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Abstract

Unit propagation (UP) based method are widely used in
Branch and Bound (BnB) Max-SAT solvers for detecting dis-
joint inconsistent subsets (IS) during the lower bound (LB)
estimation. UP consists in assigning to true (propagating) all
the literals which appear in unit clauses. The existing imple-
mentations of UP only consider the first unit clause causing
the assignment of each variable, thus the propagations must
be done and undone chronologically to ensure that all the unit
clauses are properly exploited. Max-SAT BnB solvers trans-
forms the formulas to ensure IS disjointness. These transfor-
mations remove clauses from the formula thus propagations
are frequently undone. Since the propagations are undone in
chronological order, many useless unassignments and reas-
signments are performed. We propose in this paper a new unit
propagation scheme which considers all the unit clauses caus-
ing the assignment of the variables by UP. This new scheme
allows to undo propagations in a non-chronological way and
thus it reduces the number of redundant propagation steps
made by BnB solvers. We also show how the information
available with this new scheme can be used to influence the
characteristics of the IS built by BnB solvers. We propose a
heuristic which aims at reducing their size, and thus improv-
ing the quality of the LB estimation. We have implemented
the new propagation scheme as well as the IS building heuris-
tic in our solver MSSOLVER. We present and discuss the re-
sults of the experimental study we have performed.

Introduction

The Max-SAT problem consists in finding, for a given CNF
formula, a Boolean assignment of the variables of this prob-
lem which maximizes (minimizes) the number of satisfied
(falsified) clauses. This NP-hard problem (Papadimitriou
1994) is the optimization version of the SAT problem. It has
a wide range of applications since many problems can be
expressed as Max-SAT instances in both theoretical (Max-
Clique, Max-Cut, etc.) and real-life (routing (Xu, Rutenbar,
and Sakallah 2002), bioinformatics (Strickland, Barnes, and
Sokol 2005), etc.) domains. In the weighted version of the
Max-SAT problem, a weight is associated to each clause and
the goal is to find an assignment which maximizes (min-
imizes) the sum of the weights of the satisfied (falsified)
clauses. There are other variants of Max-SAT (partial and
weighted partial) which are not considered in this paper.
Among the complete methods for solving Max-SAT,

Branch and Bound (BnB) algorithms (e.g. WMAXSATZ (Li
et al. 2009; Li, Manya, and Planes 2006; 2007)) have shown
there efficiency, especially on random and crafted instances.
One of the most critical components of BnB solvers is the
estimation of the lower bound (LB). On the one hand it is
applied very often and thus it takes a large part in the solvers
execution time and on the other hand the quality of the LB
estimation leads the backtrack and thus determines the num-
ber of explored nodes of the search tree.

The LB estimation consists in counting the weights of the
clauses which will be falsified when extending the current
partial interpretation. To do so, efficient BnB solvers use
unit propagation based methods to detect disjoint inconsis-
tent subsets (set of clauses which cannot be all satisfied).
Each detected inconsistent subset (IS) is then transformed
to ensure it will be counted only once. The transformations
applied on IS have the particularity to remove the IS clauses
from the formula. Consequently, propagated variables must
be frequently unset.

To the best of our knowledge, all the existing Max-SAT
implementations using unit propagation store only the first
clause (first predecessor) causing the propagation of each
variable (the others are simply ignored). When such a clause
is removed from the formula, the propagated variable must
be unset. To ensure that any other previously ignored vari-
able’s predecessor is now considered, all the assignments
made after the variable propagation must also be undone.
Thus, the propagations are undone in reverse chronological
order. In the Max-SAT context, unit propagation is inten-
sively used and the clauses are frequently removed from the
formula. Thus this scheme can cause many useless redun-
dant propagation steps.

We first present in this paper a new propagation scheme
which takes into consideration all the propagation sources
of the variables rather than only the first one as it is usually
done. To the best of our knowledge, this subject has only
been studied in the SAT context from a theoretical point of
view (Van Gelder 2011) and in a very limited way for im-
proving the backjump level (Audemard et al. 2008) of Con-
flict Driven Clause Learning SAT solvers (Marques-Silva
and Sakallah 1999). This propagation scheme allows solvers
to maintain propagated literals in a non-chronological way
and thus to make less useless redundant propagation steps.
We discuss of the advantages and drawbacks of this scheme



and present its implementation in a BnB Max-SAT solver. To
the best of our knowledge, the multiple predecessors scheme
(MPS) has never been implemented before, neither for SAT
nor Max-SAT. In the second part of this paper, we propose
to exploit the information available with MPS to reduce the
size of the IS build by BnB solvers. We present a heuristic
which choose among the predecessors of the variables which
participate to the conflict the ones which must be added to
the IS. Eventually, we present and discuss the experimental
study we have performed.

