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Abstract

The success or failure of a solver is oftentimes closely tied
to the proper configuration of the solver’s parameters. How-
ever, tuning such parameters by hand requires expert knowl-
edge, is time consuming, and is error-prone. In recent years,
automatic algorithm configuration tools have made signif-
icant advances and can nearly always find better parame-
ters than those found through hand tuning. However, cur-
rent approaches require significant offline computational re-
sources, and follow a train-once methodology that is unable
to later adapt to changes in the type of problem solved. To
this end, this paper presents Real-time Algorithm Configura-
tion through Tournaments (ReACT), a method that does not
require any offline training to perform algorithm configura-
tion. ReACT exploits the multi-core infrastructure available
on most modern machines to create a system that continu-
ously searches for improving parameterizations, while guar-
anteeing a particular level of performance. The experimental
results show that, despite the simplicity of the approach, Re-
ACT quickly finds a set of parameters that is better than the
default parameters and is competitive with state-of-the-art al-
gorithm configurators.

Introduction

Algorithms often have a large number of settings and param-
eters that control various aspects of their behaviour. Such
parameters can control characteristics of an algorithm as
fine grained as a value for the learning rate, or as drastic
as switching the search strategy that is to be employed. Cor-
rectly setting these values for the problem instances being
solved can mean the difference of orders of magnitude in
performance. The task of setting these parameters is known
as algorithm configuration.

In the past, many solvers had the majority of their pa-
rameters hard coded to values set by the developers, which
often hindered the potential of these solvers. After all, the
developers are usually not aware of all the possible appli-
cations where the solver will be used in the future. It is
also now increasingly recognized that there is no single
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solver or parameter setting that works best on every type
of instance. Instead, different problems are best solved by
different strategies, meaning solvers should open parame-
ters to the end-user in order to achieve maximum perfor-
mance (Hoos 2012).

Tuning parameters by hand requires significant amounts
of time, as well as intimate domain knowledge. To further
complicate matters, it is impossible to systematically test
even a small percentage of possible configurations due to
the large configuration space of most solvers. Recent re-
search has therefore focused on the area of automatic algo-
rithm configuration. These approaches generally employ a
train-once view, in which a representative set of instances
is used to determine good parameter settings. A variety of
techniques have been proposed for algorithm configuration,
including model fitting (Hutter et al. 2010), genetic algo-
rithms (Ansotegui, Sellmann, and Tierney 2009), iterated
local search (Hutter et al. 2009) and racing (Birattari 2002).
These approaches have proved highly successful, sometimes
gaining several orders of magnitude improvements over de-
fault parameter values (Kadioglu et al. 2010; Hutter, Hoos,
and Leyton-Brown 2012; Malitsky et al. 2013).

All current automatic algorithm configuration methods,
however, face a number of drawbacks, the chief of which
is the requirement for the existence of a representative train-
ing set. Specifically, even though the exact implementations
differ, all approaches work by trying numerous parameter-
ization offline on the available data. Yet, such datasets are
not always available, especially in industry. Consider, for ex-
ample, a shipping company that must create a loading plan
for containers at each port its ships travel to. Generating a
good loading plan quickly requires a solver with well-tuned
parameters. Since finding a good plan can reduce transport
costs by thousands of dollars (Delgado, Jensen, and Schulte
2009), finding good parameters for a solver is important to
the efficiency of the business. Old data may not be available
or too unreliable to use to boot-strap the parameters of a sys-
tem, and randomly generated instances lack the structure of
real problems. Furthermore, as the shipping company pur-
chases new, larger ships or sails to different ports, the prob-



lem they are solving changes as well. Thus, the parameters
for their system must also adapt to the problem being solved.

