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Abstract

Pattern databases have been successfully applied to sev-
eral problems. Their use assumes that the goal state
is known, and once the pattern database is built, com-
monly it can be used by all instances. However, in
Sokoban, before solving the puzzle, the goal position
of each stone is unknown. Moreover, each Sokoban in-
stance has its own state space search. In this paper we
apply pattern databases to Sokoban. The proposed ap-
proach uses an instance decomposition, that allows mul-
tiple possible goal states to be abstracted into a sin-
gle state. Thus, an instance dependent pattern database
is employed. Experiments with the standard set of in-
stances show that the proposed approach overcomes
the current best lower bounds in initial states for sev-
eral instances. Furthermore, three of these new best
lower bounds match exactly with the optimal solution
length. Finally, we run experiments of 5 million ex-
plored states for each instance. Nine instances were
solved with optimality guarantees, while only four in-
stances were solved under the same conditions by pre-
vious methods.

Introduction

Sokoban is a one-player puzzle and can be seen as an ab-
straction of a robot motion planning problem. The puzzle
can be defined as a grid-square configuration with a set of
k stones (movable squares) and £ goal squares. One of the
squares is distinguished as the warehouse keeper (Sokoban),
or simply the “man”. A move consists of pushing a stone
from one square to a vertically or horizontally adjacent
square, and it can only be executed by the man. A move
is valid if the adjacent target square is empty. Some squares
are walls and unmovable. The goal is to execute a minimal
sequence of pushes to move the stones from their initial po-
sitions to the goal squares. Figure 1 illustrates a sample in-
stance.

Even after three decades since Sokoban was created, solv-
ing it algorithmically remains a challenge. Much research
has been done on this puzzle and in general the attempts
were in finding any solution. However, solving a puzzle with
guarantee of optimality is a goal of current research (Korf
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Figure 1: Sokoban instance #78 of the standard set. In po-
sition H8 is the man. In position J4 there is a stone. Posi-
tion BI0 represents a goal square. Finally B9 exemplifies an
empty square, while in A4 there is a wall.

2012). From the standard set composed by 90 instances, de-
scribed in Section “Results”, only a few were solved with
techniques that guarantee optimality, and about more than
half of the instances were solved using techniques that do
not guarantee optimality.

Sokoban was shown to be PSPACE-Complete (Culber-
son 1998). Table 1 compares some principal characteristics
of Sokoban to that of other single-agent search problems.
Due to its large branching factor, solution length, and search
space size, Sokoban is considered one of the most challeng-
ing single-agent search problems.

Characteristic 24-Puzzle Rubik’s Cube  Sokoban
Branching Factor ~ 2.37 13.35 12

- range 1-4 12-15 0-126
Solution Length 100 16 260

- range 80-112 14-18 97-674
Search Space Size  10%° 10%° 10%8

Table 1: Search space properties of some single-agent search
problems (Junghanns and Schaeffer 2001; Edelkamp and
Schrédl 2012).

The most successful attempts to solve Sokoban are us-
ing heuristic search methods. Heuristic search finds solu-
tions to state space search problems. The state space can
be defined as a directed graph, whose nodes are the states,
and whose arcs are valid transitions between them. Heuris-



tic search aims at finding a path, or a shortest path, from the
initial state to some goal state in this graph.

Algorithms like A* (Hart, Nilsson, and Raphael 1968) and
IDA* (Korf 1985) visit the states guided by a cost function
f(s) = g(s) + h(s), where s is the current state, g(s) is the
distance from the initial state to the state s, and h(s) is a
function that estimates the distance from the current state s
to a goal state. Commonly, h(s) is admissible, i.e., it never
overestimates the real distance to a goal state, providing a
lower bound. This ensures that an optimal solution will be
found.