Definitions and Notations

A weighted formula ® in conjunctive normal form
(CNF) defined on a set of propositional variables X =
{x1,...,z,} is a conjunction of weighted clauses. A
weighted clause c¢; is a weighted disjunction of literals and
a literal [ is a variable x; or its negation Z;. Alternatively,
a weighted formula can be represented as a multiset of
weighted clauses & = {¢1,..., ¢} and a weighted clause
asatuple ¢; = ({l;,,..., 0, },w;) with {{;,,...,1;, } aset
of literals and w; > 0 the weight of the clause. Unweighted
formulas and clauses are weighted ones with all the clause
weights set to 1. We denote the number of clauses of ® by
|®| and the number of literals of ¢; by |c;|.

An assignment can be represented as a set I of literals
which cannot contain both a literal and its negation. If x; is
assigned to true (resp. false) then x; € I (resp. T; € I).
I is a complete assignment if |I| = n and it is partial
otherwise. A literal [ is said to be satisfied by an assign-
ment [ if [ € I and falsified if I € I. A variable which
does not appear either positively or negatively in [ is unas-
signed. A clause is satisfied by I if at least one of its lit-
erals is satisfied, and it is falsified if all its literals are fal-
sified. By convention, an empty clause (denoted by 0J) is
always falsified. A subset ¢ of ® is inconsistent if there
is no assignment which satisfies all its clauses. For a unit
assignment I = {l}, we denote by ®|; the formula ob-
tained by applying I on ®. Formally: ®|; = {c¢; | ¢; €
O {l,l}Nc; =0} U {c;/{l}|¢c; € ®,l € ¢;}. This nota-
tion can be extended to any assignment I = {l1,l3,...,l;}
as follows: ®|;r = (... ((®lq,3)lq1.3) - - - lg1,3)- Solving
the weighted Max-SAT problem consists in finding a com-
plete assignment which maximizes the sum of the weights
of the satisfied clauses of ®. Two formulas are equivalent
for (weighted) Max-SAT iff they have the same sum of fal-
sified clause weights for each assignment.

Inconsistencies Detection and Handling

BnB solvers explore the whole search space and compare,
at each node of the search tree, the current sum of the fal-
sified clause weights plus an (under-)estimation of the ones
which will become falsified (the lower bound, LB) to the
best solution found so far (the upper bound, UB). If LB >
UB, then no better solution can be found by extending the
current branch and they perform a backtrack. The estima-
tion of the remaining inconsistencies is critical in two ways.
Firstly, it is applied very often and its computing time has an

important impact on a solver’s efficiency. Secondly, its qual-
ity determines the number of explored nodes. Simplistically,
this estimation can be divided into two distinct (but closely
linked) parts: (1) the detection of the disjoint inconsistent
subsets of clauses and (2) their treatment. We describe these
two elements in the rest of this section.

Detecting Inconsistent Subsets

Recent BnB Max-SAT solvers apply unit propagation (UP)
based methods to detect inconsistent subsets (more precisely
simulated unit propagation (Li, Manya, and Planes 2005)
and failed literals (Li, Manya, and Planes 2006)). For each
unit clause {I}, they remove all the occurrences of [ from the
clauses and all the clauses containing [. This process is re-
peated until an empty clause (a conflict) is found or no more
unit clause remains. Unit clauses {{} are called [ predeces-
sors and the clauses which are reduced by [ are its succes-
sors. When an empty clause is found by UP, an inconsistent
subset (IS) of the formula can be built by analyzing the prop-
agation steps which have led to the conflict.

