments, ECBS is the best bounded sub-
optimal MAPF solver among the CBS family. Next, we
compare ECBS to other bounded suboptimal MAPF solvers
that are not based on CBS. To our knowledge, the only

25

bounded suboptimal MAPF solvers previously proposed are
M#* variants: M*, RM* (Wagner and Choset 2011) and
ODRM* (Ferner, Wagner, and Choset 2013). Moreover, we
combined RM* with EPEA* (Felner et al. 2012), which is
currently the best A*-based MAPF solver. This is denoted
by EPERM*. In addition, we implemented several adapta-
tions of weighted A* to a bounded suboptimal MAPF solver.
We used ODA* (A*+0OD) and EPEA* algorithms, where
node ordering is determined using the g 4+ w - h evaluation
function instead of the regular g+ h. Another one is WCBS*
which is CBS using WA* in the low level.

Figure 4(b) shows the success rate for all these algorithms
as a function of the number of participating agents on the
32 x 32 grid and w = 1.1. The results show a clear ad-
vantage of ECBS over all other bounded suboptimal solvers.
Similar results were obtained in the DAO map and 5 x 5 grid,
except for large w values in the DAO map, where EPERM*
and ECBS performed similarly. We omit these results due to
space constraints.

Next, we evaluated the effect of w on ECBS and
EPERM*, which were the two best bounded suboptimal al-
gorithms. Figure 4(c) shows the results for 32 x 32 grid with
30 agents. As can be seen, ECBS is able to solve more in-
stances consistently, until reaching w > 1.5, where both al-
gorithms perform similarly.

In most settings ECBS performed best. However, there are
many parameters, problems types and settings where other
algorithms might prevail. We leave deeper analysis for future
work.

I

=] SR

70 T

0 T T T T T T T T

2 3 4 5 6 7 8 10
AGENTS

v
]
=]
4
= 60 \ \
£ 50 \ \
g 20 1 \\‘
3 30 | —&—GCBS-LH
w
X 20 +— \

10 | ——MGS1 \

12 14 16 18

Figure 5: 5 x 5 grid, 20% obstacles, success rate

Comparison to unbounded suboptimal solvers.

Next, we compared GCBS-HL with parallel push and
swap(PPS) (Sajid, Luna, and Bekris 2012) and Standley’s
MGSI1 (Standley and Korf 2011), which are state-of-the-art
unbounded suboptimal solvers. PPS was significantly faster
than GCBS-HL and MGSI1 but returned solutions that were
far from optimal, and up to 5 times larger than the solution
returned by GCBS-HL. Thus, if a solution is needed as fast
as possible and its cost is of no importance then PPS, as
a fast rule-based algorithm, should be chosen. The cost of
the solutions returned by GCBS-HL and MGS1 were almost
identical (GCBS costs was reported in Table 1).

Figures 5 and 6 show the success rate of GCBS-HL and
MSGI1 on the 5 x 5 and 32 x 32 grids. In the 5 x 5 grid,
GCBS-HL outperforms MSGI1, while in the 32 x 32 grid
MSGT1 outperforms GBCS-HL. For the 32 x 32 we also ex-
perimented with GCBS-H, which was shown to be effec-
tive in this domain (see Figure 3). Indeed, here, GCBS-H
is better than GCBS-HL, but it is outperformed by MSGl1
on problems with more than 100 agents. We also compared
GCBS and MSG1 in the DAO map. There, both algorithms
were able to solve all instances up to 250 agents (under 5
minutes). Further identifying which unbounded MAPF algo-
rithm performs best in which domain and performing DAO
experiments with more agents are left for future work.

Conclusions

We presented a range of unbounded and bounded suboptimal
MAPEF solvers based on the CBS algorithm. Our bounded
suboptimal solvers, BCBS and ECBS, use a focal list in po-
tentially both of CBS’s levels. We proposed a heuristic to
estimate which state in the focal would lead to a solution
fast. Experimental results show several orders of magnitude
speedups while still guaranteeing a bound on solution qual-
ity. ECBS clearly outperforms all other bounded subopti-
mal solvers. While PPS was the fastest unbounded subopti-
mal search, its solution cost is much higher. GCBS returned
close to optimal solutions, and outperformed MSG1 in some
domains. In other domains, MSG1 was better, demonstrat-
ing that there is no universal winner. This is a known phe-
nomenon for MAPF on optimal solvers too (Sharon et al.
2013; 2012a; 2012b). Fully identifying which algorithm
works best under what circumstances is a challenge for fu-
ture work. In addition, in this paper we focused on the modi-

