
Online Detection of Dead States in Real-Time Agent-Centered Search

Guni Sharon
ISE Department

Ben-Gurion University
Israel

gunisharon@gmail.com

Nathan R. Sturtevant
Department of Computer Science

University of Denver
USA

sturtevant@cs.du.edu

Ariel Felner
ISE Department

Ben-Gurion University
Israel

felner@bgu.ac.il

Abstract

In this paper we introduce techniques for state pruning at
runtime in a priori unknown domains. We describe how to
identify states that can be deleted from the state-space when
looking for both optimal and suboptimal solutions. We dis-
cuss general graphs and special cases like 8-connected grids.
Experimental results show a speed up of up to an order of
magnitude when applying our techniques on real-time agent-
centered search problems.

Introduction
Many recent techniques aim to reduce the effective size
of a search space. Techniques like the dead-end heuris-
tic (Björnsson and Halldórsson 2006) and Hierarchical
Swamps (Pochter et al. 2010) mark areas of the state space
which can be avoided when searching for optimal paths.
Reach (Goldberg et al. 2006) builds information about the
length of optimal paths through a state and uses it for prun-
ing parts of the state space. All these techniques share
two important assumptions: (1) The state space is explic-
itly given a priori and is stored in memory (2) An off-line
preprocessing phase is activated to gather the information
that allows the pruning for the main search. The time for the
preprocessing is usually omitted as it is done only once and
then used for solving a large number of problems.

In this paper we explore cases where these assumptions
do not hold. In many cases the search space is not given
explicitly, as in an agent moving through unexplored terrain
or when the graph is exponentially large. Similarly, prepro-
cessing might not be effective, e.g., if we are only interested
in solving a single problem instance. For these scenarios, we
introduce the idea of pruning states on-line, during the actual
search. We are particularly interested in online pruning us-
ing the local structure around a state which can be used to
prove that a state can safely be deleted from the state-space.

Online pruning incurs an overhead and it should only be
applied in scenarios where despite this overhead the pruning
is likely to reduce the overall effort. If an algorithm is guar-
anteed to expand each state at most once (e.g., A* with a
consistent heuristic) then online pruning as we describe here
will likely provide little or no benefit. But, there are many

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scenarios where agents may revisit states many times and,
for these cases, our pruning methods can be very effective.

Our focus here is the scenario of Real-time agent-centered
search. In this scenario an agent has limited power of com-
putation and only local perception of the environment. As
such, learning heuristic values from local neighbors must be
used to reach the goal. In areas where large heuristic errors
exist, agents must revisit states many times. In such cases,
the number of times a given state is revisited is potentially
polynomial in the state space (Koenig 1992), and in practice
there is significant room for improvement1. We introduce
two types of states that may be pruned from the state-space:
(1) Expendable: States that are not necessary in order to
reach the goal. These are effective when the agent is seeking
to reach the goal, not necessarily via an optimal path.
(2) Swamps: States that are not part of the optimal path.
These are important when the optimal path should be found.

We present methods for detecting and pruning swamps
and expendable states in general graphs and in 8-connected
grids. Experimental results show a speed up of up to an order
of magnitude.

Real-Time Agent-Centered Search
Real-Time Agent-Centered Search (RTACS) is defined by
an undirected graph G and start and goal states denoted
as s and g. The agent is located in s and its task is to ar-
rive at g. We assume that we have an admissible heuris-
tic h(n)  cost(n, g). As a real-time problem, the agent
can only perform a constant-bounded amount of computa-
tion before it must act by following an edge from its current
state. Then, a new search-act cycle begins from its new posi-
tion. As an agent-centered problem, the agent is constrained
to only sense and reason about the states which are local to
the agent; these are usually assumed to be contiguous around
the agent. We also assume that we are only allowed to write
a limited (constant) amount of information into each state
(i.e., an estimate of the distance to the goal). In this way
RTACS is an example of an ‘ant’ algorithm, with limited

1Other examples where online pruning may help are: Search
with inconsistent heuristics, which can require polynomial number
of re-expansions (Mero 1984; Felner et al. 2011), and Search in
unknown environments, where algorithms like D*-lite (Koenig and
Likhachev 2002) re-plan as obstacles are discovered.

1SPDFFEJOHT�PG�UIF�4JYUI�*OUFSOBUJPOBM�4ZNQPTJVN�PO�$PNCJOBUPSJBM�4FBSDI

167

Algorithm 1: LRTA*(1)
Input: Vertex start, Vertex goal

1 vcurrent = start
2 while vcurrent 6= goal do
3 vcurrent.h = 1
4 foreach (Vertex vn in neighbors(vcurrent)) do
5 if (vcurrent.h > vn.h + cost(vcurrent, vn))

then
6 bestNeighbor = sn

7 vcurrent.h = vn.h + cost(vcurrent, vn)

8 // optional - online pruning
9 if (ShouldKill(vcurrent)) then

10 Kill(vcurrent)
11 vcurrent = bestNeighbor //physical move

computation and memory (Shiloni et al. 2009).
Work on RTACS is quite diverse. Published work comes

from a range of applications with diverse evaluation metrics.
The original research in this area was used to suboptimally
solve sliding-tile puzzle (Korf 1990) instances. Other work
has modeled this as a robotics problem (Koenig 2001), or
as a path planning problem in video games (Bulitko et al.
2008). Common metrics for evaluation are:
1: Minimize travel distance: This is relevant when the time
of physical movement of the agent (between states) domi-
nates the computational time done by the CPU.
2: Minimize computational time: This is relevant when
the CPU time dominates the time of the physical movement
of the agent. CPU time can be measured exactly or approxi-
mated by counting the number of visited states.
Koenig (2004), for example, uses these and other variants.