Transforming Inconsistent Subsets

Once detected by UP, IS are transformed to ensure that they
are counted only once. Two transformations are actually ap-
plied by recent BnB solvers. The first one consists in simply
removing the clauses of the IS from the formula. It is fast but
the resulting formula is not equivalent to the original one and
may contains less inconsistent subsets. The second transfor-
mation is close to the clause learning mechanism of modern
SAT solvers (Marques-Silva and Sakallah 1999). It consists
in applying several max-resolution steps (the Max-SAT ver-
sion of the SAT resolution (Bonet, Levy, and Manya 2007;
Heras and Larrosa 2006; Larrosa and Heras 2005)) between
the clauses of the IS. Note that both these transformations
remove the original clauses of the IS from the formula.

First Predecessor Scheme

To the best of our knowledge, all the existing Max-SAT
solvers (as well as the SAT ones) use the first predecessor
scheme (FPS): they only consider the first predecessor of
each propagated variable. They memorize the propagation
steps by an implication graph, which can be defined as fol-
lows (see for instance (Marques-Silva and Sakallah 1999)
for a definition in the SAT context).

Definition 1 (Implication Graph). Let ® = {c1,...,cn}
be a (weighted) CNF formula defined on a set of Boolean
variables X = {x1,...,x,} and I a partial assignment
(with both decisions and propagations) of the variables of
X. We assume that there can be only one falsified clause, i.e.
UP is stopped when a conflict is discovered. An implication



graph is a directed labeled acyclic graph G = (V, A) with:

1% {teI} U{O, s.t. c; € B, |c;| =1} U
{Oif 3c; € D falsified by I}

A = {(,l',cg) s.t. e, € D which is reduced by | and
which is the first predecessor of I} U
{(Oc,, 1, cp) s.t. Iep, = {I} € @} U
{(1,0,¢q) s.t. 3cq € ® falsified by I and 1 € c,}

We use the two special nodes { and U to represent respec-
tively the initial vertices of the unit clauses and the terminal
one of the falsified clause. For clarity reason, we hide the
nodes <) in the graphical representation of the implication
graphs. Each arc is labeled with the clause it comes from.

As we have seen in the previous section, BnB Max-SAT
solvers frequently remove clauses from the formula causing
the unassignment of propagated variables. If the first pre-
decessor clause of a propagated literal [ is removed then [
must be unassigned, whether or not it has other predecessors.
Moreover, all the propagations which have been made after-
wards must be undone to ensure that an eventual other prede-
cessor of [ is not ignored. Among the undone propagations,
some may still have a valid predecessor after [ unassignment
and will be immediately re-propagated. Thus FPS can cause
unnecessary unassignments and reassignments. The follow-
ing example illustrates this situation.

Example 1. Ler us consider the unweighted formula

Oy = {ci,o o c0) with e = {an}, ¢ = {71, 29},
s = {T1, %23} ca = {Z2,mu} s = {as}
ce = {Ts,x2}, o7 = {we} cs = {Te,27}, o =

{Tg, 23} and c19 = {Ts,T7,T3}. The application of
UP on &, (with the UP* ordering (Li, Manya, and
Planes 2006)) leads to the sequence of propagations <
21Qcq, 2Qcs, . .., x5Qcs, x4Qcr, x7Qcg > (meaning that
x1 is propagated by clause ci, then xo by co, etc.). The
clause c1g is empty. Fig. 1 shows the corresponding impli-
cation graph. Note that the clauses cg and cog, which are
predecessors (but not the first ones) of respectively xo and
x3 are not represented in the implication graph. The set
of clauses 1 = {c1,ca,c3,¢7,¢8,c10} wWhich have led by
propagation to the conflict (i.e. to the empty clause cyg) is
an inconsistent subset of ®1. If the clauses of i1 are re-
moved from the formula, then all the propagations caused
by these clauses must be undone. The less recent ones is
x1Qcy and since the propagations are undone in reverse
chronological order in FPS, all the propagations are un-
done. We obtain the formula ®| = {cy, ..., cg, o}, and the
application of UP on ® leads to sequence of propagation
< x5Qcs, £2Qcq, x4Qcy >. Note that these three variables
have been consecutively unassigned and reassigned.