This paper introduces Real-time Algorithm Configura-
tion through Tournaments (ReACT). With minimal over-
head, ReACT exploits the availability of multiple cores in
modern CPU architectures in order to run several candidate
parameterizations in parallel. With the best known parame-
ter set among those tested, we can guarantee a certain level
of performance. Furthermore, by gathering statistics about
parameterizations as we are solving new instances, we are
able to tune a solver in real-time. This means that instead of
incurring the full training cost upfront, with minimal over-
head this cost is spread across the instances as they arrive. It
also means that unlike in train-once approaches, we are also
able to adapt to any changes in the problems as they occur.

The remainder of the paper is broken up into five sections.
We first introduce existing algorithm configuration method-
ologies. We then describe ReACT, followed by our exper-
imental set-up. We subsequently demonstrate the ReACT
system and provide numerical results. The final section dis-
cusses our findings and offers ideas for future work.

Related Work

We first discuss methods dealing with adaptive parameter
settings during the execution of an algorithm, and then move
to works attempting to optimize static settings of parameters.

Reactive search optimization methods (Battiti, Brunato,
and Mascia 2008), such as the well-known reactive tabu
search technique (Battiti and Tecchiolli 1994), adapt pa-
rameters online during the execution of a solver or algo-
rithm. While this allows parameters to be customized to the
specifics of particular instances, information is not learned
between the solving of instances. Furthermore, the starting
parameters of reactive techniques may be arbitrarily bad,
and require a number of iterations before converging on
good values. Thus, we view reactive search as complemen-
tary to ReACT; as good starting parameters can be provided
by ReACT and then refined during search.

Early algorithm configuration approaches were only able
to handle a small number of continuous parameters (Birat-
tari 2002; Adenso-Diaz and Laguna 2006; Audet and Orban
2006) (see (Eiben and Smit 2011) for a broader overview),
however, there are now several competing systems that are
able to configure solvers with numerous parameters regard-
less of whether they are continuous, discrete or categorical.

For a small set of possible parameter configurations, F-
Race (Birattari 2002) and its successor, Iterated F-Race (Bi-
rattari et al. 2010), employ a racing mechanism. During
training, all potential algorithms are raced against each
other, whereby a statistical test eliminates inferior algo-
rithms before the remaining algorithms are run on the next
training instance. But the problem with this is that it prefers
small parameter spaces, as larger ones would require lots
of testing in the primary runs. Careful attention must also
be given to how and when certain parameterizations are
deemed pruneable, as this greedy selection is likely to end
with a sub-optimal configuration.

The parameter tuner ParamILS (Hutter et al. 2009) is able
to configure arbitrary algorithms with very large numbers
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of discrete parameters. The approach conducts a focused
iterated local search that generally starts from the default
parameters of a solver. ParamILS then enters an improve-
ment phase using a one-exchange neighborhood in an it-
erative first improvement search. The local search contin-
ues until a local optimum is encountered, at which point the
search is repeated from a new starting point after performing
a perturbation. To avoid randomly searching the configura-
tion space, at each iteration the local search gathers statis-
tics on which parameters are important for finding improved
settings, and focuses on assigning them first. ParamILS has
been shown to be successful with a variety of solvers, such
as IBM CPLEX (IBM 2011).

The gender-based genetic algorithm (GGA) (Ansotegui,
Sellmann, and Tierney 2009) was introduced as a popula-
tion based alternative to ParamILS. GGA uses a genetic al-
gorithm to find a good parameter configuration, as well as
a population split into two genders in order to balance ex-
ploitation and exploration of the search space. At each gen-
eration, half of the population competes on a collection of
training instances. The parameter settings that yield the best
overall performance mate with the non-competitive popula-
tion to form part of the next generation.

Most recently, Sequential Model-based Algorithm Con-
figuration (SMAC) (Hutter, Hoos, and Leyton-Brown 2011)
was introduced. This approach generates a model over a
solver’s parameters to predict the likely performance if the
parameters were to be used. This model can be anything
from a random forest to marginal predictors. The model
is used to identify aspects of the parameter space, such as
which parameters are most important. Possible configura-
tions are then generated according to the model and compete
against the current incumbent, with the best configuration
continuing to the next iteration.