Previous Work on RTACS
The dominant approach to RTACS is based on learning
heuristic distances from neighbors – learning an accurate es-
timate of the distance to the goal using a form of the Bellman
update rule between neighbors. The baseline algorithm for
this is the LRTA* algorithm (Korf 1990) illustrated in Algo-
rithm 1. Lines (8-10) are optional; we add them to support
our new ideas. In each loop, the agent updates the heuristic
of the current state using the distance to a neighboring state
along with the h-cost of that neighbor (lines 4-7). It then
moves to the best neighbor (line 11).

We illustrate LRTA* in Figure 1. The numbers in paren-
thesis denote the initial heuristic value for that vertex. The
agent starts at S and its task is to reach G. LRTA* starts by
updating the heuristic of S to 1 before moving to vertex B,
its most promising neighbor. In B the heuristic is updated
to 2, and then the agent moves back to S. The agent then
moves again to B, updating the heuristic of S to be 3. This
illustrates one drawback of this approach – an agent may
visit a state many times during learning. In the worst case,
an agent may perform O(n2) moves before finding the goal
in a state space with n states (Koenig 1992).

In a simple implementation of LRTA* the agent only per-

A(3) S(0) B(0) G(0) 3 1 1

Figure 1: Example graph

forms a 1-step lookahead into the environment. Variants of
LRTA* follow the same framework of acting and then learn-
ing a heuristic, but vary the size of the lookahead, the shape
of the lookahead, the movement rule, and other parame-
ters (Bulitko and Lee 2006). Representative examples in-
clude LSS-LRTA* (Koenig and Sun 2009), which performs
an A*-shaped lookahead, and daLSS-LRTA* (Hernández
and Baier 2012), which prioritize moving to states where
least learning occurred in. By doing so it can avoid revis-
iting states belonging to a local heuristic depression many
times. A new approach is f -LRTA* (Sturtevant and Bulitko
2011) which learns both the heuristic to the goal (h) and the
distance from the start state (g). f -LRTA* uses g values both
alone and in combination with h values to prune states from
the state space.

It is important to note that due to the real-time nature of
interleaving of planning and acting, the path followed by
the agent is not necessarily optimal and an optimal path is
usually not known even when the agent reaches the goal.
We split these algorithms into two phases. The first phase
is getting the agent to the goal as fast as possible (as de-
fined by the evaluation metrics). Some work focuses only
on this (Hernández and Baier 2011). However, as already
noted by (Korf 1990), when solving the same problem re-
peatedly from the start to the goal, the paths traversed by the
agent in the remaining runs converge to the optimal solution.
We call this the convergence phase. Other work focuses on
this (Sturtevant and Bulitko 2011) as well.

We would like to stress that our online pruning ap-
proaches are based only on the local structure of the state
space and are thus applicable for all the algorithms and eval-
uating metrics of RTACS. Additionally, we distinguish spe-
cial pruning rules for the first phase in the form of expend-
able states and for the convergence phase in the form of
swamps states to preserve the optimal solution.

Previous online pruning techniques.
(Pochter et al. 2011) explored on-line pruning using sym-
metries that arise from the logical state-space descriptions
with application to implicit exponential domains. (Sturte-
vant et al. 2010) introduced the notion of redundant states
and of dead ends for g-cost learning algorithms. If a state
can be reached from several different states by the same g-
cost, only one of these is necessary for finding the optimal
path. If a state is redundant with respect to all of its suc-
cessors, it can be pruned without changing the length of the
optimal path between the start and the goal. If all neighbors
of a given state s are closer to the start location than s, then
s is a dead end. Dead ends cannot be on any of the opti-
mal paths to the goal and thus can also be pruned. f -LRTA*
uses these and other concepts for pruning. Online redun-
dant states pruning is also applied in the jump-point search

168

(JPS) algorithm (Harabor and Grastien 2011). JPS is an en-
hancement of the A* algorithm with application limited to
grid worlds. JPS is not for real-time search nor is it agent-
centered, and adapting it to meet these restrictions is non-
trivial. JPS uses special rules to find states that are redundant
with respect to the current start and goal, so the work here is
in the same vein as JPS. The pruning techniques in this paper
can be applied in addition to the existing pruning techniques
in all RTACS problems and on general undirected graphs.

Expendable States
We now define the online pruning techniques, starting with
expendable states.

Definition 1 Expendable state: State e is expendable if ex-
cluding e and marking it as dead will not affect the reacha-
bility of any pair of non-expendable states. More formally,
a state e is expendable, if for every pair of states x and y,
there exists a path from x to y that does not pass through e.