Multiple Predecessors Scheme

To the best of our knowledge, all the Max-SAT complete
solvers use the first predecessor scheme (FPS): they only
consider the first unit clauses causing the propagation of the
variables. We propose in this section to consider all the pre-
decessors of the variables. The resulting multiple predeces-
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Figure 1: Implication graph of the formula ®; from Exam-
ple 1. Nodes are the propagated literals and arrows are la-
beled with the clauses causing the propagations. Note that
the clauses cg and cg are not the first predecessors of the
variables they propagate (respectively x5 and z3) thus they
are not represented in the implication graph.

sors scheme (MPS) deeply changes the way the unit propa-
gation is applied by Max-SAT solvers. In MPS, all the pre-
decessors of each variables are stored rather than only the
first one. Propagated variables are undone only when they
have no more predecessor. This way, propagations can be
undone in a non-chronological order and fewer unnecessary
propagation steps are performed. Moreover, the conflicts are
detected earlier in the multiple predecessors scheme. If a not
yet propagated variable has predecessors of both polarities,
then at least one of them will be falsified when assigning the
variable.

In the rest of this section, we first give some basic defi-
nitions on the multiple predecessors scheme and we discuss
its advantages and drawbacks and its implementation in BnB
Max-SAT solvers.

Full Implication Graph

In a FPS based solver, the sequence of propagation steps is
usually modeled by the implication graph: each instantiated
variable is represented by a node (root nodes represent the
decisions while the other nodes represent the propagations)
and arrows link the reasons of the propagations (the falsified
literals of the clauses) to their consequences (the propagated
literals). Such a representation is not suited to a MPS based
solver since it is not possible to distinguish several prede-
cessors of a literal from the multiple reasons (the falsified
literals) of a single one. We thus define a new structure to
model the propagation steps in MPS.

Definition 2 (Full Implication Graph). Let & =
{c1,...,cm} be a (weighted) CNF formula defined on a set
of Boolean variables X = {x1,...,x,} and I a partial as-
signment (with both decisions and propagations) of the vari-
ables of X. We assume that there can be only one falsified
clause, i.e. UP is stopped when a conflict is discovered. A
full implication graph is an AND/OR directed acyclic graph
G = (Vor, Vand, A) where V,,. is the set of the OR nodes
which represent the assigned variables, V,,q is the set of
the AND nodes which represent the unit clauses and A is the
set of arrows which link the unit clauses (the predecessors)
to the variables they propagate and the assigned variables



to the clause they reduce (the successors). Formally:

Vor = {lel}U{lst 3c; ={l} € ?|r}
Vana = {ck € ® s.t. ¢ contains only one literal not
falsified by I}
A = {(l,¢cp) st ¢cp € Vana is a successor of l € I}

{(cq,1) s.t. ¢g € Vyna is a predecessor of | € I}

Example 2. Let us consider the formula ®1 from Ex-
ample 1. The application of UP with MPS leads to the
same six first propagation steps done in Example 1: <
21Qcy, x2Qco, ..., x5Qcs, xgQcy >. At this point, variable
x7 has two predecessors of opposite polarities, cs and cy,
which cannot be both satisfied. Fig. 2 shows the full impli-
cation graph obtained in a MPS based solver. One can note
that the second predecessors of xo and x3 (respectively cg
and cy) are represented in the full implication graph. As in
the previous example, we can build the inconsistent subset
1 = {e1,¢a,c¢3,C7,C8, 10} by taking the first predecessor
of each propagated variable which have led to the conflict. If
11 is removed from the formula, the variables x, x3, x¢ and
x7 have no more predecessor and must be unset. Note that
x5, To and x4 remain propagated since they all have still at
least one predecessor.
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Figure 2: Full implication graph of the formula ®; from
Example 2. The circled nodes are the propagated variables
while the uncircled nodes are unit clauses. Note that con-
trary to the implication graph of Fig 1, the predecessors cg
of x5 and cgy of x5 are represented.

Cycle Problem

The multiple predecessors scheme has the drawback of pro-
ducing cycles in the full implication graph. There is a cycle
in the full implication graph when a propagated variable x;
causes, by one or more propagation steps, a new unit clause
to be one of its own predecessors. In such a case, when all
the other predecessors of x; are removed, x; remains prop-
agated. However, falsifying z; does not falsify any clause,
because the propagations depending on z; are undone and
so is its own remaining predecessor. Thus, taking these cy-
cles into account leads to false conflict detection.

