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Abstract

Many speed-up techniques developed for accelerating the
computation of shortest paths in road networks, like reach or
contraction hierarchies, are based on the property that some
streets are ‘'more important’ than others, e.g. on long routes
the usage of an interstate is almost inevitable. In grids there is
no obvious hierarchy among the edges, especially if the costs
are uniform. Nevertheless we will show that contraction hi-
erarchies can be applied to grid graphs as well. We will point
out interesting connections to speed-up techniques shaped for
routing on grids, like swamp hierarchies and jump points, and
provide experimental results for game maps, mazes, random
grids and rooms.

Introduction

Efficient route planning in grid graphs is important in a wide
range of application domains, e.g. robot path planning and
in-game navigation. While many heuristics, like A*, provide
relatively fast solutions on the fly, it might be worthwhile
to allow some preprocessing to speed up query answering if
the same grid map is used multiple times. For road networks
state-of-the-art preprocessing techniques like contraction hi-
erarchies (Geisberger et al. 2008) and transit nodes (Bast et
al. 2007) enable shortest path computation in a few ms or
even ps on graphs with millions of nodes and edges. But the
structure of street graphs differs clearly from grids: Shortest
paths are almost always unique and some edges (e.g. corre-
sponding to highways and interstates) occur in significantly
more optimal paths than others. Therefore it is not obvi-
ous that such speed-up techniques carry over to grid graphs.
Nevertheless, in (Antsfeld et al. 2012) it was shown that the
idea of transit node routing can be adapted to grid graphs,
leading to a significantly improved performance on video
game maps. In this paper, we will show that contraction hi-
erarchies allow for faster path planning in grids as well.

Contraction Hierarchies (CH)

The basic idea behind CH is augmenting the graph with
shortcuts that allow to save a lot of edge relaxations at query
time. To that end, in a preprocessing phase nodes are sorted
according to some notion of importance. Afterwards the
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nodes get contracted one by one in that order, while pre-
serving all shortest path distances in the remaining graph by
inserting additional edges (so called shortcuts). More pre-
cisely, after removing a node v the distance between any
pair of neighbours u, w of v has to stay unchanged. There-
fore an edge (u, w) with proper costs is inserted if the only
shortest path from w to w is uvw. If there exists a path with
cost less than the ones of u, v, w — a so called witness path
(typically found via a Dijkstra run from u) — the shortcut
can be omitted. After all nodes have been removed, a new
graph G’ is created by adding all shortcuts to the original
graph. An edge (v, w) is called upwards if the importance {
of v is smaller than that of w (I(v) < I(w)) and downwards
otherwise. In G’ a shortest path can be subdivided into an
upward and a downward path. Therefore s-t-queries can be
answered bidirectionally, with the forward run (starting at s)
considering only upward edges and the backward run (start-
ing at t) considering exclusively downward edges. We call
the respective subgraphs containing all upwards paths start-
ing at s/ all downward paths ending in t as GT(s) /G*(t) and
the highest node wrt to [ on an s-t-path the peak.

Adaption to Grids. On the first sight, the construction of
a CH upon a grid seems to be a bad idea. Consider a 4-
connected grid, the contraction of a node would remove four
edges, but any two of these edges form a shortest path, hence
six shortcuts must be inserted. Contracting the neighbouring
nodes this effect amplifies, giving the impression that we
might end up with a quadratic number of edges in G’. But
there are two characteristics of grids preventing this: First,
optimal paths are ambiguous, but only one optimal solution
needs to be preserved. In fact, contracting the first node in a
complete 4-connected grid, only two shortcuts instead of six
have to be inserted because of ambiguity. Secondly, if the
grid is far from being complete, the holes introduce a cer-
tain kind of hierarchy as now shortest paths tend to use their
borders. Hence CH construction upon a grid might work
after all.

There are no modifications necessary to run CH on a grid,
but the preprocessing can be accelerated. Knowing the posi-
tions of the nodes in the grid, we do not have to start a wit-
ness search for u, v, w if the nodes are all in one row/column
and the summed costs of {u, v} and {v, w} comply with the
interval between u and w. Also if latter is true but not the
row/column-property, we can restrict the witness search to
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the rectangle spanned by u and w. Moreover we can plug-in
A* to accelerate the witness search in any case.

Maintaining Canonical Paths. To save energy and to enable
a natural way of moving (especially for robots), we aim for
an optimal path with the minimal number of turns, i.e. a
canonical path. But neither plain Dijkstra nor A* can guar-
antee to find such a solution if the optimal path is ambigu-
ous. To gain this ability in G’, we assign classifiers to the
shortcuts, indicating if the spanned path is pure horizontal
or vertical, has a turn in the upper left, upper right, lower
left or lower right corner, or is not trivially canonical (i.e.
more than one turn). Bridging two edges via a new shortcut
the classifier can easily be determined. As soon as a path
u, v, w is trivially canonical, it has to be optimal and we in-
sert the respective shortcut despite the possible existence of
a witness.

Lemma 1 Every trivially canonical s-t-path can be recon-
structed considering only GT(s) U G*(t).
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Proof. Let z be the turn point on the path. As s-z and ¢-z are
unique optimal paths, they can be given in CH-description.
So let p1, p2 be the peak nodes on those subpaths, w.l.o.g.
I(p1) > l(p2) and w the lowest node on the path p;-z with
l(w) > l(p2). As w-z goes downwards and z-py upwards,
the shortcut {w, pa } will be considered and inserted because
it represents a canonical path. Hence s-p; is in G 1 (s) and
p1-w-po-tin GH(t). m

This can be extended to non-trivial canonical paths and oc-
tile grids.

Connections to other Speed-Up Techniques. In (Pochter et
al. 2010) the concept of swamp hierarchies was introduced,
a swamp being a set of nodes that can be excluded a priori
from the search space for given s, ¢. In a CH-graph also the
nodes ¢ GT(s)UG*(t) are pruned directly. Nevertheless the
kind of blocked nodes differs, hence a combination of both
approaches promises further improvement. The idea of jump
points was presented in (Harabor and Grastien 2011) with a
jump point being an ’important’ point which has to be ex-
plored in the search process. Here no preprocessing is nec-
essary, but sets of nodes between on the fly computed jump
points are removed from the search space. The pruning rules
applied there are similar to what happens during the CH-
construction and they also compute canonical paths, hence
it appeals that CH can be seen as an offline jump points ap-
proach.

Experiments

We evaluated the performance of the CH-Dijkstra and CH
combined with A* as the average ratio of settled nodes by
A* and nodes settled by our approachs on several instances
extracted from http://movingai.com/, see the following ta-
ble:

mazes | rooms | game maps | random
CH-Dijkstra 52 105 4 10
CH-A* 51 120 6 15

We observe a reduction for all inputs. Interesting outcomes
are that the number of settled nodes in mazes is often be-
low the optimal path size, and that for rooms instances the
door nodes were naturally declared important in the CH-
construction. For game maps we observed mixed results,
as some inputs responded better than others. See Figure 1
for some illustrations.
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