An equivalent definition is to focus only on the states that
are neighbors of e (labeled N(e)) as follows:

Definition 2 Expendable state: State e is expendable if for
every pair of states x 2 N(e) and y 2 N(e), there exists a
path from x to y that does not pass through e.

Lemma 1 The two definitions are equivalent.

Proof: Direction 1 Definition 1 implies Definition 2:
Neighbors are a special case of two general states.

Direction 2 Definition 2 implies Definition 1: Let P =
{p1, p2, ..., pl} be path of length l between two given states
p1 and pl that passes through state e where e 6= p1 and e 6=
pl. Let i be the position of e in P . Since p passes through e
it must also pass through two neighbors of e, pi�1 and pi+1.
Since all neighbors of e are reachable from one another not
through e as per definition 2, there exists a path between
pi�1 and pi+1 that does not pass through e. Thus, there is a
valid path between p1 and pl that does not pass through e. ⇤

Removing expendable states from the graph will likely re-
duce the search effort for reaching the goal, especially when
such states would have been revisited many times without
the pruning process.

The expandable attribute of a state, as defined above, de-
pends only on the graph and does not depend on a specific
start and goal state. Given a specific pair of start and goal
states s, g, one can remove every expandable state and still
find a valid solution. There is only one exception for this: s
and g cannot be removed even if they are expandable.

Online detection of expendable states
Pruning can be added to LRTA* in Algorithm 1 as follows:
Before moving out of state v, (line 11 of Algorithm 1) we
introduce a should-kill(v) function (line 9). If true was re-
turned, we remove the state and its connecting edges from
the graph so that v will never be revisited. The straight-
forward implementation for should-kill() would be to run a
breadth-first search from one of the neighbors and check
whether all other neighbors are reachable. This has two

Figure 2: (a) Example 8-connected graph. (b,c) Cases where
simple rules will not detect swamps.

shortcomings. First, in the worst case, this check will in-
volve visiting the entire graph. Second, in RTACS we as-
sume that we can only sense the local neighborhood. Thus,
a complete breadth-first search might not be possible. We
thus give a more restrictive definition of expendable states.
Definition 3 Locally Expendable State: State e is locally
expendable, if for every pair of states x 2 N(e) and y 2
N(e) there exists a path from x to y that passes only through
other neighbors of e.

This can be computed more efficiently within the sensing
radius; a breadth-first search in N(e) is performed to see
that all states in N(e) are reachable without going through
e. Definition 3 is restrictive and only uses 1-step lookahead
for pruning. Therefore, a variety of expendable states ac-
cording to Definitions 1 and 2 will not be declared as locally
expendable by Definition 3. This will occur if an alternative
path (that does not go through e) exists, but it includes states
which are not neighbors of e (i.e., outside N(e)).

Our experimental results show that our restrictive defini-
tion of locally expendable is simple to implement and quite
effective in practice. We leave the treatment of the larger
lookaheads for future work and hereafter, we only refer to
locally expendable states.

Expendable States in 8-Connected Grids
Our primary example domain is an 8-connected grid, which
is common in real world environments such as robotics and
games (Thrun 2003; Sturtevant 2007), and is similar to other
models for terrain and discretization of free space. While we
present general methods for pruning we will also provide
special cases techniques for 8-connected grids.

An 8-connected grid is shown in Figure 2(a). States in
the grid can either be blocked (black) or unblocked (white).
An agent can move one square in any of the four cardinal
directions given that the destination location is unblocked.
In our variant of the 8-connected grid, an agent can move
diagonally to an adjacent square only if both of the cardinal
directions are free. For example, an agent in location j or i
cannot move SE, and an agent at h cannot move SW.

169

For the special case of an 8-connected grid, the detection
for expendable states is simple and inexpensive: a state is
expendable if all its reachable neighbors are contiguous. We
test a state by going through its neighbors in a clock-wise
manner and verify that its reachable neighbors are contigu-
ous. For example for state e in Figure 2(a) we iterate through
(a, b, c, f, i, h, g, d). Since they are all reachable then e is ex-
pendable. State i only has three reachable neighbors (e, f ,
and h) but since they form a contiguous block i is also ex-
pendable. State j has g and k as reachable neighbors. Since
they are not contiguous j is not expendable.

The order by which checks for expendable states are per-
formed significantly influences the results. If in Figure 2 (a)
we start by checking state a, we see that it is expendable and
remove it from the state space. Continuing in alphabetical
order from b up to state f followed by i, h, and g, we detect
that all of them are expendable. Now, assume that state e
is checked first. Since it is expendable, it will be removed.
Then, no other neighbor of e is expendable because every
state is a neighbor of e and is also adjacent to a blocked cell
(i.e., it has other, not connected, blocked neighbors). Thus
not all unblocked neighbors are connected to each other. In
the first ordering 9 states are pruned; in the latter one, only
one state is pruned.

As our aim is to prune as many states as possible, we
added the rule that if all 8 neighbors of a state are unblocked
it is not checked nor marked as expendable. Thus, practi-
cally, our search proceeds until it hits a wall and only then
starts to prune expendable nodes. For general graphs, prun-
ing is considered only when learning updates the heuristic
estimation of the current node; this corresponds to hitting an
obstacle in grids.