Example 3. Let &5 = {c1,co,...,cs} be a CNF formula,
with cl1 = {Il}, Co = {132}, c3 = {fl,zg}, Cqy = {fg,,fl},

cs = {T3,x4} and cg = {T2,T4}. x4 has predecessors of
both polarities and thus ®4 is inconsistent. Fig. 3 shows the
full implication graph of ®o. If we remove ci from ®5 to
obtain @), x1 is still propagated since it has a predeces-
sor ¢4, and the conflict is still present in the full implication
graph (see Fig. 4). However, ®), is not inconsistent anymore
and the assignment I =< %1,x2,%3,T4 > satisfies all its
clauses.
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Figure 3: Full implication graph of the formula ®5 from Ex-
ample 3. A cycle is present between z; and z3 and it is kept
up by clause ¢; which propagates x.
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Figure 4: Full implication graph of the formula &, from Ex-
ample 3. Again, the cycle between x; and x3 is present but
it is not kept up by any other predecessors.
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A workaround to avoid the detection of false conflicts is to
ignore the predecessors which may create cycles. A simple
way to do so is to use the level of the variables and clauses
in the full implication graph to ignore the reversing arrows.

Definition 3 (level in a full implication graph). The level
of a variable x; in a full implication graph can be defined as
Sollows: level(x;) =
0, if x; is a decision
maz{level(c) | ¢ predecessor of x;}, if x; is propagated
+00, otherwise
The level of a literal | is the level of its variable and the level
of a clause c; can be defined as:

level(cj) = max({level(l) |1 € c;,! falsified }) + 1

Proposition 1. The predecessor c; of a propagated variable
x; cannot create any cycle if level(x;) > level(c;).

When a new predecessor is of a higher level than the vari-
able that it propagates, then it is simply ignored. This way,
and at a low computational cost, a solver can use the multiple
predecessor scheme without the cycles drawback. It should
be noted that we tried to detect cycles by exploring the full
implication graph when a new predecessor of higher level
is added or when no more active predecessor remains (to
avoid undoing propagation if not necessary). In both cases,
the time consumed in analyzing the implication graph was
higher than its benefits.



Implementation and Complexity

We have implemented MPS as a core component of our ex-
perimental solver MSSOLVER. Each variable keeps two stat-
ically allocated lists for its positive and negative predeces-
sors. When a clause ¢; becomes a unit clause, MSSOLVER
computes its level and identifies the propagated variable x;
(the only non-falsified variable of c;). Then it adds c; to the
appropriate predecessors list of z;. The level of the variables
are computed when they are assigned. Eventually, when a
conflict is detected (a variable has predecessors of both po-
larities), MSSOLVER builds the corresponding inconsistent
subset by analyzing the full implication graph and trans-
forms it as other performing BnB solvers do. Propagated
variables are unset only when they have no more predeces-
SOT.

MPS does not change the overall complexity of our al-
gorithm. Since there cannot be more predecessors than the
number of clauses of the instance, the worst case complex-
ity of the IS computation mechanisms (unit propagation, in-
consistent subset building and transformation) remains un-
changed. In practice however more clauses will be examined
during the unit propagation process and when building the
inconsistent subset. Moreover, the underlying data structures
must be adapted to support non-chronological propagations.

Reducing the Inconsistent Subset Sizes

We present in this section how MPS can be used to influ-
ence the characteristics of the inconsistent subsets built by
BnB solvers. The structure and properties (size, size of their
clauses, etc.) of the inconsistent subsets generated when an-
alyzing conflicts have an important impact on the solver’s
ability to detect remaining conflicts. Especially, reducing
the size of the IS allows more clauses to be available for
unit propagation. It may improve the estimation of the lower
bound and thus reduce the number of explored nodes of the
search tree.

When FPS based solvers find a conflict (an empty
clause), they build a corresponding inconsistent subset (Al-
gorithm 1) by analyzing the sequence of propagation steps
which have led to the conflict. For each propagated vari-
able of this sequence, its predecessor is added to the in-
consistent subset. Since only the first predecessor of each
propagated variable is known, only one inconsistent subset
can be built. The following functions are used in the al-
gorithm: select_and.remove_variable (Q)) selects
and removes the variable of higher level from the queue @)
and first_predecessor (v) return the first predeces-
sor of a variable v.

MPS based solvers can choose, for each variable which
has led to a conflict, the predecessor they add to the corre-
sponding inconsistent subset. Thus MPS based solvers can
influence the structure of the generated inconsistent subsets.
We propose here a very simple heuristic (Algorithm 2) to
select the predecessors used in the inconsistent subsets. For
each propagated variable which leads to the conflict, the
solver adds to the inconsistent subset the predecessor which
adds the fewest new propagated variables to the queue Q.
We use the following functions: predecessors (x,pol)

Algorithm 1: Inconsistent subset building in a first predeces-
sor scheme
Data: A CNF formula ®, an assignment / and a falsified
clause c.
Result: /.S an inconsistent subset of ®.

1 begin
1S +{c};
Q < {propagated variables of c};
while Q # 0 do
v <—select_and_.remove_variable (Q) ;
c<4first_predecessor (v);
1S + IS uU{c};
Q@ + Q U {propagated variables of ¢/{v}};

9 return /S

® N AU R W N

returns the sets of the predecessors of the variable x with
polarity pol, select_smallest_couple (A,B) returns
the couple of clauses (c1, ¢2) from two sets of clauses A, B
such as V(¢! ,ch) € Ax B,|e; Ues| < |¢j Udh| and value
(I,v) return the value of the variable v in the assignment
1. We refer to this heuristic as the smallest intermediary re-
solvent (SIR) heuristic in the rest of this paper. It should be
noted that the SIR heuristic does not necessarily produces
the smallest possible resolvent.

Algorithm 2: Inconsistent subset building in a multiple prede-
cessors scheme with the smallest resolvent heuristic
Data: A CNF formula &, an assignment / and a variable v
with predecessors of both polarities.
Result: /.S an inconsistent subset of ®.

1 begin

2 (c1,c2) =select_smallest_couple (
predecessors (v,true), predecessors (v,
false));

3 1S + {c1,¢2};

4 Q <+ {propagated variables of ¢; } U
{propagated variables of ¢ };

5 while Q # 0 do

6 v <—select_and_.remove_variable (Q) ;

7 (Q,c) +select._smallest_couple ({Q},
predecessors (v, value (I,v)));

8 IS + ISu{c}

9 Q@ < Q U {propagated variables of c/{v}};

10 return /.5

Example 4. Let us consider the formula ® from the Ex-
ample 1. In a first predecessor scheme (Fig. 1), the in-
consistent subset computed from the conflict by consider-
ing only the first predecessors of each propagated variables
is Y1 = {c1,c¢a,c3,¢7,C8,C10}. In a multiple predecessors
scheme (Fig. 2), the smallest resolvent heuristic works as fol-
low. It start by adding to the queue Q) the falsified literals (x3
and x7) of the predecessors of both polarities (cg and cip)
of the conflicting variable x7. Then, it picks the variables of
Q = {3, 26} of higher level, x3. x5 has two predecessors
c3 and cy. The heuristic chooses the predecessor which adds



the less new literals to the queue Q: cg. Only one literal xg
remains in QQ, which have a single predecessor c7. Thus the
inconsistent subset built is Vo = {c7,...,c10} which con-
tains two clauses less than 1. These clauses can be used to
continue applying unit propagation and can potentially lead
to the detection of new conflicts.

Experimental Study

The propagation scheme is an important part of BnB solvers.
It determines the way the propagations are done and undone,
how the conflicts are analyzed and the underlying data struc-
tures. In our MPS implementation these parts represent 40
to 50% of the source code and in average 60 to 70% of
the execution time. The performances of a variant of our
solver implementing FPS would be highly dependent of the
quality of the implementation. Rather than comparing our
solver to such a variant, we have evaluated the potency of
the multiple predecessor scheme by three set of experiments.
We have first estimated the percentage of propagation steps
saved thanks to MPS. Then, we have evaluated the impact
of the IS building heuristic on the solver behavior. Finally,
we have compared our solver to the best performing BnB
solvers of the last Max-SAT Competition.

The tests presented in this section are performed on all the
random and crafted instances of the Max-SAT and Weighted
Max-SAT categories of the Max-SAT Competition 2013,
We include neither (weighted) Partial Max-SAT instances
nor industrial ones in our experiments. Even if the results
presented in this paper can naturally be extended to these
instance categories, our solver MSSOLVER does not handle
them efficiently. A performing BnB solver for (weighted)
Partial Max-SAT must handle both the soft and the hard parts
of the instances. Thus, it must include SAT mechanisms
such as nogood learning, activity-based branching heuris-
tic or backjumping and our solver currently does not. For
the industrial instances, solvers must have a very efficient
memory management. To the best of our knowledge, none
of the best performing BnB solvers (including ours) han-
dles huge industrial instances efficiently. The experiments
are performed on a cluster of servers equipped with Intel
Xeon 2.4 Ghz processors, 24 Gb of RAM and running un-
der a GNU/Linux operating system. The cutoff time for each
instance is fixed to 1800 seconds.

Measuring of the Saved Propagations

We have first estimated the percentage of propagation steps
saved thanks to MPS. In a dedicated variant of our solver, we
have kept in parallel of MPS a chronologically ordered list
of the propagations to simulate the first predecessor scheme.
When the predecessor of a propagated variable is remove
from the formula, the variable would have been unassigned
in a FPS based solver. In our solver, if the variable has more
than one predecessor, then it is not unassigned. That’s what
we call the “directly” saved propagation steps. We have also
measured the propagation steps which would have been un-
done due to the reverse-chronological order of the unassign-
ment by counting the number of propagated variables which

! Available from http://maxsat.ia.udl.cat:81

still have predecessor and which have been propagated after
the less recent propagation to be undone. We call these last
saved propagation steps “indirect”.

Let us first recall that unit propagation is used very inten-
sively by BnB Max-SAT solvers. In MSSOLVER, in average
almost 2000 propagation steps are performed at each deci-
sion and the total average number of propagation steps per
solved instance is roughly 60 million. The percentage of di-
rect and indirect saved propagation steps is shown in Table 1,
column PS. In average, MPS reduce of 24.1% the number of
propagation steps made by MSSOLVER. The reduction can
go up to almost 60% on some instance classes. Note that the
direct propagation steps saved are in average inferior to 1%,
while the indirect ones are greater than 23%.

IS Building Heuristic

We have implemented three variants of our solver
MSSOLVER which differ by the way they choose the propa-
gated variable predecessors when they build the inconsistent
subsets:

e MSSOLVER picks the first predecessor.
e MSSOLVER picks randomly one predecessor.

e MSSOLVER? picks predecessors according to the SIR
heuristic presented above.

Table 1 compares the results obtained with these three
variants. We can first observe that the SIR heuristic improves
slightly the LB estimation, thus MSSOLVERY make less de-
cisions than the two other variants (-3% in average, columns
D). Consequently, the average solving time is also reduced
(respectively -7.3% and -9,2% compared to the ones of MS-
SOLVERY and MSSOLVER®E, columns T).

The gain in solving time, although being significant, is
not outstanding. A first possible explanation is that the SIR
heuristic is naive. A more complex IS building heuristic may
reduce more efficiently the IS sizes and thus improve further
the solving time. Another possible explanation lie in the fact
that the impact of the transformed IS inner structure on the
unit propagation process is not well known. The IS size may
not be the only important criterion to consider when choos-
ing the propagated variables predecessors which are added
to the IS. A thoughtful study of these interactions may lead
to establishing a more efficient IS building heuristic.

Comparison with State of the Art

We have compared the variant of our solver using the
SIR heuristic, MSSOLVER*, to the two best perform-
ing BnB solvers of the Max-SAT Competition 2013:
WMAXSATZ2009 and wMAXSATZ2013 (Li et al. 2009;
Li, Manya, and Planes 2006; 2007). The results (Table 2)
show that our solver is quite competitive. It solves 41
instances more than WMAXSATZ2009 and 7 more than
WMAXSATZ2013. In terms of solving time, our solver is re-
spectively 58% and 31% faster. It should be noted however
that MPS is not the only specificity of our solver over the
state of the art ones. These results show that a solver using
MPS can be competitive with the state of the art ones.



Table 1: Comparison of the IS building heuristic in MSSOLVER. The two first columns give the instances classes and the
number of instances per class. The third column PS gives the average percentage of estimated saved propagations steps. For
each tested variant of MSSOLVER, the columns S, D and T give respectively the number of solved instances, the average number
of decisions and the average solving time. Columns marked with a star take in consideration only the instances solved by all

solvers.
. MSSOLVERT MSSOLVERT MSSOLVERT
instances classes # PS
S D* T S D* T S D* T
crafted/bipartite|100{[11.7%]|100| 34909 | 95.8 [|100| 36451 | 100.3 ||100| 37255 | 103.4
g crafted/maxcut| 67 ||10.8%|| 56 | 177964 | 44.4 || 57 | 180331 | 74.4 || 56 | 176624 | 54.1
fn random/highgirth| 82 |126.1%|| 6 |4597721(1098.6|| 6 |4639127|1113.9|| 6 [4605430|1104.2
£ random/max2sat|100|| 8.9% |[100| 38841 | 79.3 ||100| 45887 | 93.1 |[100| 52671 |105.9
£ random/max3sat|100|| 6.7% ||100| 426143 | 297.3 |[100| 438460 | 306 ||100| 437275 | 309.2
random/min2sat| 96 |[15.2%|| 96 | 979 23 (|96 1119 2.7 ||96| 1168 2.8
crafted/frb| 34 || 2.4% || 14 | 210245 | 37.5 || 14 | 212541 | 37.5 || 14 | 222651 | 39.4
9 crafted/ramsey| 15 ||54.3%|| 4 | 157478 | 56.4 || 4 | 158424 | 56.4 || 4 | 157291 | 71.5
%ﬁ crafted/wmaxcut| 67 || 43% || 62| 20317 | 31.1 || 61 | 22539 | 35.7 || 61| 19956 | 32.4
‘s random/wmax2sat|120(|58.2%||120| 3898 | 48.9 |[120| 4165 | 53.2 |[{120| 4603 | 60.5
® random/wmax3sat| 40 {|49.9%|| 40 | 44804 |122.3 || 40| 45959 | 127.5| 40| 45903 | 129.5
Total|821([24.1%|[698| 135879 | 100.3 ||698| 139803 | 108.2 {|697| 140183 | 110.5

Table 2: Comparison of MSSOLVER to the two best performing BnB solvers of the Max-SAT Competition 2013. The two
first columns give the instances classes and the number of instances per class. For each tested solver, the columns S, D and T
give respectively the number of solved instances, the average number of decisions and the average solving time.

instances classes #

S D

WMAXSATZ2009

T

MSSOLVERY
D T

WMAXSATZ2013

S D T || S

100
67
82
100
100
96

99
55
0
96
97
77

527295
850803
666713
2211487
648900

crafted/bipartite
crafted/maxcut
random/highgirth
random/max2sat
random/max3sat
random/min2sat

unweighted

268.7
97.4

288.1
381.7
185.5

99| 796983 |282.3
55| 755340 | 54.7
0 - -

100| 523266 [169.8
100{1476192(242.9
96| 22402 | 9.4

100
56
6
100
100
96

34909 | 95.8
177964 | 44.4
4597721|1098.6
38841 | 79.3
426143 | 297.3
979 2.3

crafted/frb
crafted/ramsey
crafted/wmaxcut
random/wmax2sat
random/wmax3sat

34([ 9
4
61
119

40

1379041
876667
75186
82064
328504

67
120
40

weighted

12.2

93.4

80.8
288.9
1771

14 11537566 62.8
549137 | 52.6
126254 | 73.5
81440 |134.2
257175 (130.7

14
4
62
120
40

210245 | 37.5
157478 | 56.4
19993 | 31.1
3898 | 48.9
44804 | 122.3

63
120
40

Total|821|(657| 716729

240.2

691| 541647 | 145 ||698| 135686 | 100.3

Conclusion

We have presented in the first part of this paper a new prop-
agation scheme, which takes into consideration all the pre-
decessors of the variables. With this scheme, BnB Max-SAT
solvers can apply unit propagation in a non-chronological
way and thus make less useless propagation steps. We have
shown experimentally that this scheme reduces significantly
the number of propagation steps performed by our solver
MSSOLVER.

In the second part of this paper, we have presented how
the information available with the MPS scheme can be used
to influence the characteristics of the inconsistent subsets
produced by BnB Max-SAT solvers. The experimental re-
sults obtained show that it can be efficiently used to reduce
the size of the IS and improve the LB quality.

In our opinion, the interest of the multiple predecessors

scheme is not limited to BnB Max-SAT solvers. In the fu-
ture, we will look how the information at disposal in MPS
can be used to improve both Max-SAT and SAT complete
solvers. We will also try to make our heuristic more robust
or even develop new and more efficient heuristics. We will
study the impact of the transformed IS characteristics on the
behavior of BnB solvers, and especially on the IS detection
capability.
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