As mentioned in the introduction, all of these approaches
follow a train-once methodology. This means that prior
to any tuning taking place there must be a representative
dataset of instances available, something that may not al-
ways be present. Additionally, if the stream of instances
changes over time, for example due to a change in condi-
tions, a new dataset must be collected and the solver re-
trained. Even with only a short timeout of 5 minutes and a
handful of parameters, such a task might easily require sev-
eral days worth of computation. This makes these existing
approaches ill-suited for continuously tuning the solver in
real-time. The authors are aware of only one work, (Mal-
itsky, Mehta, and O’Sullivan 2013), which begins to tackle
this type of learning. But unlike in this work, the paper only
approached the problem from an algorithm selection per-
spective instead of an algorithm configurator.

ReACT

This work explores what is possible in the area of real-time
algorithm configuration using the power of modern multi-
core CPUs. The Real-time Algorithm Configuration through
Tournaments methodology (ReACT) tests multiple candi-
date parameterizations in parallel, removing dominated pa-
rameterizations as results on more instances are observed.
Algorithm 1 provides a formalization of our approach.



We initialize ReACT with the number of cores avail-
able, n; the solver to use, s; the potentially infinite sequence
of instances to solve, I; the parameter weakness ratio, r; the
minimum number of “wins” necessary to exclude a parame-
terization, m; the solver timeout, ¢; and an (optional) initial
parameterization, p,,s. ReACT can be cold started by set-
ting pys to null, in which case n random parameterizations
are added to the parameter pool. When p,,s is provided with
a parameter setting, it is added to the pool and the rest of the
parameterizations are random. In this case, we say that Re-
ACT is warm started. While a cold start can result in poor
performance early in the search, it avoids any potential bias
introduced through user provided parameters.

In order to keep track of the performance of the parame-
terizations, we implement a score keeping component, rep-
resented by the n X n matrix S on line 5. An entry S(p, p’)
represents the number of times parameterization p has had
a lower runtime or better final objective than p’. For each
instance in the instance sequence, ReACT runs a tourna-
ment (line 7). Parameterizations compete in a tournament
by running in parallel on the given instance with a speci-
fied time-out. The first parameterization to return an optimal
solution sends a termination signal to the other runs. To ac-
count for any discrepancies in start time, and thus ensuring
that each approach is evaluated fairly, the termination signal
also encodes the time required by the fastest parameteriza-
tion to finish. When all runs have finished and terminated,
the winner is the parameterization with the lowest time taken
to solve the instance. In the case where no parameterizations
finish in the allotted time, the winner is the parameterization
which returns the best objective value. We note that unlike
the GGA configurator, where a given percentage of the par-
ticipants in a tournament are considered the winners, here
we only consider the best parameterization as the winner,
with multiple winners only in the case of a tie.

After the scores are updated for the winners of the tour-
nament, we cull weak parameterizations from the pool on
lines 11 and 12. We define a parameterization p as weak if it
has a) been beaten by another parameterization, p’, at least
m times and b) the ratio of the number of times p’ has beaten
p to the number of times p has beaten p’ is greater or equal to
r. The former criteria ensures that parameterizations are not
removed without being given ample opportunity to succeed.
The latter criteria ensures that the domination of one param-
eterization over another is not just due to random chance. In
our implementation of ReACT, we set m = 10 and r = 2,
meaning a parameterization is weak if it has lost to another
competitor at least 10 times and has lost to another parame-
ter setting twice as many times as it has beaten that parame-
ter setting. For example, if p beats p’ ten times, but p’ beats p
twenty times, then p is a weak parameterization and will be
removed. After removing weak parameterizations from the
pool, the score keeper is updated on line 13 and new, random
parameterizations are inserted into the pool.