In recent works, pattern databases were successfully
applied in single-agent search problems as the Rubik’s
Cube (Korf 1997), the Sliding-Tile Puzzle (Korf and Fel-
ner 2002) and the Tower of Hanoi (Felner, Korf, and Hanan
2004). Pattern databases store the cost of solving subprob-
lems. The goal is to improve the lower bound such that less
search states are explored, saving computational effort. Pat-
tern databases are constructed based on a pattern space. A
pattern space is an abstraction of the real state space. In this
way only part of the state is considered, the rest of the state
is marked as “don’t care”. In the Sliding-Tile Puzzle, for ex-
ample, this can be done by choosing a subset of tiles as a pat-
tern. Similarly, in Sokoban, this can be achieved by choosing
a subset of stones. Generating the pattern database has a high
cost. However, this cost is amortized by solving several in-
stances, or by using less states for solving a single instance.
In general the pattern database is built in a preprocessing
phase by a breadth-first backwards search from the goal pat-
tern until the whole abstract pattern space is reached.

In this paper, we present an approach for using instance
dependent pattern databases in Sokoban, resulting in im-
provements over the state of the art lower bounds proposed
for this problem (Junghanns 1999; Junghanns and Schaef-
fer 2001). Besides improving the lower bounds, this tech-
nique allows to solve more instances with guarantee of opti-
mality. The remainder of the paper is organized as follows.
In Section “Literature review” we review the literature on
Sokoban and pattern databases, while in Section “Proposed
Approach” we describe the proposed lower bound and the
use of pattern databases in Sokoban. In Section ”Experimen-
tal Results” we discuss the proposed approach and present
experimental results. Finally, in Section ”Conclusions and
Future Work™ we present conclusions and discuss future
work.

Literature review
Sokoban

Some early works on Sokoban are reviewed in (Junghanns
and Schaeffer 1999). The Rolling Stone solver proposed
in the Ph.D. thesis of Junghanns (Junghanns and Schaeffer
1999; Junghanns 1999; Junghanns and Schaeffer 2001) is
a milestone of the research effort related to Sokoban. The
solver is based on the Iterative Deepening A* (IDA*) algo-
rithm using multiple domain independent and dependent en-
hancements. The goal of Rolling Stone is to find a solution
for Sokoban, not necessarily providing an optimal solution.
Their solver initially considers an enhanced lower bound,
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transposition tables, move ordering, deadlocks tables, and
tunnel macros. All these techniques are used such that an op-
timal solution is provided. However, with these techniques,
and using as limit 20 million states of the search space, only
instances #1, #2, #6, #17, #38 and #78 are solved. Thereby,
in an attempt to solve more instances, the authors relaxed the
optimality criterion and applied techniques that help find-
ing feasible solutions more often, without guaranteeing op-
timality. Non optimal techniques such as goal cuts, goal
macros, pattern searches, relevance cuts, overestimation and
rapid random restart are used. Thus, the Rolling Stone solver
was able to solve 57 instances, however, without optimality
guarantees. These techniques bring a lot of efficiency to the
solver. Disabling pattern searches Rolling Stone was able to
solve instance #1 using only 52 nodes. This is impressive
considering that the instance has a minimum solution length
of the 97, but this is done with no guarantees of optimality.
In this paper we demonstrate that it is possible to increase
the number of solved instances with guarantees of optimality
using fewer nodes, only by applying a more accurate lower
bound.

In (Botea, Miiller, and Schaeffer 2002), the proposed
solver uses abstractions for planning in Sokoban, being able
to solve non-optimally ten instances from the standard set.

In (Demaret, Lishout, and Gribomont 2008) the authors
describe a solver that uses a hierarchical planning strategy
along with deadlocks learning to solve instances of Sokoban.
Using this approach, they were able solve non-optimally 54
instances of the standard set. In this case, the stopping crite-
rion used was eight hours of running times per instance.

There are also other solvers that are able to solve a
larger set of instances, but also without optimality guaran-
tee. Among the ones with best results JSoko (Meger 2013)
is able to solve 65 instances; the solver YASS (Damgaard
2013) is able to solve 75 instances; and the solver
Takaken (Takahashi 2013) is able to solve 86 instances. All
these solvers employ many non optimal techniques, like a
more general version of the goal macros known as pack-
ing order calculation. Only for the JSoko solver the solution
length is provided. For example, for instance #3 the solver
found a solution using 148 pushes, while the optimal solu-
tion uses only 131.

In summary, among the current solvers, Rolling Stone us-
ing only the techniques that guarantee optimality is still the
state of the art for solving Sokoban exactly. For this reason,
in the experimental results section of this work we compare
our results with the optimal guarantee results of the Rolling
Stone.

Pattern Databases

Additive dynamic partitioned pattern databases (Felner,
Korf, and Hanan 2004) arise in contrast to additive static
partitioned pattern databases. In the latter, a partition of a
disjoint subproblem is defined and used in each state during
the search. In the former, for every state in the search, the
problem is partitioned into disjoint subproblems. Since all
possible partitions can be considered, they can capture inter-
actions that are not captured in the static partition, obtaining
better results.



For the Sliding-Tile Puzzle the dynamic partitioned PDB
of pairs has to compute the PDB for every pair of tiles. This
is not the case in Sokoban, since every stone is indistinguish-
able, and so we can compute a single PDB for stones and ev-
ery pair of stones can use the same PDB. Therefore, in this
context to explore dynamic partitioned PDBs has low cost.

When the pattern database is composed by pairs, the high-
est heuristic value can be calculated by a maximum weight
matching. For patterns composed by triples, or larger, the
matching problem becomes NP-Complete (Felner, Korf, and
Hanan 2004) and other approaches are used to compute the
heuristic value.

Pattern databases can also differ from each other in how
they are used. The use of pattern databases assumes that the
goal state is known, and once the pattern database is built,
commonly it can be used by all instances. However, in some
applications, an instance dependent pattern database can be
used, i.e., a pattern database is built for each instance.

The use of pattern databases was proposed in (Culber-
son and Schaeffer 1998) and originally applied to the Fif-
teen Puzzle. Since that, pattern databases have been im-
proved and applied to different domains (Korf 1997; Korf
and Felner 2002; Felner, Korf, and Hanan 2004). In (Zhou
and Hansen 2004) a method was proposed for reducing the
memory required during the construction of an instance de-
pendent pattern database considering specific start and goal
states. This method was improved in (Felner and Adler
2005) enabling the computation of larger pattern databases,
and was applied to the Twenty-Four Puzzle, achieving a
speedup over previous approaches. Inspired by these works,
in Subsection “Lower Bound” we discuss the idea of an in-
stance dependent pattern database, and the related issues to
its application on Sokoban.

From an extensive literature review, the only works we
found that had applied pattern databases to Sokoban are
domain independent approaches. As a result, they did not
generate significant results for the standard set of instances,
only solving other sets of instances with a smaller state
space search (Edelkamp 2001; Haslum et al. 2007). It could
be argued that the deadlock tables or the pattern searches
from Rolling Stone or the solution for the local problem
from (Botea, Miiller, and Schaeffer 2002) are the first appli-
cation of PDB to Sokoban. But these approaches resemble
more with pre-processing techniques than with PDB, since
they do not have specific characteristics of PDB, like a tar-
get pattern and the distance for a set of pattern to the tar-
get pattern computed by retrograde analysis (Culberson and
Schaeffer 1998).

Proposed Approach

The standard heuristic function h(s) used by the search
method when solving Sokoban is calculated as the mini-
mum cost perfect matching in a bipartite graph (Junghanns
and Schaeffer 2001) we call this procedure a minmatching
in this work, while with maxmatching we refer to the prob-
lem of finding the maximum weighted matching in a graph).
The graph partitions separate the goal set from the stone set.
Since the goal of each stone is unknown, the minmatching
is used for deciding the goal destination of each stone with
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Figure 2: Graph generated from the instance in Figure 1.
Nodes G are the goals, nodes labeled A and E are the artic-
ulation points, and E is the entrance.
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Figure 3: Decomposition of the instance presented in Fig-
ure 1, accordingly to the graph in Figure 2.

a minimum cost, thus providing a lower bound. In our ap-
proach, the lower bound is calculated as follows. Initially,
the instance is decomposed into two zones. Pattern databases
are used to calculate the lower bound of one zone, while
minmatching is used to calculate the lower bound of the sec-
ond zone. Next we detail this procedure.

Lower Bound

For decomposing the instance into two zones, we propose a
method that creates an abstract goal state. This allows mul-
tiple possible goal states to be abstracted into a single goal
state, and thus an instance dependent pattern database is ap-
plied in one of the zones. We call them the maze zone and
the goal zone. The goal zone is the smallest set of squares
that contains all goal squares, and to which stones can en-
ter only by passing over a determined square, called the en-
trance. The smallest goal zone is chosen for maximizing the
use of the pattern database. In our approach we use a pat-
tern database that stores the distance to move stones to the
entrance. This is the first part of the proposed lower bound.
The second part is calculated using a minmatching as if all
the stones outside that zone were positioned at the entrance.

For calculating the entrance, and then the maze and goal
zones, we model an instance as an undirected graph G =
(V, E), where V is the set of nodes, and E the set of edges.
The set of nodes are all non dead squares. A dead square is
any square that, if it would hold a stone, this stone could not



reach any goal. The set of edges is formed as follows. Ev-
ery two adjacent goal nodes are connected. In addition, for
every vertically or horizontally adjacent nodes u and v, the
edge (u, v) belongs to F if i) u or v is connected to the goal
nodes, and if ii) u can reach v by a movement of stone. For
example, Figure 2 illustrates the graph constructed consid-
ering the Sokoban instance from Figure 1.

Once the graph is constructed, the entrance is then cal-
culated. For that, all articulation points of the graph are de-
tected. An articulation point is any node that if removed, dis-
connects the graph. Note that the graph may not have any ar-
ticulation point. In this case, our lower bound reduces to the
minmatching lower bound. On the other hand, a graph can
have several articulation points, what happens in 88 from
the 90 instances from the standard set. The entrance is the
articulation point that minimizes the size of the goal zone.

Figure 3 shows an example of such a decomposition. The
square marked with E is the entrance. The G squares plus the
goal set are defined as the goal zone. All squares, including
E, that are not in the goal zone, form the maze zone.

Having the entrance, maze and goal zones identified, the
lower bound can then be calculated. The lower bound is cal-
culated as the sum of two parts: the maze lower bound and
the goal lower bound. The maze lower bound is calculated
using pattern databases, which are described in the next sec-
tion. The goal lower bound is calculated by a minmatching.
For solving the minmatching, the stones in the maze zone
are treated as if they were positioned at the entrance, while
stones in the goal zone are positioned where they currently
are.

The idea of decomposing instances of Sokoban has been
explored in different works. Rolling Stone proposed the
goal area, that is used to solved two problems indepen-
dently, being computed using a highly pruned branch-and-
bound. In (Botea, Miiller, and Schaeffer 2002) the instance
is decomposed into rooms and tunnels, and thus each sub-
problem is efficiently solved independently. The main dif-
ference of these approaches with ours is how the decompo-
sition is made and how it is used. We decompose the instance
choosing the smallest goal zone and we not use the decom-
position to solve problems independently, we only use it to
make the application of PDB efficient.

An Instance Dependent Pattern Database for
Sokoban

Having the entrance identified, the construction of a pattern
database is done exactly like in other domains. But some
particularities can be explored to achieve better results. For
example, in the Sliding-Tile Puzzle domain when the pattern
separates the state into disjoint parts, one pattern database
is created for each part (Korf and Felner 2002). This is not
necessary in Sokoban since the stones are indistinguishable.
Thus, we only have to construct one pattern database for
each possible size of a part and thereby the construction cost
is reduced.

In preliminary experiments we found relevant results
with pattern databases with two stones. Using a dynamic-
partitioned additive pattern database of two stones, we ob-
tain the highest admissible heuristic value in polynomial
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Figure 4: Example of a linear conflict in (A) and a backout
conflict in (B).

time by a maximum weight matching. Moreover, all the
specific domain enhancements of Sokoban implemented in
Rolling Stone are incorporated.

Thus, this paper focus on pattern databases with two
stones. The pattern database store the distance to move the
two stones to the entrance, for every possible position of
the man. This is computed by a single breadth-first back-
wards search from the entrance to the maze zone. This pat-
tern database can be quickly computed and captures interac-
tions that improve the lower bound in comparison with the
ones found by Rolling Stone. Since the pattern database are
constructed exhaustively, if during the search some configu-
ration of the man and two stones is not found in the pattern
database, the state must be a deadlock and can be discarded.

This database of two stones automatically incorporates
the two enhancements that were presented in Rolling
Stone (Junghanns and Schaeffer 2001): backout and linear
conflicts. Figure 4 shows an example of a linear conflict
in A, and a backout conflict in B. Linear conflicts increase
the lower bound with a penalty of two when a pair of adja-
cent stones is in the optimal path of each other. This increase
is achieved by the pattern database since every interaction of
the paths of the two stones is calculated exactly. The back-
out conflict consists in considering the position of the man
when his movement is restricted in articulation points by one
stone. This is also achieved by the pattern database since that
restriction is considered in its construction.

Experimental Results

In this section, we describe the experimental results per-
formed. Initially, in Subsection Lower Bound Results we re-
port the lower bounds obtained by applying the proposed
approach. Subsection A Sokoban Solver presents results
for a Sokoban solver that takes into account these lower
bounds. We would like to emphasize that all results pre-
sented here only consider the new lower bound by using pat-
tern databases. If linear and the backout conflicts are added
to the goal zone lower bound, the results can be further im-
proved. However in this work we aim at exploring results
with the new lower bound without these enhancements.

All experiments were performed on a Core2 Quad Q8200
computer with 4 GB of RAM, and considering the standard
set composed of 90 instances' with several degrees of diffi-
culty.

"http://www.cs.cornell.edu/andru/xsokoban.html, accessed in
April 14th, 2013.



Lower Bound Results

Pattern databases are used only in instances which have an
entrance square. In case there is not such a special square,
the lower bound is calculated applying a minmatching in
the whole instance. Considering the standard set, 88 out of
90 instances can be decomposed into a goal zone and maze
zones, and thus have an entrance. The only two instances
that cannot be decomposed are #7 and #38.

Table 2 shows the lower bounds of the initial states con-
sidering the instances from the standard set. MM is the lower
bound obtained by the minmatching; RS is the minmatching
with enhancements (linear and backout conflicts) proposed
by the Rolling Stone solver (Junghanns 1999); PDB is the
lower bound using pattern databases. UB is the upper bound
obtained from the global Sokoban score file?. Note that if
a lower bound value matches with that of the UB, then it
can be concluded that the corresponding solution length is
optimal.

Comparing with RS, the proposed approach obtained bet-
ter results in 24 instances, and worse in 34 instances. Thus,
24 new best lower bounds were provided. Furthermore, three
of these new best lower bounds, namely those of instances
#2, #3 and #73, match exactly with the optimal solution
length. This was not achieved by MM or RS for these in-
stances.

The good quality of the lower bounds for instances #2 and
#3 are obtained due to the fact that the pattern database in-
corporates interactions of the stones with the instance and
the position of the man. For example, for case A of Fig-
ure 5, RS using backout conflicts is able to increase the lower
bound of MM by 10. However, in this case, RS does not con-
sider the interaction between the stones E8 and H8 (we call
the stones accordingly with their initial positions). The pat-
tern database considers the interaction between stones. This
is done as follows. The optimal path of stone E8 is build
pushing it until location G5, and then to the goal. However,
since there is a stone in position H8, the stone E8 is pushed
until position G4 because the stone H8 blocks the path the
man has to follow to realize the optimal path of stone ES.
Next, stone ES8 is pushed back to position G5, and then to the
goal. In this way, stone E8 leaves the optimal path. Thus, our
approach is able to capture the interaction between stones
and in this case a penalty cost of two is added to the lower
bound, obtaining the exact distance. A similar interaction
occurs in case B. Consider the optimal path of each stone
when the instance has only one stone. In this case, each stone
would be simply pushed to the goal. However, when consid-
ering both stones, the man cannot access the initial position.
To solve this, stone N7 has to leave its optimal path. First it
is pushed to position O7, and stone M8 is able to follow its
optimal path. Next, stone N7 is pushed back to its original
position, and then to the goal.

In the examples above we explained two cases of inter-
action of two stones. However, PDB captures the interac-
tion of any pair of stones combined with the man position.
This is not the case of RS that considers only the interac-

2http://www.cs.comell.edu/amdru/xsokoban/scores.txt, ac-

cessed in April 14th, 2013.
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# MM RS PDB UB # MM RS PDB UB

1 95 95 95 97 46 219 223 223 247
2 119 129 131 131 47 197 199 197 209

3128 132 134 134 48 200 200 200 200
4 331 355 355 355 49 96 104 9 124
5 135 139 141 143 50 96 100 98 370
6 104 106 106 110 51 118 118 118 118
7 80 80 80 88 52 365 367 369 421

8 220 220 220 230 53 186 186 186 186
9 215 229 231 237 54 177 177 181 187
10 494 506 496 512 55 118 120 120 120
11 197 207 205 241 56 191 193 191 203
12 206 206 206 212 57 215 217 215 225
13 220 220 220 238 58 189 197 197 199
14 231 231 231 239 59 218 218 218 230
15 94 96 94 122 60 148 148 148 152
16 160 162 162 186 61 241 243 241 263
17 121 201 201 213 62 235 237 239 245
18 90 106 90 124 63 425 427 429 431
19 278 286 286 302 64 331 367 373 385
20 302 446 358 462 65 181 203 195 211
21 123 131 123 147 66 185 187 185 325
22 306 308 306 324 67 367 377 385 401
23 286 424 430 448 68 317 321 325 341
24 442 518 442 544 69 207 219 209 433
25 326 368 336 386 70 329 329 329 333
26 149 163 161 195 71 290 294 290 308
27 351 353 355 363 72 284 288 286 296
28 284 286 290 308 73 433 437 441 441
29 124 122 128 164 74 158 172 170 212
30 357 359 385 465 75 261 263 261 295
31 228 232 232 250 76 192 194 192 204
32 111 113 111 139 77 360 360 360 368
33 140 150 140 174 78 134 136 136 136
34 152 154 152 168 79 164 166 164 174
35 362 364 364 378 80 219 231 225 231
36 501 507 505 521 81 167 167 167 173
37 220 242 220 284 82 131 135 135 143
38 73 73 73 81 83 190 194 194 194
39 650 652 652 672 84 147 149 151 155
40 310 310 312 324 8 303 303 305 329
41 201 221 207 237 86 122 122 122 134
42 208 208 208 218 87 221 221 221 233
43 132 132 134 146 88 306 336 314 390
44 167 167 169 179 89 345 353 355 379
45 274 284 286 300 90 436 442 438 460

Table 2: Lower bounds. The bold values sign the best lower
bound for each instance.

tion in some special situations. The pattern database can
also identify deadlocks not captured by Rolling Stone. The
minmatching can detect deadlocks when two stones have to
be positioned in a single goal, characterizing a deadlock. In
fact, the pattern database can detect any deadlock with the
interaction of two stones and the position of the man. This
is done by checking in the pattern database: If the configu-
ration does not exist, the lower bound is not calculated and
a deadlock has been detected. Figure 6 shows two instances
with positions that are identified as deadlocks. In case A the
stones E8 and G8, K3 and L3 are in deadlock, and in case
B the stones G8 and J8, N8 and O7. All these deadlocks are
not identified by the lower bound of Rolling Stone.
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Figure 5: Example of penalties captured in instances #2 and
#3 that are not captured by the Rolling Stone. In case (A)
and (B) a penalty of two is added to the lower bound and so
the exact distance to solution is obtained.

A Sokoban Solver

In this subsection we report results obtained by a Sokoban
solver, using the proposed lower bound, within a limit of 5
million explored nodes. The solver is based on an A* using a
bitmap for storing the states from the closed set. The search
is guided taken into consideration the proposed lower bound.
Nine instances were solved to optimality.

Table 3 shows the number of explored nodes. In the table,
column PDB shows results found by our solver. The column
Pre reports the number of states used to construct the PDB
for each instance. Both columns Static and Dynamic inform
the total number of explored nodes for the construction of
the pattern database and for solving the instance. The col-
umn Static is the statically-partitioned PDB where biparti-
tions are considered. In one partition the stones are grouped
linearly. For example, in an instance with six stones, stone 0
is paired with stone 1, stone 2 with 3, and the stone 4 with 5.
For the other partition, the first half of the stones are paired
with the second half. Therefore, in the six-stone instance ex-
ample, the stone 0 is paired with stone 3, the stone 1 with
4, and the stone 2 with 5. For each partition, the cost of
each pair is consulted in the PDB and the maximum over the
two partitions is added to the solution total cost. The column
Dynamic refers to the proposed approach using a dynamic-
partitioned PDB calculated by a maxmatching. Column RS-
LB reports results of the solver using A* and a bitmap for
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Figure 6: Deadlocks detected by the pattern database. In case
(A) the stones E8 and G8, K3 and L3 are in deadlock, and in
the case (B) the stones G8 and J8, N8 and O7.

storing the states from the closed set guided only by the en-
hanced lower bound from the Rolling Stone with the linear
and backout conflicts. We compare our results with RS-LB,
since the only difference between both, in this case, is the
lower bound used. Thus, the results attempt to evidence the
more efficient lower bound. RS-ALL is the Rolling Stone
using several techniques that guarantee optimality: the en-
hanced lower bound, the move ordering, the tunnel macros,
and the deadlock tables with approximately 22 million en-
tries. The nine instances in this table are those that were
solved by at least one of the considered approaches, within
the imposed search limits. Since we are only considering
approaches with optimality guarantees, we only compare re-
sults from RS that attend this characteristic.

The instance #38 cannot be decomposed and thus it was
solved using just the minmatching. In column Pre it can be
observed that the number of states explored when creating
the pattern database is very small when comparing with the
cost of solving the instance. For the 90 instances from the
standard set, in the worst case, 4,248 nodes were explored
by the construction of the PDB (for instance #23).

Using only the lower bound, without any enhancement,
we can solve six instances with the statically-partitioned
PDB and nine with the dynamic-partitioned PDB. By
the experimental results performed we concluded that the
dynamic-partitioned PDB brings better results for Sokoban
because with this approach we were able to solve more in-



# PDB RS-LB RS-ALL
Pre Static Dynamic

1 842 8,003 2,972 26,688 223

2 624 27,745 6,602 > 620,030

3 661 1,821,648 1,237,663 > >

6 497 > 304,705 > >

17 1,550 306,059 18,536 2,141,190 >

380 199,189 199,189 199,189 415,485

55 971 > 136,768 > >

78 740 148,211 9,294 3,603,501 871

83 1413 > 67,520 > >

Table 3: Number of explored states by Sokoban solvers. A
symbol ‘>’ indicates that no results were obtained within
the search limit of 5 million explored nodes.

stances and always using less explored states.

In column RS-LB one can analyze the effect of using
RS lower bound in place of our proposed LB. In this case
only four instances could be solved. Moreover, considerably
more nodes were explored in the resolution. The efficiency
of pattern databases becomes more evident when we com-
pare with RS-ALL, which uses several specific domain en-
hancements, and again solves only four instances.

In Table 4 we report the computational times in seconds
obtained by the Sokoban solvers. Column Static refers to the
statically-partitioned PDB, while column Dynamic refers to
the dynamic-partitioned PDB. Column RS-LB presents the
computational times for the solver using the RS lower bound
by our solver.

The overall time results from PDB are always better than
the ones from RS-LB. This indicates that the computation
of the zones and the construction of PDB are not signifi-
cantly time expensive, even for instances with small number
of explored nodes for the solution, like for instance #1. For
solving instance #78, for example, PDB uses considerable
less computational time than RS-LB. Comparing Static with
Dynamic PDBs, when the difference between the number
of explored nodes is small, the cost of computing the max-
matching makes the Static PDB to present better time re-
sults. But, for instances like the #78 the computational time
difference becomes significant.

The Static PDB achieved a mean of 21,695 nodes per sec-
ond for the solved instances and the Dynamic PDB a mean
of 7,339 nodes per second. As expected, the inclusion of
the calculation of the maxmatching in the Dynamic PDB re-
duced the number of explored nodes per second. The RS-LB
achieved a mean of 29,794 nodes per second, which is com-
parable with the results from the PDB lower bounds. The
Rolling Stone solver explores 20 million nodes in about 3
hours. Updating the values for current computers the Rolling
Stone solver can explore about 29,630 nodes per second.
This is comparable with our results.

A property that improves the lower bound in Sokoban is
the capacity of detecting deadlocks. The RS lower bound
detects deadlocks only when two stones can go only for a
single goal. The PDB can detect all deadlocks formed by two
stones. The Dynamic PDB with the maxmatching classifies
as deadlock 15,38% and with the minmatching 0,61% of the
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# PDB RS-LB
Static Dynamic

1 0.33 0.45 0.99

2 2.68 3.57 >

3 113.66  221.56 >

6 > 55.56 >

17  6.26 1.52 34.18

38 6.86 6.86 7.21

5 > 46.12 >

78  66.28 5.54 1723.16

83 > 82.66 >

Table 4: Computational times in seconds spent by Sokoban
solvers to solve each instance. A symbol ‘>’ means that no
results were obtained within the search limit of 5 million
explored nodes.

calculated lower bounds. The RS-LB classified as deadlock
only 1,2% of the calculated lower bounds. Thereby, the PDB
can detect considerable more deadlocks than RS-LB.

Both the maxmatching and minmatching have simple im-
plementations, and both can be improved with optimized im-
plementations such as dynamic updates, and identifying sit-
uations where the recalculation is not necessary. But since
the PDB lower bounds also use the minmatching, every im-
provement in the RS-LB generates an improvement in the
PDB lower bounds.

Considering the series of analysis presented in this section
about LB quality, number of explored nodes and computa-
tional times, we conclude that the use of PDB in Sokoban
yields significant results. Since, the proposed approach can
solve more instances with optimality guarantees, using less
nodes, spending less computational time, and detecting more
deadlocks, we conclude that PDBs provides results that are
competitive with the state of the art results of approaches for
solving Sokoban.

Conclusions and Future Work

In this paper we propose an approach that uses instance de-
pendent pattern databases in Sokoban. The goal of this work
is to show the power of pure pattern databases as a lower
bound. The PDB can capture all interactions between the
man and the stones, increasing the value of the lower bound.
Moreover, it early detects more deadlocks than the state of
the art lower bounds.

The proposed approach found optimal solutions for nine
instances of the standard set of Sokoban overcoming results
from the literature for methods that guarantee optimality. We
also have found better lower bounds for initial states in 24
instances. Moreover, if domain specific enhancements are
added to the proposed approach, the results are likely to im-
prove even further.

In a next step of this work, we intend to incorporate do-
main specific enhancements to the goal lower bound, such
as backout and linear conflicts. Moreover, we plan to investi-
gate dynamically partitioned pattern databases (Felner, Korf,
and Hanan 2004) with more than two stones.
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