Online Swamps
If we are interested in preserving shortest paths within the
environment, we need to define a much more restrictive
pruning rule in order to not prune states that lie on the
optimal paths (even if they are expendable). We do this
by using the concept of swamps introduced by Pochter et
al. (2009; 2010). This is useful for the convergence phase
(described above) of algorithms from the LRTA* family.

A swamp S is a set of states so that if S is removed from
the original graph, the length of the shortest path between
every two states in the remaining graph is equal to the short-
est path in the original graph. In other words excluding
the states of a swamp will not affect the length of any of
the shortest paths that start and end outside the swamp. In
prior work, swamps were detected offline in a preprocessing
phase.

The formal definition, taken from (Pochter et al. 2010) is:

Definition 4 Swamp: A swamp S in a graph G = (V, E)
is a set of states S ✓ V such that for each v1, v2 2 V \S,
there exists a shortest path P1,2 that connects v1 and v2 and
traverses only through nodes in V \S.

Online Swamp Detection
Online detection of swamps in general graphs can be done
as follows. General swamp detection: For a given state s,

compute the shortest path between all the neighbors of the
state with and without s in the graph. If the shortest path
distances do not change when s is removed from the graph
and s is not the start or the goal states then s is a swamp
and can be removed. Again, we face the same two prob-
lems described above when discussing expendable states.
(1) This may be an expensive online computation and future
gains from removing the state do not necessarily outweigh
the costs of testing whether the state can be removed. (2) we
only assume local sensing capabilities.

Define the local neighborhood of s as LN(s) = N(s)[s.
A more efficient rule, but one that is less general, is to again
restrict the discussion to shortest-paths in LN(s). We thus
define a local swamp as follows.

Definition 5 Local Swamp: s is a local swamp s if for each
x, y 2 N(s), there exists a shortest path in LN(s) that con-
nects x and y but does not pass through s.

From this definition we get local swamp detection: We
remove state s only if the lengths of shortest paths in LN(s)
between any two states in N(s) are not changed when re-
moving s. The local swamp definition is more restrictive
than the general swamp definition (when the shortest path is
defined over the entire graph) and it fails to catch cases like
state a in Figure 2(b). Using local swamp detection, a is on
the shortest path between x and y when we are restricted to
only pass through LN(a) = {a, x, y}. Thus, a cannot be
pruned. However, according the general swamp detection
rule (when the shortest path between x and y can also pass
through b), a can be marked as a swamp.

Pochter et al 2010 showed that swamps may include a
large number of states. For example, in Figure 2(c) states
a and b can be jointly marked as swamps, but not individu-
ally. We do not yet have efficient rules for detecting these
cases. Our online swamp detection only detects swamps in
the form of a single state at a time.2

Online swamp detection in 8-connected grids
In grids it is easy to implement the local swamp detection
rule. As with the check for expendable states, we scan the
eight neighbors of a state in clockwise order. If the state is a
swamp according to Lemma 2 then prune the state.

Lemma 2 A state s in an 8-connected grid is a swamp if (1)
s is expendable (its unblocked neighbors are consecutive)
and (2) s has no more than four unblocked neighbors.

Proof: If state s is not expendable, i.e. the unblocked
neighbors of s are nonconsecutive, than the shortest path be-
tween at least two neighbors must go through s. This can be
seen in state g of Figure 2 (a), where the shortest path be-
tween j and d, e, h goes through state g. Thus g cannot be a
swamp. If a state s has five or more consecutive unblocked
neighbors in a grid, then two of them must be on opposite

2Swamps are a special case of Contraction Hierarchies
(CH) (Geisberger et al. 2008). In CHs any node can be removed
from the graph, but the optimal path remains by adding edges to
preserve shortest paths that went through any nodes that were re-
moved. Swamps use the CH rule, but only prune states which re-
quire no adding of edges for preserving remaining shortest paths.

170

sides. For example, state f in Figure 2 (a) has 5 neighbors,
where c and i are on opposite sides of f . In this case, the
shortest path between c and i must go through f , and f can-
not be a swamp. It is easy to verify this for all combinations
of five or more consecutive neighbors.

Because of our diagonal movement rule, a state can only
have four neighbors if it originally had five neighbors and
one of them was marked as a swamp, which is illustrated by
state v in Figure 2 (a) (if u was an obstacle, x would not be
a neighbor of v). When a state s only has four consecutive
neighbors (or less), there will always be an optimal path be-
tween all pairs of neighbors which does not go through s.
For state v the path w, y, x is an alternate to going through
v. This can be verified manually by trying all possible com-
binations of four or fewer neighbors. ⇤

As just suggested, additional pruning of states may be
possible after their neighbors are marked as swamps. State
b in Figure 2 (a) can only be marked as a swamp only after
a or c have been marked as swamps.

Expendable vs Swamps
Every swamp is also an expendable state but not every ex-
pendable state is a swamp. Therefore, pruning expendable
states will usually result in a smaller state space then prun-
ing only swamps. However, if the optimal solution is sought
one cannot prune expendable states as they may lay on the
optimal path. In these cases one should only mark swamps
as dead states. This is demonstrated in the left side of Fig-
ure 3 which presents runs of the first phase of LRTA* on the
grid of Figure 3(I) where white cells are unblocked, black
are blocked and S and G are the start and goal. In Figure
3(II) swamp states were marked as dead (gray) and in Fig-
ure 3(III) expendable states were marked as dead. Clearly,
more expendable states were detected compared to swamps.
However, many of the expendable states block the optimal
path to the goal. For example, in the optimal solution the
agent would traverse diagonally from S to the left bottom
corner. Hence, killing expendable states will prevent the al-
gorithm from converging to the optimal solution. For the
single run presented in these figures, plain LRTA* without
our state pruning traversed a total distance of 1,055. With
swamps pruning it was reduced to 1,000 while with expend-
able pruning a total distance of 709 was traversed.

Experimental Results
The aim of our experiments is to show that online pruning
helps a wide range of algorithms. We illustrate the differ-
ence between the domain-specific pruning (with the domain-
specific ordering) rules for 8-connected grid and generic
pruning (with generic ordering) between the first and con-
vergence phases, and between different map types.

To demonstrate the effect of using online pruning we
implemented five RTACS algorithms: LRTA*, daLRTA*,
f -LRTA*, LSS-LRTA* and daLSS-LRTA*. We experi-
mented with benchmark maps and problems from Sturte-
vant’s repository (Sturtevant 2012). The maps were set to
be either 8 connected or 16 connected. The legal move-
ment in a 16-connected grid is illustrated in Figure 3 right.

We first provide results for the first phase (a single run in
a previously unexplored map) and then for the convergence
phase (multiple runs solving the same problem). We mea-
sured both the distance traveled and the time elapsed. In
some cases we also provide the number of states expanded
(the states that were examined during the lookahead phase).
If the lookahead is set to one, the amount of expanded states,
naturally, highly correlates to the distance traveled. We ob-
served that even when the lookahead is greater than one (we
label the lookahead in parenthesis) there is still a high corre-
lation between expanded states and distance traveled, so in
most cases we omit this data and present only the distance.

First phase
We experimented with the first phase of the different algo-
rithms on the 1,302 instances of the Dragon Age Origins
maps (DAO) from buckets 64 and 128 of (Sturtevant 2012).
Unless stated otherwise, in all our plots the x-axis is ordered
in increasing order of difficulty of the problems. The y-axis
(in logarithmic scale) corresponds to the evaluation method.

Figure 4 presents distance results for LRTA*, daLRTA*,
FLRTA*, LSS-LRTA*(10) and daLSS-LRTA*(10) in an 8-
connected environment. For each of the algorithms three
curves are shown: blue (solid line) - the original algo-
rithm, red (dotted line) - using online swamp pruning, green
(dashed line) - using online expendable states pruning. As
can be seen, swamp detection reduced the travel distance and
expendable state pruning reduces the travel distance even
more dramatically. Gains are up to an order of magnitude.

There was one exception. In daLSS-LRTA*(10) no gains
were obtained when online pruning was applied. The ex-
planation is as follows. daLRTA* was designed to escape
local heuristic depressions and dead ends. It does so by giv-
ing preference for exploration of the graph over exploita-
tion of potentially shorter paths. In other words, daLRTA*
directs the agent mainly towards unexplored areas of the
graph. While in most cases daLRTA* significantly outper-
forms other algorithms, we observed that it is less effec-
tive in maps with many bottlenecks because daLRTA* may
cause the agent to leave the bottleneck on the side away from
the goal and to fully explore that area before returning to
the bottleneck and passing through it towards the goal. Our
pruning techniques narrow the map, causing more bottle-
necks and worsening the performance of daLRTA*. Thus,
with larger lookahead, the pruning techniques with LSS-
LRTA* provide better performance than daLRTA*.

As the lookahead of any RTACS algorithm grows, more
knowledge about the graph is found in the lookahead phase
and the effectiveness of online pruning diminishes. In the
extreme case, the lookahead performs a full A* search and
no gains can be obtained from online pruning. This tendency
is shown in Figure 5. The figure presents average distance
traveled for the LSS-LRTA* algorithm over all the DAO
scenarios. The x-axis is the lookahead depth in log scale.
The y-axis is the average distance. With smaller lookaheads
there is a clear advantage for using swamps pruning over
no pruning at all. Using expandable pruning outperforms
both swamps and no pruning. As the lookahead is increased,
the benefit of using online pruning diminishes, although we

171

can only pass through a cell if it is not blocked. In this pa-
per we extend the state of an agent to include heading and
speed. Thus, the goal is to find a path from the current state,
(xs, ys, �s, vs), to a goal state, (xs, ys, �s, vs), where � and v
are the current heading and velocity. In this case the move-
ment must obey both map constraints (blocked cells) and
movement constraints, which are implied by the given mo-
tion model. It is assumed that an underlying grid exists and
planning occurs on this grid, although this does not require
that a grid is used as the underlying representation of the
map. Motion is restricted to grid centers, although this can
be relaxed slightly in practice.

We define and use three motion models. As there are a
wide variety of design decisions that can be made regarding
movement, these are used to show the generality of the tech-
niques introduced, and to understand better how design de-
cisions affect the computation costs for planning in a game.

Our three models are:
• Humanoid model: The humanoid model only moves for-

ward, but can turn when stopped. There are two speeds,
walking and running. Turns are discretized into 16 direc-
tions (22.5�), as shown in Figure 1, and characters using
the model can move up to 67.5� in a single action.

• Tank model: The tank model can move forward and
backwards, but only has a single speed. Turns for the tank
model are discretized into 24 directions (15� resolution)
and characters using the model can turn up to 45� in a
single action.

• Vehicle model: This is the most complicated model. Ve-
hicles can move in forward or reverse, but cannot turn
when stopped. In reverse the model can only move slowly,
but has three speeds when moving forward. The vehicle
can only increase or decrease speed by two levels per ac-
tion. Turns are discretized into 16 directions. The vehicle
can turn faster at slow speeds than at high speeds. At high
speeds no turning is allowed. At a medium speed 22.5�

turns are allowed, and at low speeds up to 67.5� turns are
allowed. In reverse turns of up to 45� are allowed.
It is important when designing such models that there is

always a way to reach even difficult locations in the world. If
a model can turn when stopped, this will always be possible.
As a design issue, it may be worthwhile to add a turn action
even to units which are not able to turn in place. If this
action has high cost, then a search will only use this action
if absolutely necessary. In this way the use of the action by
the planner will help indicate that the model is being asked
to perform a maneuver which is too difficult for the model
constraints.

State-space analysis
Adding motion constraints can be seen as adding extra di-
mensions to the search space, however these extra dimen-
sions are relatively constrained. Assuming there are N states
in the original state space before adding motion constraints,
we compute the size of the state space that results from im-
posing the motion model onto search.

In the humanoid model there are three speeds (stopped,
walking and running) and 16 possible headings. This means

Figure 1: Humanoid and vehicle models: 16 possible move-
ments staying on an underlying grid.

that the size of the state space increases to 48N . The tank
model also has three possible speeds. But, there are 24 pos-
sible headings, so the new state space has 72N states. Fi-
nally, in the vehicle model there are five speeds (backwards,
stopped, and three forward speeds) as well as 16 possible
headings, meaning the state space grows by a factor of 80
over the original state space.

While these factors significantly increase the size of the
state space, the cost of storing the representation of the un-
derlying map does not change. They can, however, increase
the average branching factor. As long as we can restrict the
number of states explored during search adding motion con-
straints does not add significant other costs.

Search Optimizations
There are a variety of optimizations required for an effi-
cient implementation of directional pathfinding. We de-
scribe these optimizations here and then will perform ex-
periments to measure their effectiveness.

We will search with each of these models using A* (Hart,
Nilsson, and Raphael 1968). We assume the reader is famil-
iar with A*, but a few features of the algorithm are partic-
ularly relevant to this work. A* expands nodes by f -cost,
where f(n) = g(n) + h(n). A common variant on A* is
weighted A*, which places a weight, w, on the heuristic
value. Weighted A* searches with f(n) = g(n) + w · h(n).
Weighted A* tends to make greedy moves early in the search
when the h-cost is decreasing. Later in the search when
many nodes have similar h-costs, more emphasis is placed
on minimizing the g-cost.

A* maintains two lists, an open list of nodes being con-
sidered for expansion and a closed list of nodes which have
been expanded. A* will never re-open a node off the closed
list if the heuristic being used is consistent. In an undirected
domain, an consistent heuristic is one for which the heuris-
tic between two nodes never changes more than the edge
cost (Martelli 1977). The heuristic we propose here is not
always consistent, so it is important to understand this, al-
though in practice the heuristic is nearly always consistent.

Most simple implementations of A* do not consider the
possibility of re-opening nodes. But, some combinations of
motion models, heuristics, and weighted A* search make it
possible for a shorter path to a node to be discovered after
the node was closed. In some cases it is advantageous to re-
open closed nodes while in other cases it is not. While not

Figure 3: Left: (I) the initial grid (II) Detection of swamps only (III) Detection of Expendable states. Right: 16-connected grid

Figure 4: Distance for the first phase. Blue: no pruning. Red: swamp pruning. Green: expendable pruning

presume this is also relative to the size of the problems and
maps being solved.

Table 1 presents average values over the same 1,302 in-
stances. It shows distance traveled (Distance) and number
of expanded states (Expansions) for an 8-connected grid.
CPU runtime (in milliseconds) has two columns for the 8-
connected gird. The first (Time) is for the general pruning
method designed for arbitrary graphs but applied on the 8-
connected grid. The second (Time*) is for the special meth-
ods designed for the 8-connected grids. Average expansions
per millisecond are provided for both the general (E/T) and
specific pruning (E/T*) methods. Then, results are provided
for the same problems as 16-connected grids. The +S line
refers to using the same algorithm but with swamp pruning;
+E is similar for expendable pruning.

In general, online pruning incurs overhead. However, we
observed that for some cases the constant time per node is
reduced when pruning methods were applied. When using
online pruning, many open spaces in the map are reduced to
smaller more narrow spaces. This in turn reduces the effec-
tive branching factor (i.e. average number of neighbors per
state) and the cost of learning in each move.

Distance gains were achieved with our pruning methods
(with one exception - swamps pruning for daLRTA*); a fac-
tor of 2 for swamps and up to an order of magnitude for
expendable states was obtained in many cases. As for CPU
time, the specific 8-connected expendable pruning method
(Time*) achieved a speedup of up to 10x, while swamps
pruning achieved little or no gains due to its larger overhead
for the should-kill() check. Naturally, general pruning meth-
ods have much larger overhead per check. Thus the general
swamp pruning (Time) always runs slower while expend-
able pruning is faster only for the basic LRTA* and algo-

0

20000

40000

60000

80000

100000

120000

140000

1 10 100 1000 10000

D
is

ta
n

ce

Lookahead

No prunning

Swamps

Expandable

Figure 5: Distance traveled for LSS-LRTA*

rithms with lookahead > 1. This is shown in the algorithms
with lookahead of 10 (other lookahead > 1 performed sim-
ilarly). This is mainly due to the harder problems in the set;
Figure 6 demonstrate this trend for LSS-LRTA*(10) with
generic pruning method. Runtime is presented for all prob-
lems as in table 1 sorted according to difficult.

For the 16-connected grid there are distances reductions
of up to an order of magnitude. Only expendable pruning
achieved time speedup (for f -LRTA* and LSS-LRTA*(10))
for general pruning (Time). We also implemented a specific
rule for 16-connected grids (Time*) which was very simi-
lar to the specific 8-connected grids rules. Similar speedups
were obtained (not shown).

Influence of Domain Properties We have also experi-
mented with mazes (with corridors of width 1) and with ran-
dom maps with 40% obstacles.3 In mazes, all expendable

3We experimented with all the relevant instances from
Sturtevant’s repository using buckets 50,60,70,80,90,100,110,120,

172

8-connected 16-connected
Algorithm Distance Expansions Time E / T Time* E / T* Distance Time

LRTA* 132,982 129,732 198 655 198 655 125,386 307
+S 67,919 65,924 1,296 51 109 605 74,061 4,398
+E 14,588 13,073 97 135 15 872 8,627 310

daLRTA* 22,291 20,921 34 615 34 615 11,792 25
+S 14,788 13,885 288 48 24 579 10,465 646
+E 7,179 6,557 109 60 10 656 9,178 444

f -LRTA* 98,809 87,690 98 895 98 895 212,142 374
+S 71,050 63,042 1,129 56 77 819 139,592 5,634
+E 24,979 22,118 106 209 27 822 11,687 292

LSS(10) 22,696 93,765 281 334 281 334 22,829 589
+S 13,559 54,577 947 58 164 333 14,511 4,015
+E 3,505 6,852 74 93 20 343 2,914 352

daLSS(10) 11,130 81,103 420 193 420 193 5,354 463
+S 13,498 99,151 1,890 52 475 209 5,859 3,068
+E 9,168 28,511 265 108 68 419 7,916 1,243

Table 1: +S: swamp pruning, +E: expendable pruning

After 10 runs After 100 runs Until convergence
Algorithm Distance Expansions Time Distance Expansions Time Runs Distance Expansions Time
LRTA* 176,530 172,006 52 299,021 289,201 96 3,270 2,415,471 2,227,165 906
LRTA*+S 92,418 89,472 57 196,432 188,064 126 2,016 1,301,281 1,183,579 856
Ratio 1.91 1.92 0.92 1.52 1.54 0.76 1.62 1.86 1.88 1.06
f -LRTA* 137,866 122,842 140 278,341 248,183 297 413 485,008 430,628 522
f -LRTA*+S 99,697 88,957 135 171,602 153,426 248 226 262,407 234,102 385
Ratio 1.38 1.38 1.04 1.62 1.62 1.20 1.83 1.85 1.84 1.36
LSS(10) 41,709 165,650 524 120,287 418,296 1,341 484 375,768 998,675 3,323
LSS(10)+S 27,832 105,200 366 90,485 282,398 988 312 211,983 506,201 1,816
Ratio 1.50 1.57 1.43 1.33 1.48 1.36 1.55 1.77 1.97 1.83

Table 2: 8-connected DAO maps. Convergence phase.

1

10

100

1000

10000

100000

LSS(10) LSS(10)+S LSS(10)+E

Figure 6: Runtime in ms for LSS-LRTA*(10)

states are also swamps. Pruning for swamps and expendable
states performs equally well; for both cases up to an order of
magnitude gains were obtained over not using any pruning.
For the random maps the gains achieved by the pruning (up
to x2) were smaller than mazes and the DAO maps, as open
spaces are very rare and very few states can be pruned.

Convergence phase
Results are presented only for swamps for the convergence
phase, as expendable states prevent convergence to optimal

130,140,150,160,170,180,190,200 - a total of 1600 instances.

solutions. daLSS-LRTA*, which is only designed for the
first phase has similar results to LSS-LRTA*, and is omit-
ted. The same 8-connected DAO maps were tested and only
the specific 8-connected swamp detection was used. Table
2 presents the average distance (Distance), states expanded
(Expansions) and runtime (Time) for each algorithm after
10 runs, 100 runs and all runs until convergence. The runs
column presents the number of runs performed until conver-
gence to optimality was proven. The ratio rows present the
improvement factor from using swamps. Gains of up to a
factor of two were achieved for both metrics. Considerably
better results were achieved on mazes, which have a larger
proportion of swamps. Random maps, which have very few
swamps, had worse results.

Conclusions
We presented methods for online pruning of expendable
states and of swamps and showed how to implement them
in general and in the special case of 8-connected grids. Ex-
perimental results showed gains of up to an order of mag-
nitude for the distance traveled across all algorithms we
tried. Significant time speedups were mostly seen for the do-
main specific pruning rules (for 8- and 16- connected grids).
This calls for future development of other (non-grid) specific
rules. In this paper we only used the restricted local neigh-
borhood variants which only include the immediate neigh-

173

bors of nodes. Future work will explore rules for detecting
larger regions of swamps or expendable states, particularly
when using algorithms with larger lookaheads.

Acknowledgements
This research was supported by the Israeli Science Founda-
tion (ISF) under grant #305/09 to Ariel Felner.

References
Yngvi Björnsson and Kári Halldórsson. Improved heuristics for
optimal path-finding on game maps. In AIIDE, pages 9–14, 2006.
Vadim Bulitko and Greg Lee. Learning in real-time search: A uni-
fying framework. J. Artif. Intell. Res. (JAIR), 25:119–157, 2006.
Vadim Bulitko, Mitja Luštrek, Jonathan Schaeffer, Yngvi
Björnsson, and Sverrir Sigmundarson. Dynamic Control in Real-
Time Heuristic Search. JAIR, 32:419 – 452, 2008.
Ariel Felner, Uzi Zahavi, Robert Holte, Jonathan Schaeffer,
Nathan R. Sturtevant, and Zhifu Zhang. Inconsistent heuristics in
theory and practice. Artif. Intell., 175(9-10):1570–1603, 2011.
Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel
Delling. Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In Catherine C. McGeoch, editor, WEA,
volume 5038 of Lecture Notes in Computer Science, pages 319–
333. Springer, 2008.
Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach
for A*: Efficient point-to-point shortest path algorithms. In Work-
shop on algorithm engineering and experiments, pages 129–143,
2006.
Daniel Damir Harabor and Alban Grastien. Online graph pruning
for pathfinding on grid maps. In Wolfram Burgard and Dan Roth,
editors, AAAI. AAAI Press, 2011.
Carlos Hernández and Jorge A. Baier. Real-time heuristic search
with depression avoidance. In IJCAI, pages 578–583, 2011.
Carlos Hernández and Jorge A. Baier. Avoiding and escaping de-
pressions in real-time heuristic search. J. Artif. Intell. Res. (JAIR),
43:523–570, 2012.
S. Koenig and M. Likhachev. D* Lite. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages 476–483, 2002.
Sven Koenig and Xiaoxun Sun. Comparing real-time and incre-
mental heuristic search for real-time situated agents. Autonomous
Agents and Multi-Agent Systems, 18(3):313–341, 2009.
S. Koenig. The complexity of real-time search. Technical Report
CMU–CS–92–145, School of Computer Science, Carnegie Mellon
University, Pittsburgh, 1992.
Sven Koenig. Agent-centered search. AI Magazine, 22(4):109–
132, 2001.
Sven Koenig. A comparison of fast search methods for real-time
situated agents. In In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Vol-
ume, pages 864–871, 2004.
Richard E. Korf. Real-time heuristic search. Artif. Intell., 42(2-
3):189–211, 1990.
L. Mero. A heuristic search algorithm with modifiable estimate.
Artificial Intelligence, 23:13–27, 1984.
Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Using
swamps to improve optimal pathfinding. In Carles Sierra, Cris-
tiano Castelfranchi, Keith S. Decker, and Jaime Simão Sichman,
editors, AAMAS (2), pages 1163–1164. IFAAMAS, 2009.

Nir Pochter, Aviv Zohar, Jeffrey S. Rosenschein, and Ariel Felner.
Search space reduction using swamp hierarchies. In AAAI, 2010.
Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Exploiting
problem symmetries in state-based planners. In AAAI, 2011.
Asaf Shiloni, Noa Agmon, and Gal A. Kaminka. Of robot ants
and elephants. In AAMAS ’09: Proceedings of The 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems,
pages 81–88, Richland, SC, 2009. International Foundation for Au-
tonomous Agents and Multiagent Systems.
N.R. Sturtevant and V. Bulitko. Learning where you are going and
from whence you came: h-and g-cost learning in real-time heuristic
search. International Joint Conference on Artificial Intelligence
(IJCAI), pages 365–370, 2011.
Nathan R. Sturtevant, Vadim Bulitko, and Yngvi Börnsson. On
learning in agent-centered search. In AAMAS, pages 333 – 340,
2010.
Nathan R. Sturtevant. Memory-efficient abstractions for pathfind-
ing. In AIIDE, pages 31–36, 2007.
N. Sturtevant. Benchmarks for grid-based pathfinding. Transac-
tions on Computational Intelligence and AI in Games (to appear),
2012.
Sebastian Thrun. Learning occupancy grid maps with forward sen-
sor models. Auton. Robots, 15(2):111–127, 2003.

174