Though we restrict the number of employed solvers to
the amount of CPU cores available for our experiments, the
same methodology could readily utilize nodes of a compute
cluster or cloud. This would allow running a larger num-
ber of solvers simultaneously while also bypassing potential
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Algorithm 1 The ReACT algorithm

1: function REACT(n, s, I, 7, m, t, pws)

2 P+ {pys} if pys # null else O

3 while |P| < n do

4 P < P U {RND-PARAMETERIZATION() }

5: S «+ onxm
6: fori e I do
7.
8

> an n X n matrix initialized to O

W <+ TOURNAMENT(P, s,i,t)

: for w € W do
9: foricl,...,n;l ¢ Wdo
10 S(w, 1) + S(w,l)+1
11: K « {p|3p'#ps.t. S(p',p) > m/\ggg Z’)’,’g >r}
12: P+ P\K
13: S(k,p) < 0,S(p,k) «+ 0, Vke K;pe P
14: for k € K do
15: P < P U {RND-PARAMETERIZATION() }

bottlenecks such as memory usage.

We would again like to emphasize that although the ap-
proach is relatively straight forward, the presented scoring
component does provide a reasonable assurance that once a
new improving parameterization is found that it will retain
those settings. In particular, for every time one new param-
eter setting defeats another, the latter must solve two addi-
tional instances to prove its dominance over the first. This
means that any new candidate must prove its merit only a
few times before it is taken seriously and becomes hard to
remove by the current incumbent. Yet the requirement to
solve twice as many instances simultaneously ensures that
it is very probable that a new parameterization will come
along that does not have to spend a large number of runs to
prove it is superior. This property allows the configuration
to quickly adapt to changes in the observed instances while
mitigating the chances we will get rid of a good parameteri-
zation on a whim.

The tournaments in ReACT are inspired from the tour-
naments in GGA. The tournaments serve a particularly im-
portant function in ReACT, which is that they ensure that
the user is not affected by the search for new, effective pa-
rameterizations. The user receives a solution to a particu-
lar instance at the same time as new configurations are ex-
perimented with, due to the parallel nature of the approach.
Since solvers using poorly performing parameterizations are
terminated once a solution is found by any parameter setting
in the pool, the user only has to wait as long as it takes for
the best parameter setting to find an answer.

In striking a balance between intensification and diver-
sification in its search methodology, ReACT tends towards
diversity. The random parameterizations that are added to re-
place dominated ones provide strong diversification to avoid
local optima. At first glance, simply choosing new param-
eterizations completely at random may seem too simple to
actually function. However, there is a good reason for this
randomness. As the instances change over time, diversity of
parameters is critical to being able to find new parameteriza-
tions for those instances. A more greedy approach runs the



risk of getting stuck in the wrong basin of attraction when
the instances shift, leaving the user with a longer period of
poor solving performance.

ReACT performs intensification by throwing out poorly
performing parameter settings. Our strategy here is still
somewhat conservative, which stands in contrast to train-
once parameter tuners like GGA, which intensifies through a
strict selection procedure, or ParamILS, which has a greedy
iterative first improvement step. ReACT benefits from keep-
ing parameter settings that are “good enough” around. These
parameterizations could turn out to be beneficial if the in-
stances shift in a particular direction. By keeping such pa-
rameters alive, our approach is always prepared for whatever
may come next from the instance sequence. We only throw
out parameters when it is clear that they are dominated by
other parameter settings, although it is possible that we are
sometimes unlucky and throw out a good parameter setting.

One of the main drawbacks of our strategy, is that finding
good parameter settings by chance is not easy. We are aided
by the fact that there tend to be regions of good parameteri-
zations, rather than single parameter configurations that per-
form extremely well. By maintaining diversity, ReACT can
hold on to parameters from a number of good regions and
is prepared for new types of instances. Other forms of se-
lecting new parameter settings could also be imagined, such
as using a model based technique or mutation procedure of
good performing parameters. We hold such techniques for
future work, as ensuring the diversity of the approach under
such intensification procedures is not trivial.

As presented, there are many parts of the algorithm that
can be readily improved with more sophisticated techniques.
However, the goal of this paper is to introduce the new Re-
ACT methodology, leaving other comparisons as potential
future work. We also emphasize that even with these prelim-
inary techniques, as will be shown in subsequent sections,
ReACT is able to significantly outperform the default pa-
rameters and achieve a level of performance on par with the
state-of-the-art train-once methodology at a far smaller cost.