26

v
8
o
2
£ 60 AN \\
2 50
£ 40 | —e—meGs1
2 30 —
—8-GCBS-H
* 201 Ny
10 || GCBS-LH
0 ‘ ‘ ‘ ‘
20 50 70 100 130 150

AGENTS

Figure 6: 32 x 32 grid, 20% obstacles, success rate

fication of CBS to its suboptimal variants. Similar treatment
should be given in the future to other known optimal solvers
such as ICTS, MA-CBS and the other solvers that are based
on SAT, ILP and ASP. In fact, such non-search methods are
probably relevant to other search problems and are not lim-
ited to MAPF. Time will tell how these new methods com-
pare in general to traditional search approaches.

Acknowledgments

This research was supported by the Israel Science Founda-
tion (ISF) under grant #417/13 to Ariel Felner.

References

Bennewitz, M.; Burgard, W.; and Thrun, S. 2002. Finding
and optimizing solvable priority schemes for decoupled path
planning techniques for teams of mobile robots. Robotics
and Autonomous Systems 41(2-3):89-99.

de Wilde, B.; ter Mors, A. W.; and Witteveen, C. 2013.
Push and rotate: cooperative multi-agent path planning. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 87-94. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. JAIR 31:591-656.

Erdem, E.; Kisa, D. G.; Oztok, U.; and Schueller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In Proc. of AAAL

Felner, A.; Goldenberg, M.; Sturtevant, N.; Stern, R;
Sharon, G.; Beja, T.; Holte, R.; and Schaeffer, J. 2012.
Partial-expansion A* with selective node generation. In
AAAI

Ferner, C.; Wagner, G.; and Choset, H. 2013. ODrM* op-
timal multirobot path planning in low dimensional search
spaces. In ICRA, 3854-3859.

Ghallab, M., and Allard, D. G. 1983. Aean efficient near
admissible heuristic search algorithm. In Proc. 8th IJCAI
Karlsruhe, Germany, 789-791.

Hatem, M.; Stern, R.; and Ruml, W. 2013. Bounded subop-
timal heuristic search in linear space. In SOCS.

Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Coordi-
nating pebble motion on graphs, the diameter of permutation
groups, and applications. In FOCS, 241-250. IEEE.

Luna, R., and Bekris, K. E. 2011. Push and swap: Fast
cooperative path-finding with completeness guarantees. In
1JCAI, 294-300.

Pallottino, L.; Scordio, V. G.; Bicchi, A.; and Frazzoli, E.
2007. Decentralized cooperative policy for conflict resolu-
tion in multivehicle systems. IEEE Transactions on Robotics
23(6):1170-1183.

Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 4:392-400.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3):193-204.

Roger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. Al-
ternation 10(100s):1000s.

Sajid, Q.; Luna, R.; and Bekris, K. 2012. Multi-agent
pathfinding with simultaneous execution of single-agent
primitives. In SOCS.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2012a. Conflict-based search for optimal multi-agent path
finding. In AAAL

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2012b. Meta-agent conflict-based search for optimal multi-
agent path finding. In SoCS.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artif. Intell. 195:470-495.

Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117—
122.

Standley, T. S., and Korf, R. E. 2011. Complete algorithms
for cooperative pathfinding problems. In IJCAI, 668-673.

Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 173-178.

Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and Al in
Games 4(2):144-148.

Surynek, P. 2012. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In PRICAI
2012: Trends in Artificial Intelligence. Springer. 564-576.

Thayer, J., and Ruml, W. 2008. Faster than weighted A*:
An optimistic approach to bounded suboptimal search. In
ICAPS, 355-362.

Thayer, J., and Ruml, W. 2011. Bounded suboptimal search:
A direct approach using inadmissible estimates. In IJCAI,
674-679.

Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learning
inadmissible heuristics during search. In ICAPS.

Wagner, G., and Choset, H. 2011. M*: A complete multi-
robot path planning algorithm with performance bounds. In
IROS, 3260-3267.

27

Yu, J., and LaValle, S. M. 2013a. Planning optimal paths
for multiple robots on graphs. In Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on, 3612—
3617. IEEE.

Yu, J., and LaValle, S. M. 2013b. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAL

