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Abstract

Monte-Carlo search is successfully used in simulation-based
planning for various large-scale sequential decision prob-
lems, and the UCT algorithm (Kocsis and Szepesvári 2006)
seems to be the choice in most (if not all) such recent success
stories. Based on some recent discoveries in theory and em-
pirical analysis of Monte-Carlo search, here we argue that,
if online sequential decision making is your problem, and
Monte-Carlo tree search is your way to go, then UCT is un-
likely to be the best fit for your needs.

Introduction
In online sequential decision making, the agent focuses on
its current state s0, deliberates about the set of possible
courses of action from s0 onwards, and, when interrupted,
uses the outcome of that exploratory deliberation to choose
what action to perform at s0. Sampling-based, or Monte-
Carlo (MC), approximation methods, became a prominent
tool in online planning for different types of large-scale se-
quential decision problems. Using MC methods, the agent
deliberates about a model of the problem by simulating ex-
periences induced by sampled sequences of actions starting
from s0. The respective MC methods are usually referred to
as MC tree search (MCTS) algorithms (Browne et al. 2012).

The success stories of MCTS are numerous, from Markov
decision processes (MDP) (Balla and Fern 2009; Keller
and Eyerich 2012) to partially observable Markov decision
processes (POMDP) (Bjarnason, Fern, and Tadepalli 2009;
Eyerich, Keller, and Helmert 2010) to sequential multi-
person games (Gelly and Silver 2011; Sturtevant 2008;
Lorentz 2008; Winands and Björnsson 2009; Finnsson and
Björnsson 2010). Remarkably, most (if not all) such re-
cent success stories report on relying on a very specific
MCTS algorithm called UCT (Kocsis and Szepesvári 2006).
Introduced in the context of online planning for MDPs,
UCT extends the seminal MC scheme UCB1 (Auer, Cesa-
Bianchi, and Fischer 2002) from stochastic multi-armed
bandit (MAB) problems to general MDPs.

This unanimous adoption of UCT suggests its unique at-
tractiveness among various possible MCTS schemes. This
perception is probably also stratified by the fact that UCB1,
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the beating heart of UCT, is known to be optimal in a certain
context of reinforcement learning in MABs (Auer, Cesa-
Bianchi, and Fischer 2002). Somewhat surprisingly, how-
ever, when we started our journey in MCTS, we found in lit-
erature neither convincing theoretical nor convincing empir-
ical evidence for this or another superiority of UCT. In fact,
as we discuss later on, a closer inspection of various success-
ful problem solvers using UCT suggests that the marginal
contribution of UCT specifics to their success was rather
secondary. In particular, that even includes the state of the
art Go playing agents, binding of which to UCT has already
become a lore.

In what follows, we examine the chronology of the re-
markable UCT adoption, discuss the role of UCT in var-
ious success stories around it, and take a stand on what
made UCT such a popular choice in online planning. Then,
based on some recent formal and empirical results on on-
line best action identification (and, the intimately related,
“simple regret” minimization) in sequential decision prob-
lems, we communicate our position: If online sequential de-
cision making is your problem, and Monte-Carlo tree search
is your way to go, then UCT is highly unlikely to be the
best fit for your needs. We backup our position with dis-
cussing some recent MCTS algorithms that outperform UCT
both formally and (on the benchmarks that have been exam-
ined so far) also empirically. We believe that these findings
should in particular encourage the community to further ex-
pand research on MCTS techniques for sequential decision
problems.

Online Planning and UCT
While MCTS algorithms are used these days in different
types of sequential decision problems, most of them (includ-
ing UCT) were first introduced in the context of planning
and reinforcement learning in MDPs. Adaptations to more
general problem classes is usually rather direct, and thus
here we also describe things mostly in terms of (finite hori-
zon) MDPs. An MDP 〈S,A, Tr,R〉 is defined over states S,
actionsA, a stochastic transition function Tr : S×A×S →
[0, 1], and a reward functionR : S×A×S → R. In the finite
horizon setting, the reward is accumulated over some prede-
fined number of stepsH . Henceforth,A(s) ⊆ A denotes the
actions applicable in state s, the operation of drawing a sam-
ple from a distribution D over set ℵ is denoted by ∼ D[ℵ],
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U denotes uniform distribution, and JnK for n ∈ N denotes
the set {1, . . . , n}.

Setup/Algorithm Taxonomy
Our focus here is on online MCTS planning. The notion
of “online planning”, however, is somewhat ill-defined, and
thus here we explicitly specify and justify the axes along
which we distinguish between various MCTS algorithms,
and, in these terms, what type(s) of algorithms are of our
interest.

Prior knowledge. In many works, the very notion of
onlineness corresponds to “no prior (explicit or learned)
knowledge of state/action value is required”. That is, while
online algorithms can possibly exploit such a prior knowl-
edge, they remain well-defined even if no such prior knowl-
edge is available, and their key formal properties (whatever
they are) stand steel.

Objective. When it comes to action recommendation,
different algorithms may focus on different notions of ac-
tion quality. Most often, the quality of the action a, cho-
sen for state s with H steps-to-go, is assessed in terms
of the probability that a is sub-optimal, or in terms of
the (closely related) measure of simple regret. The lat-
ter captures the performance loss that results from taking
a and then following an optimal policy π∗ for the remain-
ing H − 1 steps, instead of following π∗ from the be-
ginning (Bubeck and Munos 2010). Here we focus on
algorithms that aim at optimizing simple regret, but note
that other (e.g., risk related) planning objectives have also
been motivated and studied in control theory (Sobel 1982;
Mannor and Tsitsiklis 2011).

Soundness of convergence. If the action-choice error
probability goes to zero as a function of the computational
effort, then we say that the algorithm is sound.1 For in-
stance, offline, feature-based learning of action values (such
as, e.g., variants of temporal difference learning (Sutton
1988)), are very popular in the context of sequential decision
processes (Buro 1999; Schaeffer, Hlynka, and Jussila 2001;
Gelly and Silver 2007). However, such offline learning al-
gorithms can be sound only subject to representability of the
value function in the feature space in use, which in general
cannot be efficiently verified, and most typically does not
hold. That, in particular, gave rise to considering online ac-
tion value assessment.

Smoothness of convergence. In terms of the planning
setup, we should distinguish between guarantee-contract,
resource-contract, and interruptible algorithms for MDP
planning (Zilbershtein 1993). A guarantee-contract algo-
rithm is posed a guarantee requirement on the quality of the
recommended action, and it should aim at achieving the re-
quired guarantee as fast as possible. For instance, the well-
studied PAC bounds (ε, δ) correspond to guaranteeing a sim-
ple regret of at most ε with probability of at least δ (Kearns,
Mansour, and Ng 1999; Even-Dar, Mannor, and Mansour

1While “converging” may seem a more natural name for this
property, it may also be somewhat misleading as some MCTS al-
gorithm converge, but not necessarily to the right thing.

2002). In resource-contract setting, the setup is reversed: the
algorithm is given a budget of computation units (e.g., time)
and it should aim at achieving within that budget the best ac-
tion recommendation possible. In planning for MDPs, there
is a very close connection between these two contract se-
tups (Even-Dar, Mannor, and Mansour 2002).

In contrast, in the interruptible setting, the planning time
is not known in advance, and when interrupted, the algo-
rithm is required to provide a recommendation in timeO(1).
In principle, any resource-contract algorithm can be com-
piled into an interruptible algorithm with only a constant
factor loss in recommendation quality for any interruption
point (Theorem 4.1 of Zilbershtein (1993)), the resulting in-
terruptible algorithm will improve the quality of its recom-
mendation only in time steps that are typically unacceptably
large.2 Hence, interruptibility in practice is a de facto syn-
onym to continuous, smooth improvement of the recommen-
dation quality over time.

In terms of this algorithm taxonomy, by online plan-
ning algorithms here we refer to algorithms that do not
rely on prior domain knowledge, aim at simple regret min-
imization, and converge in a sound and smooth way. This
type of MCTS algorithms seems to dominate applications
of MCTS in sequential decision processes, with UCT (as
we discuss below) being the most popular such algorithm
these days. Finally, we note that MCTS is clearly not
the only way to go when it comes to sequential deci-
sion processes (Powell 2011; Mausam and Kolobov 2012;
Bonet and Geffner 2012; Kolobov, Mausam, and Weld 2012;
Busoniu and Munos 2012). However, non-MCTS methods
are not in the scope of our discussion here.

The UCT Algorithm
MCTS, a canonical scheme underlying various MCTS algo-
rithms for online MDP planning, is depicted in Figure 1a.
Starting with the current state s0, MCTS performs an it-
erative construction of a tree3 T rooted at s0. At each
iteration, MCTS rollouts a state-space sample ρ from s0,
which is then used to update T . First, each state/action pair
(s, a) is associated with a counter n(s, a) and a value ac-
cumulator Q̂(s, a), both initialized to 0. When a sample
ρ is rolled out, for all states si ∈ ρ ∩ T , n(si, ai+1) and
Q̂(si, ai+1) are updated on the basis of ρ by the UPDATE-
NODE procedure. Second, T can also be expanded with
any part of ρ; The standard choice is to expand T with
only the first state along ρ that is new to T (Coulom 2006;
Kocsis and Szepesvári 2006). In any case, once the sam-
pling is interrupted, MCTS uses the information stored at

2For MDPs, these steps do not have to grow exponentially with
time as in the general compilation scheme of Zilbershtein (1993).
However, the size of the step will still be of the order of the size
of the state space reachable from s0 in H steps. For all but very
simple MDPs, such steps are clearly of theoretical interest only.

3In MDPs, there is no reason to distinguish between nodes as-
sociated with the same state at the same depth. Hence, the graph
T constructed by MCTS instances typically forms a DAG. Never-
theless, for consistency with prior literature, we stay with the term
“tree”.
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MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0
for n← 1 . . . time permits do

PROBE(s0, 0)

return argmaxa Q̂(s0, a)

PROBE (s : state, d : depth)
if END-OF-PROBE(s, d) then return EVALUATE(s, d)
a← ROLLOUT-POLICY(s)
s′ ∼ P (S | s, a)
r ← R (s, a, s′) + PROBE(s′, d+ 1)
UPDATE-NODE(s, a, r)
return r

(a)

END-OF-PROBE (s : state, d : depth)
if s 6∈ T then

add s to T and return true
else if d = H then return true else return false

UPDATE-NODE (s : state, a: action, r : reward)
n (s, a)← n (s, a) + 1

Q̂(s, a)← Q̂(s, a) + r−Q̂(s,a)
n(s,a)

ROLLOUT-POLICY (s : state)
if n(s, a) = 0 for some a ∈ A(s) then

return a ∼ U [{a ∈ A(s) | n(s, a) = 0}]
else
n(s)←

∑
a∈A(s) n(s, a)

return argmaxa

[
Q̂(s, a) + c

√
logn(s)
n(s,a)

]
EVALUATE (s : state, d : depth)

for t← d . . .H do
a ∼ U [A(s)]
s′ ∼ P (S | s, a)
r ← r +R (s, a, s′)
s← s′

return r
(b)

Figure 1: (a) Monte-Carlo tree search template, and (b) the
UCT specifics.

the tree’s root to recommend an action to perform in s0.
Concrete instances of MCTS vary mostly4 along the im-

plementation of the ROLLOUT-POLICY sub-routine, that is,
in their policies for directing the rollout within T . Nu-
merous concrete instances of MCTS have been proposed,
with UCT (Kocsis and Szepesvári 2006) apparently being
the most popular such instance these days. The specific
ROLLOUT-POLICY of UCT is shown in Figure 1b. This
policy is based on the deterministic decision rule UCB1
of Auer, Cesa-Bianchi, and Fischer (2002) for optimal bal-
ance between exploration and exploitation for cumulative
regret minimization in simultaneous acting and learning in

4MCTS instances may also vary along the implementation of
EVALUATE. However, it is hard to think of an implementation
other than that in Figure 1b, unless the algorithm is provided with
a problem-specific prior and/or heuristic.

stochastic multi-armed bandit (MAB) environments (Rob-
bins 1952). Adaptation of UCT to multi-person games
is straightforward (Sturtevant 2008); for instance, in two-
person zero-sum games, ROLLOUT-POLICY as in Figure 1
should simply be adapted to apply argmax and argmin at
the player’s and opponent’s turns, respectively. This is also
true for many other rollout schemes such ε-greedy, Boltz-
mann exploration, etc.

Adoption of UCT: A Closer Look
The initial adoption of UCT had been driven by advan-
tages it offered comparatively to some other algorithms that
were used for sequential decision problems, such as of-
fline feature-based learning, sparse sampling, non-sound in-
terruptible MC algorithms such as flat MC, and primarily,
alpha-beta minimax search (Browne et al. 2012). In turn,
these successes created an information cascade, and many
recent works report on adopting UCT because it was widely
adopted already. But what are the specific properties of
UCT that have attracted so many practitioners across various
types of sequential decision problems, and was this attrac-
tion firmly justified? Considering a wide sample of works
on online MCTS planning, the arguments for adopting UCT
appear to be as follows.

Onlineness. Unlike the algorithms that UCT came to re-
place, UCT is a truly online planning algorithm in the sense
we defined above: it requires no prior domain knowledge,
the estimated values converge to the true (regular or mini-
max, depending on the setting) Q-values of the actions, and
the algorithm smoothly improves its estimates over time.
Together and separately, all these aspects of UCT’s online-
ness are discussed in favor of UCT across the literature.

In the MAB setting, the UCB1 action-selection strategy
employed by UCT guarantees that the proportion of samples
devoted to the best action goes to 1 as the overall number of
samples goes to infinity. The claim of the UCT convergence
to the true action values relies precisely on (and only on) that
guarantee to carry on to MDPs. Yet, UCB1 is not unique in
that respect, as other strategies, such as ε-greedy action se-
lection with time-adaptive value of ε (Auer, Cesa-Bianchi,
and Fischer 2002), also provide such a guarantee. Thus,
instances of MCTS that incorporate these action-selection
strategies with appropriate adjustments may very well be
proven sound as well.

What does single out UCB1 is that its soundness does not
depend on the choice of this or another set of control param-
eters that cannot be determined a priori, a quality that other
sound strategies lack. In other words, UCT offers not only
sound and smooth, but also parameter-free convergence of
action choice in MDPs/games. Somewhat surprisingly, how-
ever, we found no mention/discussion of this issue in the
literature, and this despite the clear practical value of that
uniqueness of UCT. Hence, while that property of UCT
could have explained the rapid adoption of this algorithm,
there must be something else responsible for the matter.

Favors more promising parts of the search tree. Fol-
lowing the UCB1 action selection policy at its rollouts, UCT
biases sampling and tree construction towards the actions
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that are estimated at the moment to be of higher value. To-
gether with the fact that UCB1 ensures that no action is ig-
nored for good, this property of UCT is almost unanimously
accounted in favor of UCT (Gelly et al. 2006; Gelly and
Silver 2007; Lorentz 2008; Winands and Björnsson 2009;
Balla and Fern 2009). While at first view this asymmetry
of rollout dynamics seems to be appealing, this appeal was
never actually justified on a firm basis. Furthermore, certain
evidence suggested that the issue is not as straightforward as
it may look like.

On the side of empirical experience, numerous works re-
vealed high sensitivity of the UCT performance with respect
to the UCB1’s balancing parameter c, that is, sensitivity to
precisely that favoring of the search space regions that ap-
pear to be more attractive at the moment (Lorentz 2008;
Balla and Fern 2009; Gelly et al. 2006). In fact, in some
domains, extensive tuning revealed no single value for c that
works reasonably well across the state space (Balla and Fern
2009). Furthermore, right at the first days of applying UCT
in Go, Gelly et al. (2006) observed that “it is obvious that
the random variables involved in UCT are not identically
distributed nor independent. [...] the bias is amplified when
passing from deep level to the root, which prevents the algo-
rithm from finding quickly the optimal arm at the root node”
[emphasis added]. Still, our formal understanding of UCT’s
convergence dynamics back then was rather preliminary, and
thus there was no clear argument against the seemingly ap-
pealing sampling asymmetry of the UCT’s rollout policy.

Effective in theory. It took few more years until some
first formal properties of UCB1 in the context of simple re-
gret minimization have been revealed. First, Coquelin and
Munos (2007) showed that the number of samples after
which the bounds of UCT on simple regret become mean-
ingful might be as high as hyper-exponential in the horizon
H . While these “bad news” are mostly of theoretical in-
terest (since being online, UCT continuously improves its
estimates right from the first rollouts), having even a the-
oretical cold-start period of such a magnitude rings a bell.
Later on, Bubeck, Munos, and Stoltz (2011) showed in
the context of stochastic multi-armed bandits that sampling
with bias towards seemingly better actions may consider-
ably slow down the reduction of simple regret over time. In
particular, Bubeck, Munos, and Stoltz (2011) showed that
UCB1 achieves only polynomial-rate reduction of simple re-
gret over time, and this result immediately implies that the
simple regret reduction rate of UCT is at most polynomial
over time. Of course, that in itself does not mean that a
much better convergence rate can be achieved with any other
online MCTS algorithm. In fact, none of the MCTS in-
stances suggested until very recently broke the barrier of the
worst-case polynomial-rate reduction of simple regret over
time. On the other hand, some of these alternative MCTS
instances, such as ε-greedy+UCT algorithm of Tolpin and
Shimony (2012) or a MAB-based enhancement of UCT pro-
posed by Coquelin and Munos (2007), do provide some-
what better convergence rates for simple regret. At least,
that suggests that the speed of convergence does not consti-
tute a unique attractiveness of UCT. For now, however, we

postpone the issue of convergence rate to the next section,
and proceed with examining the empirical attractiveness of
UCT.

Effective in practice. At the end of the day, what
probably matters the most is the empirical effectiveness
of planning. In that respect, it is most valuable to ex-
amine the reported experiences with UCT in the earlier
works that adopted this algorithm—as we already men-
tioned, more recent work seem to follow UCT adoption
simply because “it is known to work well”. Interest-
ingly, a closer look reveals that UCT-based systems that
were truly successful in their domains were all using UCT
only in conjunction with some other, either ad hoc or
problem specific, tools for heuristic action value estima-
tion such as rapid action value estimation (RAVE) (Gelly
and Silver 2007), first-play urgency (FPU) (Gelly et al.
2006), progressive bias (PB) (Winands and Björnsson 2009),
move-average sampling (MAST) (Finnsson and Björnsson
2008), predicate-average sampling (PAST) (Finnsson and
Björnsson 2010), features-to-action sampling (Finnsson and
Björnsson 2010), heuristicQ-value initialization (Keller and
Eyerich 2012), optimistic Q-value initialization (Eyerich,
Keller, and Helmert 2010), to name just a few5.

More importantly, it appears that the value of using UCT
(and not some other MCTS scheme) in these systems is
rather marginal, and the key effectiveness actually comes
from the aforementioned auxiliary tools. For instance, in
their analysis of combining UCT with rapid action value es-
timation (RAVE) in MoGo, one of the strongest Go pro-
grams these days, Gelly and Silver (2007) write that “...
rapid action value estimate is worth about the same as sev-
eral thousand episodes of UCT simulation.” In fact, later Sil-
ver (2009) writes that setting the bias parameter of UCB1 to
zero (that is, reducing it to greedy MCTS) is the best con-
figuration of UCT in pair with RAVE in MoGo. Similar
in spirit observations on the crucial importance of heuris-
tically guiding UCT have also been made in the context of
award-winning solvers for general game playing (Björnsson
and Finnsson 2009) and MDP planning (Keller and Eyerich
2012).

Online MCTS Better Than UCT?
In line with our findings above, Browne et al. (2012) sum-
marize their survey on MCTS techniques by writing that,
“although basic implementations of MCTS provide effec-
tive play for some domains, results can be weak if the basic
algorithm is not enhanced.” Still, the relative effectiveness of
the basic MCTS algorithms does not seem to be systemati-
cally studied in the prior work. Thus, the way we see it, two
basic and important questions in the context of “to UCT or
not to UCT” remained open, notably

• Can the barrier of only polynomial-rate reduction of sim-
ple regret over time be removed in the context of online
MCTS algorithms?, and

5For a comprehensive survey of such tools up to 2011, we refer
the reader to (Browne et al. 2012).
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• Should UCT a priori be expected to be the most effective
basic online MCTS algorithm around?

In what follows, we discuss some recent findings in theory
and empirical analysis of MCTS that provide a crisp answer
to the first of these questions, and a solid answer to the sec-
ond one. In contrast to what seems to be a common belief
these days, these findings suggest that, if online sequential
decision making is your problem, and MCTS is your way to
go, then UCT is unlikely to be the best fit for your needs.

Exponential-rate convergence?
Bubeck, Munos, and Stoltz (2011) showed that an
exponential-rate reduction of simple regret over time is
achievable in stochastic multi-armed bandit (MAB) prob-
lems. The respective result is distribution-dependent, with
the dependency of the bounds on the arm reward distribu-
tions being reflected through the difference ∆ between the
expected rewards of the best and second-best arms. Since
then, the question of whether a similar rate of convergence
can be achieved for online MDP planning became even more
relevant than before, and recently we have provided an af-
firmative answer to this question (Feldman and Domshlak
2012).

The respective MCTS algorithm, BRUE, is an instance
of a non-standard MCTS scheme MCTS2e, a refinement of
MCTS that implements a principle of “separation of con-
cerns”. According to that principle, different parts of each
sample are devoted exclusively either to search space explo-
ration or to action value estimation. In MCTS2e (Figure 2a),
rollouts are generated by a two-phase process in which the
actions are selected according to an exploratory policy until
an (iteration-specific) switching point, and from that point
on, the actions are selected according to an estimation pol-
icy. A specific instance of MCTS2e, dubbed BRUE, was
shown to achieve an exponential-rate reduction of simple
regret over time, with the bounds on simple regret becom-
ing meaningful after only exponential in H (in contrast to
UCT’s hyper-exponential in H) number of samples (Feld-
man and Domshlak 2012).

The specific MCTS2e sub-routines that define the BRUE
algorithm are shown in Figure 2b. Similarly to UCT, each
node/action pair (s, a) is associated with variables n(s, a)

and Q̂(s, a), but with the latter being initialized to −∞.
BRUE instantiates MCTS2e by choosing actions uniformly
at the exploration phase of the sample, choosing the best
empirical actions at the estimation phase, and changing the
switching point in a round-robin fashion over the entire
horizon. Importantly, if the switching point of a rollout
ρ = 〈s0, a1, s1, . . . , aH , sH〉 is σ, then only the state/action
pair (sσ−1, aσ) is updated by the information collected by
ρ. That is, the information obtained by the estimation
phase of ρ is used only for improving the estimate at state
sσ(n)−1, and is not pushed further up the sample. While
that may appear wasteful and counterintuitive, this local-
ity of update is required to satisfy the formal guarantees of
BRUE on exponential-rate reduction of simple regret over
time (Feldman and Domshlak 2012). Practice-wise, we note
that BRUE is completely non-parametric, and thus neither

MCTS2e: [input: 〈S,A, Tr,R〉; s0 ∈ S]
search tree T ← root node s0; σ ← 0
for n← 1 . . . time permits do

σ ← SWITCH-FUNCTION(n, σ)
PROBE(s0, 0, σ)

return argmaxa Q̂(s0, a)

PROBE (s : state, d : depth, σ ∈ JHK)
if END-OF-PROBE(s, d) then return EVALUATE(s, d)
if d < σ then
a← EXPLORATION-POLICY(s)

else
a← ESTIMATION-POLICY(s)

s′ ∼ P (S | s, a)
r ← R (s, a, s′) + PROBE(s′, d+ 1, σ)
if d = σ then UPDATE-NODE(s, a, r)
return r

(a)

END-OF-PROBE (s : state, d : depth)
if d = H then return true else return false

EVALUATE (s : state, d : depth)
return 0

UPDATE-NODE (s : state, a: action, r : reward)
if s 6∈ T then add s to T
n (s, a)← n (s, a) + 1

Q̂(s, a)← Q̂(s, a) + r−Q̂(s,a)
n(s,a)

SWITCH-FUNCTION (n : iteration, σ ∈ JHK)
return H − ((n− 1) mod H) // round robin on JHK

EXPLORATION-POLICY (s : state)
return a ∼ U [A(s)]

ESTIMATION-POLICY (s : state)
return a ∼ U

[
{a | argmaxa∈A(s) Q̂(s, a)}

]
(b)

Figure 2: Monte-Carlo tree search with “separation of con-
cerns” (a), and the BRUE specifics (b).

its convergence nor its performance require any parameter
tuning.

Empirical performance?
While BRUE guarantees exponential-rate reduction of sim-
ple regret over time, it does not make special efforts to home
in on a reasonable alternative fast (Feldman and Domshlak
2012). Of course, “good” is often the best one can hope for
in large sequential decision problems of interest under prac-
tically reasonable planning-time allowance. Adopting the
principle of connected search tree expansion of the MCTS
instances, recently we came up with a simple modification
of BRUE, BRUEI , that performs as effectively under short
planning times as UCT and flat MC, while preserving both
the attractive formal properties of BRUE, as well as the em-
pirical strength of the latter under permissive planning time
allowances (Feldman and Domshlak 2013). Furthermore,
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Figure 3: Absolute performance of the algorithms in terms of average simple regret on the Sailing domain problems with 10×10
and 20×20 grid maps.

a more involved extension of BRUE, baptized as BRUEIC ,
is even more effectively, favorably competing with other
MCTS algorithms under short planning times in a robust
manner, while still preserving exponential-rate reduction of
simple regret over time. Inspired by certain insights pro-
vided by the surprising effectiveness of flat MC across IPC
domains, BRUEIC is based on selective tree expansion, con-
ditioned on the information provided by a variant of flat MC
state-value estimation.

The technical details of the BRUEI and BRUEIC algo-
rithms are less important for our discussion here, and for
these details we refer the reader to Feldman and Domshlak
(2013). In what follows, we only outline the key high-level
constructs of these two successive extensions of BRUE.

The only substantial difference between BRUE and
BRUEI is in what states are added to the search tree at each
rollout, and in the related SWITCH-FUNCTION procedure.
BRUE expands the search tree by the state at the switching
point of the rollout, and the switching point is changing be-
tween the iterations in a round-robin fashion over the entire
horizon. In contrast, BRUEI expands the search tree by the
shallowest state along the rollout up to the switching point
that is not yet in the tree, and if the tree expansion happens
not at the switching point, then the round-robin over switch-
ing points re-starts from the depth of one. This way, BRUEI
ensures connectedness of the search tree right from the first
iteration, while BRUE constructs it search tree by growing
a forest of its subtrees that gradually get connected into a
single tree. Note that the latter aspect of BRUE is not a bug
but a feature: in long term, this configuration of MCTS2e
ensures a higher rate of convergence to the optimal action
at the root. However, under severe restrictions on planning
time, BRUEI is expected to home in on a quality action
faster than BRUE, and this because it expedites backpropa-
gation of values to the root. In any case, from some point on,
BRUEI behaves identically to BRUE, ensuring exponential
rate reduction of simple regret over time.

Building on top of BRUEI , BRUEIC is devoted to even
faster acquisition of a good alternative at the root via a no-
tion of “selective tree expansion”. While the protocol for
selecting new states for the search tree in BRUEIC is similar
to this in BRUEI , the candidate states are added to the tree

only if their predecessors pass a certain test. Until a leaf state
s in the tree passes that test, its value V (s) is estimated via
the expected total reward of a policy sampled uniformly at
random, that is, in a manner that closely resembles the basic
(in principle, not sound) flat MC. Once the test is passed, the
successors of s are allowed to be added to the tree, and the
Q-values of actions at s are estimated as in BRUE. To en-
sure that all the desired convergence properties are satisfied,
the specific test used by BRUEIC to condition expansion of
the search tree ensures that no leaf is placed on hold for too
long.

At first view, not expanding the selected tree leaf and
putting it “on hold” may appear counterintuitive. However,
it is not all that simple. First, while each tree leaf can be seen
as sampling a single random variable, each internal node has
to sample b random variables, where b is the number of ac-
tions applicable at a state. Thus, the estimates of the random
variables sampled at the leaves converge much faster than
the estimates of the random variables sampled at the inter-
nal nodes. Second, while random variables estimated at an
internal node s aim at representing Q-values of the actions
at s, that is, the quantities of our actual interest, the qual-
ity of these estimates totally depends on the quality of the
information that is backpropagated from the descendants of
s. Hence, at certain stages of online planning, a slower es-
timation of the right thing can be less valuable than a faster
estimation of its approximation. Of course, the cruder the
approximation is, the eagerer we are to expand the node, and
vice versa, and this is precisely what the selective expansion
test of BRUEIC is devised to assess.

In (Feldman and Domshlak 2013) we examined the sim-
ple regret reduction of BRUE and BRUEIC under varying
time budgets, using the experimental settings of Feldman
and Domshlak (2012) for Sailing domain (Péret and Gar-
cia 2004). Figure 3 plots the simple regret of the actions
recommended by flat MC, UCT, BRUE, and BRUEIC un-
der different planning time windows, averaged over 300 in-
stances of 10 × 10 and 20 × 20 grids. Importantly, no
domain-specific heuristics have been employed—the algo-
rithms were tested in their pure form.6 First, these results
show that BRUE is continually improving towards an op-

6That, in particular, explains the difference between the UCT’s
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timal solution, rather quickly obtaining results better than
UCT (Feldman and Domshlak 2012). However, as it is
somewhat expected from the dynamics of the value back-
propagation in UCT and BRUE, UCT sometimes manages
to identify reasonably good actions rather quickly, while
BRUE is still “warming up”. This is not so with BRUEIC .
Figure 3 shows that, not only does BRUEIC significantly
outperforms UCT uniformly over time, right from the be-
ginning of planning, but also that its simple regret reduction
rate is comparable to BRUE’s in the longer term. Finally, at
least on this specific domain, there appears to be no substan-
tial difference between the performance of flat MC and this
of UCT within the tested planning time allowances.

We also conducted a comparative evaluation of the same
set of algorithms on five MDP benchmarks from the last
International Probabilistic Planning Competition (IPPC-
2011), namely Game-of-Life, SysAdmin, Traffic, Cross-
ing, and Navigation (Feldman and Domshlak 2013). These
benchmarks appear ideal for our purpose of evaluating al-
gorithms under tight time constraints: Most IPPC-2011 do-
mains induce very large branching factors, and thus allow
only a very shallow sampling of the underlying search tree
in reasonable time. The average-over-horizon planning time
was set to just five seconds. In sum, the results of this eval-
uation (Feldman and Domshlak, 2013—Table 1 and Figure
6) show that BRUEIC exhibits a robustly good performance
across the domains, finishing top performer on all the do-
mains, and in fact, on most problem instances across the do-
mains. Interestingly, similarly to what we observed in Sail-
ing domain, the overall score of flat MC on the five domains
used in the evaluation was roughly the same as of UCT,
while adopting BRUEIC does make a difference.

Summary
Summarizing the major emerging research directions around
MCTS, Browne et al. (2012) call for improving the perfor-
mance of general-purpose MCTS, as well as for improving
our understanding of the behavior of various MCTS algo-
rithms. In the current practice of online action planning with
MCTS, the UCT algorithm seems to be the choice of most,
domain-specific and domain-independent, solvers for vari-
ous sequential decision problems. However, the question of
why UCT should in fact be preferred to other online MCTS
schemes remained largely unanswered.

Taking a closer look at the trail of developments that re-
sulted in such a strong vote for UCT these days, we ques-
tioned both the rational behind this choice of platform for
MCTS problem solvers, as well as a common perception that
UCT is formally and/or empirically the best generic thing to
do. In particular, we discuss some recent results on MCTS,
and in particular, the BRUE and BRUEIC algorithms, that
both break the barrier of polynomial-rate convergence to the
optimal choice over time, as well as substantially outper-

performance on the Sailing domain we report here, in Figure 3,
and the one reported in the original paper on UCT (Kocsis and
Szepesvári 2006): In the latter case, UCT was run with a strong
domain-specific heuristic that estimated state values within error
of at most 10%.

form UCT empirically, on numerous standard benchmarks.
The journey, of course, remains brand open: There is no rea-
son to believe that either BRUE, or BRUEIC , or even their
backbone MCTS scheme MCTS2e, constitute the last word
in effectiveness of basic MCTS algorithms for online plan-
ning. However, they do show that, even the most agreed
upon, practices of MCTS-based planning should be ques-
tioned and investigated. In sum, we believe that further rig-
orous investigation of online MCTS planning is likely to be
both interesting and fruitful.
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