Experimental Setup

In order to properly test ReACT, we require a dataset with
several properties. First, the instances must be relatively ho-
mogeneous, i.e., the instances are all of a similar type or
variant of a problem. Without homogeneity, we cannot as-
sume that a single parameter set can work well across all
of the instances. Heterogeneous datasets are best handled
with algorithm selection techniques and we leave this for
future work. Second, the instances must be hard, but not too
hard. Instances requiring too much time to solve will time-
out, thereby offering no information to an algorithm con-
figurator about which parameter setting is best. This results
in the configurator performing a random walk. Meanwhile,
datasets that are too easy will not provide noticeable gains.
For the experiments we focused on combinatorial auction
problems encoded as mixed integer problems, as generated
by the Combinatorial Auction Test Suite (CATS) (Leyton-
Brown, Pearson, and Shoham 2000). Using CATS, we cre-
ated datasets consisting of a homogeneous set of instances
that are solvable in a reasonable amount of time. CATS has
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a number of different options for generating problem in-
stances, including the number of bidders and goods in each
instance, as well as the type of combinatorial auction.

We focused on two types of auction (regions and arbi-
trary) in order to provide homogeneous datasets for our tuner
to work with. The regions problem class is meant to simulate
situations where proximity in space matters. This is typically
the case when plots of land are auctioned, where its a lot eas-
ier for a company to develop neighboring properties rather
than widely separated ones. Alternatively, the arbitrary class
is designed so that there is not a determined relation between
various goods, as is likely to be the case when dealing with
collector items. While both datasets deal with combinatorial
auctions, the structures of the corresponding instances are
very different and therefore lend themselves to different so-
lution strategies. The reader is referred to the original CATS
algorithm description (Leyton-Brown, Pearson, and Shoham
2000) for more information about the instances.

For the regions dataset, we generate our instances with
250 goods (standard deviation 100) and 2000 bids (stan-
dard deviation 2000). Most of the instances we generated
can be solved in under 900 seconds. Combining this with a
solver timeout of 500 seconds means that some of the in-
stances are challenging, but can be potentially solved with
slightly better parameters within the time limit. The arbi-
trary instances were generated with 800 goods (standard de-
viation 400) and 400 bids (standard deviation of 200). These
experiments maintained the 500 second timeout.

We solve the instances in our dataset with IBM
CPLEX (IBM 2011). CPLEX is a state-of-the-art mathe-
matical programming solver used widely both in industry
and academia. The solver has over 100 adjustable parame-
ters that govern its behaviour, and has been shown in the past
to be rather amiable to automated configuration (Kadioglu et
al. 2010; Hutter, Hoos, and Leyton-Brown 2011).

When generating our benchmark dataset, we removed all
instances that could be solved in under 30 seconds using the
default CPLEX parameter settings. These instances are too
easy to solve, meaning that they would just introduce noise
into our configuration procedure, as it can be somewhat ran-
dom which parameter setting solves them first. We stress that
removing these instances can be justified in the presence of
a straightforward pre-solver, a practice commonly used for
algorithm selection techniques prior to predicting the best
solver for an instance. Our final regions dataset is comprised
of 2,000 instances whose difficulty, based on performance
of the default parameters, was mainly distributed between
30 and 700 seconds, but with all instances being solvable
in under 900 seconds, as shown by Figure 1a. Meanwhile,
the final arbitrary dataset was comprised of 1,422 instances,
whose distribution of runtimes with default parameters can
be seen in Figure 1b.

Results

We test our methodology on three different scenarios on
each of the two combinatorial auction datasets. In the first,
we assume that instances are being processed at random, so
we shuffle all of our data and feed it to our tuner one at
a time. We also try two variations where problems change
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Figure 1: The distribution of instances in the final dataset based on solving time using the CPLEX default parameters.

steadily over time. In the first case, we assume that the auc-
tion house grows and is able to take in larger inventories, so
the number of goods in each new instance is monotonically
increasing. In the second case, we create a scenario where
the auction house becomes more successful, thus each new
problem instances has a monotonically increasing number
of bids. Regardless of the scenario, however, each instance
is given a timeout of 500 seconds on a two Intel Xeon E5430
Processors (2.66 GHz) with eight cores. For ReACT, though,
we restrict ourselves to using only six cores to avoid running
out of memory.

As a comparison, in addition to the default parameters,
we compare ReACT with the state-of-the-art train-once ap-
proach SMAC. Here we simulate the case where initially
no training instances exist and we must use the default pa-
rameters to solve the first 200 instances. SMAC then uses
the first 200 instances as its training set and is tuned for a
total of two days. After those 48 hours, each new instance
is solved with the tuned parameters. In all presented results
we follow the generally accepted practice of tuning multiple
versions with SMAC and selecting the best one based on the
training performance. In our case we present both the result
of the best found SMAC parameters, and the average perfor-
mance of the six parameterizations we trained. We refer to
these as SMAC-VB and SMAC-Avg, respectively. Note that
in this case SMAC-VB is equivalent to running all 6 tuned
versions of SMAC in parallel on the same number of cores
as are available to ReACT.

For our evaluations, we compare two versions of ReACT.
In the first, we assume that no information is known about
the solver beforehand, and thus all the initial parameteri-
zations are generated at random. We refer to this case as
ReACT-cold. We also test ReACT-warm, where one of the
initial parameterizations contains the default settings.

To avoid presenting a result due to a lucky starting param-
eterizations or random seed, we run each version of ReACT
three times, and present the average of all three runs in the
plots and tables of this section. Figure 2 summarizes the re-
sults on the regions datasets. In all these plots, first note that
Figure 2a presents the cumulative average time per instance
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for the scenario, where the number of goods continuously in-
creases with each instance. Note that the default curve rises
steadily with each new instance. This is because as the num-
ber of goods increases, the difficulty of the problem also in-
creases, and the default parameters are unable to adapt. Al-
ternatively, notice that ReACT-warm, which initially has the
default parameters as one of its starting parameters, is able
to adjust to the change and achieve a significant improve-
ment after only 150 instances. Even when the initial param-
eters are chosen at random, ReACT-cold is able to quickly
achieve a level of performance such that the cumulative av-
erage outperforms the default in only 400 instances.

Figures 2c and 2e tell a similar story. In each case within
observing 200 to 400 instances either version of ReACT is
able to overtake the performance of default CPLEX param-
eters. Studies on the median runtime of instances follow a
very similar trend to the curves in Figures 2a, 2c, and 2e.
The fact that ReACT comes so close to the performance of
SMAC with such a simple approach, in which the next pa-
rameterization is selected completely at random, bodes well
for future iterations of real-time tuning.

The true benefit of ReACT is visible clearly in Figures 2b,
2d, and 2f. These figures present the cumulative amount of
time saved by the associated methodology over using the de-
fault parameters. After observing the corresponding cumu-
lative average time, it is no surprise that the savings continu-
ously improve with each newly observed instance. What we
also observe at first glance is that the parameters found by
ReACT perform as well as those for a typical result after a
2-day SMAC run. And ReACT seems not that much worse
than the SMAC-VB. This observation, however, is a bit mis-
leading. Recall that in order to find the SMAC parameters,
a 2-day training period is essential. During this time a com-
pany would be forced to use the default parameters, which
clearly do not scale. If we consider that on average instances
arrive continuously, in the time it took to train SMAC, an-
other 800 instances would have gone by. However, with Re-
ACT, good parameters are found throughout the testing pe-
riod. In fact, we are able to definitively tune over 60 param-
eters in real-time with minimal overhead and achieve a per-
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Figure 2: Cumulative average runtime and cumulative savings of techniques on the three permutations of the regions dataset.
On all plots, the x-axis specifies the total number of observed instances. For (a), (c), and (e), the y-axis specifies the solution
time in seconds. The plots (b), (d), and (f) show the time saved over the default parameterization of CPLEX, with the y-axis

being the number of seconds saved so far.
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(d) Cumulative time savings on dataset with random ordering
of instances.

Figure 3: Cumulative average runtime and cumulative savings of techniques on the arbitrary dataset. On all plots, the x-axis
specifies the total number of observed instances. For (a) and (c) the y-axis specifies time in seconds. Plots (b) and (d) show time
saved over the default parameterization of CPLEX, with the y-axis being the number of seconds saved so far.

formance drastically better than default. We also achieve a
performance on par with the average SMAC run.

Furthermore, let’s hypothetically assume that after we ob-
serve the first 200 instances, no new instances arrive for the
next two days. This is an unlikely scenario, but it allows
us to definitively show the computational cost of the train-
ing in Figures 2b, 2d, and 2f in the form of SMAC VB-inc
and SMAC Avg-inc. Here, we clearly see that even after ob-
serving the remaining 1,800 instances, parameters found by
SMAC don’t offset the upfront cost of finding them. ReACT
though, finds its parameters with no temporal overhead.

Note also that this means that although SMAC VB-inc ap-
pears to steadily converge on ReACT, it may not be indica-
tive of the long term behavior. ReACT continuously discov-
ers better parameters as it progresses and is likely to even-
tually find parameters better than those of SMAC while the
parameters which SMAC uses remain unchanged.

Additionally, it cannot be said that SMAC is not using
as much resources as ReACT. As was stated in its original
paper, SMAC is known to not always return a good parame-
terization. To address this, several versions have to be tuned
in parallel, with the best performing one on validation in-
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stances being the finally selected set. Thus, training SMAC
takes as many cores as are currently utilized by ReACT.

Figure 3 shows the plots on arbitrary auctions for a ran-
dom ordering of incoming instances and the scenario where
the number of goods increases with each subsequent in-
stance. Due to space constraints the bids sorted plot is omit-
ted, however, it exhibits similar behaviour to that of the
goods ordered dataset. Note that the cold-started ReACT is
slower in finding a parameter set that outperforms the de-
fault, yet even on these harder instances the gains become
evident. And just like in the regions scenarios, the upfront
tuning costs necessitated by SMAC are hard to overcome.

As an alternative view of the results, Table 1 presents the
amount of cumulative time saved by each tuning approach
over the default parameters. The numbers are in thousands
of seconds. In all cases, ReACT is able to outperform de-
fault parameters and is on a par with SMAC Avg. Given the
fact that the CPLEX solver has been hand tuned by experts
for over a decade and SMAC is the current state of the art,
this is an encouraging feat. Interestingly, for the case where
the new regions instances arrive in a random order, ReACT
overtakes the performance of the average SMAC parameter



Table 1: Cumulative amount of time saved over the default CPLEX parameters in thousands of seconds after n instances have
been solved. Three orderings of the regions and arbitrary datasets are shown: random, in which instances are processed in a
random order; sorted goods, where the number of goods in each subsequent instance is monotonically increasing; and sorted
bids, in which the number of bids of each new instance is monotonically increasing.

Regions Random After n Instances Arbitrary Random After n Instances

500 | 1000 | 1500 | 2000 350 | 700 | 1050 | 1400
SMAC Avg. 12 31 54 78 || SMAC Avg. 12 39 65 93
SMAC Virtual Best 29 77 131 183 || SMAC Virtual Best 24 78 130 185
SMAC Virtual Best (inc.) -144 -96 -42 11 || SMAC Virtual Best (inc.) -149 | 95 -43 12
ReACT Cold-start 21 66 122 181 || ReACT Cold-start 20 | -17 -7 15
ReACT Warm-start 28 69 118 172 || ReACT Warm-start 17 | 43 68 93
Regions Goods Sorted (Asc) After n Instances Arbitrary Goods Sorted (Asc) Affer n Instances

500 | 1000 | 1500 | 2000 350 | 700 | 1050 | 1400
SMAC Avg. 18 65 123 192 || SMAC Avg. 13 40 60 81
SMAC Virtual Best 29 106 212 345 || SMAC Virtual Best 22 74 120 166
SMAC Virtual Best (inc.) -144 -66 39 172 || SMAC Virtual Best (inc.) -151 | -98 -53 -7
ReACT Cold-start 6 47 110 192 || ReACT Cold-start -17 | -14 5 27
ReACT Warm-start 15 54 113 190 || ReACT Warm-start 20 48 68 84
Regions Bids Sorted (Asc) After n Instances Arbitrary Bids Sorted (Asc) After n Instances

500 | 1000 | 1500 | 2000 350 | 700 | 1050 | 1400
SMAC Avg. 24 65 113 160 || SMAC Avg. 6 33 64 94
SMAC Virtual Best 42 118 202 282 || SMAC Virtual Best 15 79 158 224
SMAC Virtual Best (inc.) -130 -54 30 109 || SMAC Virtual Best (inc.) -158 | -93 -15 51
ReACT Cold-start 13 60 121 180 || ReACT Cold-start 20 | -14 16 46
ReACT Warm-start 13 52 105 160 || ReACT Warm-start 9 34 63 95

set and is close to that of SMAC VB. This is likely because
the first 200 randomly sorted instances tend to be harder
in general, so two days might not be enough to fully tune
SMAC. However, ReACT is not affected by this as it does
not require initial offline tuning.

It is interesting to note that, while we continuously ob-
serve new potential parameterizations that occasionally win
the tournament, in all our scenarios there is usually one pa-
rameter set that the solver continuously comes back to two
thirds of the time. This means that ReACT quickly finds a
good parameterization to use as its core, while occasionally
taking advantage of some parameterization getting lucky.
The fact that nothing was able to kick this core one out, is
also a testament that the scoring metric we use is fair yet re-
silient to noise. This is again confirmed by stating that for
warm start ReACT, in all observed cases, the default param-
eters are thrown out after at most 300 instances.

Conclusion

The paper introduces a novel algorithm configuration
methodology that searches for improving parameters as it
solves a stream of new instances. A typical situation in the
real world where solvers must continuously tackle problems
as part of a decision support systems. By taking the changes
in problem structure into account on the fly, Real-time Al-
gorithm Configuration through Tournaments (ReACT) alle-
viates the need for the expensive offline, train-once tuning.
ReACT offers a simple way for companies or researchers
to integrate algorithm configuration into their systems with-
out needing large amounts of extra computational power. We
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achieve this by leveraging the multi-core architecture that is
becoming prevalent in modern computers. Running several
parameterizations in parallel, we can terminate poorly per-
forming parameter configurations as soon as a solution is
found. We also highlight that even though we restrict our
experiments to using an eight core machine, the true power
of this approach is that it will continue to improve as more
cores become available.

In this paper we presented an initial approach that chooses
the next parameter set to try at random, which is able
to achieve marked improvements over the default parame-
ters. As future work, there are a number of interesting and
promising directions that can be pursued. For example, in-
stead of generating the setting of a new parameterization
randomly, one can employ a model-based approach similar
to that of SMAC (Hutter, Hoos, and Leyton-Brown 2011), or
choose a parameter setting that is maximally different from
anything else that has been tried so far. Instead of terminat-
ing all runs as soon as one configuration is finished, an on-
line tracker can dynamically determine if the current run is
significantly faster than expected. If so, it can allow a small
amount of additional time for the other configurations to fin-
ish, and thus gain a better view of the dominance relation
between configurations. Instead of the direct factor of two
measure for dominance, an alternate ratio can be used, not
to mention a full statistical test. All these, and many other
approaches have the potential to further strengthen our re-
sults. This paper is but the first necessary step that lays the
foundation of this line of research.
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